
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.17, January 2013

14

Efforts Estimation by Use Case Point using
Experience Data

Chetan Nagar1, Anurag Dixit, PhD.
2

1
Ph.D Student, Mewar University (Gangrar) Chittodgarh Rajasthan India

2
 Dean-Professor (CS/IT) BRCM CET,Bahal Bhiwani

ABSTRACT
Many software efforts estimation models and methods are

invented to make efforts estimation accurate. Unfortunately no

model or method is suitable for all kind of project and

situations. it is frequently suggested that using experience data,

estimation models and checklists can increase software effort

estimation accuracy. However, there has been limited empirical

research on the subject. It was found that in projects where

experience data was utilized in the estimation process, they

experienced a lesser magnitude of effort overruns. The use of a

checklist also appeared to increase estimation accuracy. The

utilization of an estimation model did not appear to have a

substantial impact [08].This paper is suggesting that use of

estimation model can also produce good estimation results, but

historical data is always necessary to assist the estimation. We

can use historical data to improve the result of Use Case Point

and COCOMO model .In our research we have gain 10%

improvement in Use case Point model with use of historical

data. This paper is also suggesting that a strong monitoring

policy is always required to make your estimation as a success.

Keywords: Software estimation, experience data, estimation

models, checklists, COCOMO, Use Case Point.

1. INTRODUCTION

We should accept that Estimation by Analogy and Expert

Estimation are good estimation technique, it means not that

estimation model cannot produce good result. Historical data

provide a strong base to our prediction. It makes our prediction

better. Use of historical data can also improve the performance

of estimation model that we have shown in this paper.

Estimation is an important part of software engineering process,

and the ability to produce accurate effort estimates has an

impact on key economic processes, including budgeting and

bid proposals. Projects estimated optimistically might be

selected instead of a project that has been estimated

pessimistically [2]. If organizations want to improve the

accuracy of their employees‟effort estimates, employees must

be trained to make better estimates. It has already been

established that estimation ability does not increase with

experience [10].

In [4], Jørgensen raises the issue of why estimation models are

not applied by project managers more frequently. He argues

that the lack of evidence for their efficacy may be the most

significant reason.

Most of the estimation done today is expert-based. Research

has shown that the average effort overrun in software

development projects is about 30%-40% [1].

Today we are referring old data only in Analogy Based

Estimation and Expert Estimation. We can also use the

historical data to improve the accuracy of an estimation model.

2. METHODS OF EFFORTS

ESTIMATION

It is necessary understanding the principals of each estimation

method to choose the best. Because performance of each

estimation method depends on several parameters such as

complexity of the project , duration of the project, expertise of

the staff, development method and so on [14].

COCOMO and Use Case Point is two most popular models

used for estimation. In the COCOMO we have to predict two

things first is how much KLOC will required to build that

project and second 22 Efforts Adjustment Factors .Historical

data can guide us to predict how much KLOC will required to

build the project and it can also help in the prediction of EAF.

For the effective utilization it is necessary that database must

be well managed. We must record the values of the parameters

and reason why we had chooses that value .A database of

previous successful project must be maintain for future

reference.

Use Case Point is another popular in which we need to predict

Actors, Use Case, TCF and EF.

A. COCOMO[9]

One after one three models of COCOMO given by Barry

Boehm:

i. Simple COCOMO.

ii. Intermediate COCOMO.

iii. Advance COCOMO

i.Simple COCOMO:- It was the first model suggested by Barry

Boehm, which Follows following formula:

Efforts= a*(KLOC) b

Here a and b are complexity factor.

TABLE I

Complexity Factors

Model A B

Organic (simple in terms of size

and complexity

3.2 1.05

Semi-ditched (average in terms of

size and complexity

3.0 1.12

Embedded (Complex) 2.8 1.20

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.17, January 2013

15

ii Intermediate COCOMO:-Previous model does not include

the factors which can affect the efforts. Intermediate

COCOMO includes 17 factors that can affect the efforts

estimation.

Efforts= a*(KLOC) b *EAF

Here a and b are complexity factor.

TABLE II

Complexity Factors

Model A B

Organic (simple in terms of size

and complexity

3.2 1.05

Semi-ditched (average in terms of

size and complexity

3.0 1.12

Embedded (Complex) 2.8 1.20

Following are Efforts Adjustment Factors used in

Intermediate COCOMO. Typical values for EAF range from

0.9 to 1.4.

TABLE III

Cost Drivers

S

N

O

Cost

Driver
Value Description

1 DATA Database size.

2 CPLX Product complexity.

3 TIME
Execution time

constraint.

4 STOR Main storage constraint.

5 RUSE Required reusability.

6 DOCU
Documentation match to

life-cycle needs.

7 PVOL Platform volatility.

8 SCED Scheduling factor.

9 RELY Required reliability.

10 TOOL Use of software tools.

11 APEX Application experience.

12 ACAP Analyst capability.

13 PCAP Programmer capability.

14 PLEX Platform experience.

15 LTEX
Language and tools

experience.

16 PCON Personnel continuity.

17 SITE Multisite development.
Scale factors are new in COCOMO II. The effect of scale

factor is in 1.01 to 1.26 ranges

TABLE IV

New Cost Drivers

S NO

Cost

Drive

r

Value Description

18 PREC Precedence.

19 PMAT Process maturity.

20 TEAM Team cohesion.

21
FLEX

Development

flexibility.

22
RESL

Architecture and risk

resolution.

What we have to predict in the COCOMO, first we have to

predict KLOC, second parameters specified in Table-III and

Third Parameters specified in Table-IV. Experience data can

help us in prediction .Now suppose we have a rich database for

such kind of project so which projects can be taken as

reference, Answer is that we must keep two parameters in mind

first we have to take latest project and second we have to take

successful project.

B. Use Case Point [3] [13].

The Use Case Points (UCP) method provides the ability to

estimate the man hours a software project requires from its use

cases. Based on work by Gustav Karner [1], the UCP method

analyzes the use case actors, scenarios, and various technical

and environmental factors and abstracts them into an equation.

The UCP equation is composed of three variables:

1. Unadjusted Use Case Points (UUCP).

2. The Technical Complexity Factor (TCF).

3. The Environment Complexity Factor (ECF).

A. Calculate no of Actors:-We use following table to

calculate no of Actors used in project

TABLE V

Actor Calculation

Actor

Type

Descriptio

n

Quantit

y

Weigh

t

Factor

Subtota

l

Simple Defined

API

 1

Average Interactive

or protocol

driven

interface

 2

Comple

x

Graphical

user

interface

 3

Total Actor Points

B. Calculate no of Use Cases:-We use following table to

calculate no of Use Cases used in project

TABLE VI

Use Case Calculation

Use

Case

Type

Description Quant

ity

Weight

Factor

Subtotal

Simple Up to 3

transactions

 5

Average 4 to 7

transactions

 10

Complex More than 7

transactions

 15

Total Use Cases

UUCP =Weighted Actors + Weighted Use Cases

UCP=UUCP*TCF*EF

Calculate TCF (Technical Complexity Factor)

List of Technical factors where weight factor rate from 0-2

and project rating rate from 0-5

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.17, January 2013

16

TABLE VII

Technical Complexity Factors

Technic

al

Factor

Factor

Description

Wight

Factor

Project

Rating

Sub

Total

T1 Must have a

distributed

solution

2

T2 Must Respond

to specific

performance

objective

1

T3 Must meet end

user efficiency

desired

1

T4 Complex

internal

processing

1

T5 Code must

reusable

1

T6 Must be easy

to install

0.5

T7 Must be easy

to use

0.5

T8 Must be

portable

2

T9 Must be easy

to change

1

T10 Include special

security

feature

1

T11 Must provide

direct access to

third parties

1

T12 Requires

special user

training

facilities

1

T13 Must allow

concurrent

user

1

TOTAL

TCF= (0.01 * TC factor) + 0.6

Calculate EF (EXPERIENCE FACTOR)

TABLE III

Experience Factors

Experience

factor

Factor

Description

Wight

Factor

Project

Rating

Sub

Total

E1 Familiar with

FTP software

Process

1

E2 Application

Experience

0.5

E3 Paradigm

Experience

1

E4 Lead analyst

capability

0.5

E5 Motivation 0

E6 Stable

Requirements

2

E7 Part time

workers

-1

E8 Difficulty of

programming

Language

-1

TOTAL

EF= (-0.03 *E factor) + 1.4

In the Use Case Point approach we have to predict no of

Actor (Table-V), no of Use Cases (Table-VI), TCF (Table-VII)

and EF (Table-VIII).Record of latest and successful project can

help us in prediction of these values.

An early project estimate helps managers, developers, and

testers plan for the resources a project requires. As the case

studies indicate, the UCP method can produce an early estimate

within 20 percent of the actual effort, and often, closer to the

actual effort than experts and other estimation methodologies

[13].

3. USE OF HISTORICAL DATA IN

MODEL

As we know that in COCOMO we need to predict the

KLOC and other 22 parameter which is called Efforts

Adjustment Factors. In the Use Case Point approach we have

to predict the 13 Technical Complexity Factor and 08

Experience Factor.

Historical data provide us guidelines to predict these

parameters. Historical improve our prediction .The idea of

recording and utilizing data from experience when estimating

software development effort is not new [5]. One of the

strengths of this approach is that estimates are based on actual

experience [6]. The problem is the often very unique nature of

software development projects, which makes it difficult to

assess how similar a new project is to a previous one.

Estimation by analogy is, or at least has been, widely utilized

in the software industry [7].

We have taken some projects of a small software

development company and estimate the efforts for these

project using Use Case Point approach without taking reference

of historical data .Again we have estimated the efforts for the

same project using historical data and we have found that on an

average we got average 10% of improvement. This

improvement definitely decreases the MRE.

TABLE IX

Comparison of Results

Name of

Project

Effort Estimated

by Use Case

Point (in Man-

Hours)

Effort Estimated by

Use Case Point with

experience data (in

Man-Hours)

A 1042 1138

B 917 1015

C 822 910

Fist time we had predict the values of parameters on the

basis of our experience and project requirements. But in second

time we use historical data to predict the value of parameters

and we have got such change.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.17, January 2013

17

During the study we have found that if we have incorrectly

predict even a single parameter and make of difference of value

one then we get difference of 4 UCP (On an average) on per

1000 UUCP. That mean we are losing 80 man hours (4

UCP*20 Man-hours/UCP) on a single value of TCF or EF.

As we know that we have 13 TCF and 08 EF. So 21 times

we need to predict the correct value .On a single miss

prediction we will got a major difference.

We had work on a project has around 1000 UUCP and try to

illustrate the above study.

TABLE X

Estimation Results for UUCP=1000

∑ TCF TCF ∑ EF EF UCP

52 1.12 32 0.44 493

51 1.11 32 0.44 488

50 1.10 32 0.44 484

TABLE XI

Estimation Results for UUCP=2000

∑ TCF TCF ∑ EF EF UCP

52 1.12 32 0.44 985

51 1.11 32 0.44 977

50 1.10 32 0.44 968

In the above study we have assume that we had miss

predicted only one parameter by value one. We can lose more

UCP if we incorrectly predict the many parameters with more

value.

4. CONCLUSION

In the study we have seen that prediction is important in efforts

estimation .Your estimation will be better if you can predict

better. Historical data play vital role in prediction, it

recommend us what we have to do. Use of model with

historical data can produce good result that we have seen. This

paper shows that not only the check list, analogy based

estimation, or expert estimation can perform better, estimation

model can also perform better but assistance of historical data

is must.

Neither estimation strategy has been shown to be superior in

all cases [11]. All the models could not predict the actual

against either the calibration data or validation data to any level

of accuracy or consistency. No model is best for all situations

and environment. [12]

A lot of estimation models and methods are suggested by

the researchers ,but no one is best suitable for all projects and

all software companies .A good monitoring policy is always

required to make your estimation as a success .Every time we

have to check the gap between actual and estimated and take

the actions to bridge the gap.

Every model and method required a little bit of modification

according to your local environment .so modify the method

according to your requirement and use it , it will produce better

results.

5. REFERENCES

[1] K. Moløkken-Østvold and M. Jørgensen, "AReview of

Surveys on Software Effort Estimation," in 2003 ACM-

IEEE International Symposium on Empirical Software

Engineering (ISESE 2003), Frascati Monte Porzio Catone

(RM), ITALY, 2003,pp. 220-230.

[2] M. Jørgensen and S. Grimstad, "Overoptimism in

Software Development Projects:“The winner’s curse”," in

IEEE CONIELECOMP, Puebla, Mexico, 2005, pp. 280–

285.

[3] Karner Gautav “Resource Estimation for objector project

“Objective system SF AB 1993.

[4] M. Jørgensen, "Forecasting of Software Development

Work Effort: Evidence on Expert Judgment and Formal

Models," Accepted for International Journal of

Forecasting, 2007

[5] E. A. Nelson and A. Force, Management Handbook for

the Estimation of Computer Programming Costs: System

Development Corp.; Distributed by Clearinghouse for

Federal Scientific and Technical Information, 1967.

[6] F. Walkerden and R. Jefferey, "An empirical study of

analogy-based software effort estimation," Empirical

Software Engineering, vol. 4, pp. 135-158, 1999

[7] Kristian Marius Furulund1 and Kjetil Moløkken-Østvold

“Increasing Software Effort Estimation Accuracy -

Using Experience Data, Estimation Models and

Checklists ” Seventh International Conference on Quality

Software (QSIC 2007) pp 342-347

[8] Bohem,” Software Engineering Economics”, Prentice Hall,

1981.

[9] M. Jørgensen and D. I. K. Sjøbert, "Impact of experience

on maintenance skills," Journal of Software Maintenance

and Evolution: Research and Practise, vol. 14, pp. 123-

146, 2002.

[10] M. Jørgensen, "A Review of Studies on Expert Estimation

of Software Development Effort," The Journal of Systems

and Software, vol. 70, pp. 37-60, 2004.

[11] Saleem Basha , Dhavachelvan P “Analysis of Empirical

Software Effort Estimation Models” (IJCSIS)

International Journal of Computer Science and

Information Security, Vol. 7, No. 3, 2010

[12] Carroll, Edward R. “Estimating Software Based on Use

Case Points.” 2005 Object-Oriented, Programming,

Systems, Languages, and Applications (OOPSLA)

Conference, San Diego, CA, 2005.

[13] 1Vahid Khatibi, 2Dayang N. A. Jawawi “Software Cost

Estimation Methods: Review”, Journal of Emerging

Trends in Computing and Information Sciences Volume 2

No. 1 January 2011.

