
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.16, January 2013

45

Multipath Dynamic MANET On-demand Protocol

with QoS Implementation

Vipul Maheshwari

 Research Scholar
Bharati Vidyapeeth College of Engineering &

Research, Pune, India

Shrikant S. Jadhav
Assistant Professor

Bharati Vidyapeeth College of Engineering &
Research, Pune, India

ABSTRACT

Wireless sensor networks (WSNs) consist of densely deployed

sensor nodes, which have limited computational capabilities,

power supply, and communication bandwidth. To ensure

reliability in delivering the sensing data through a large field

of sensors remains a research challenge. The multipath

routing technique is one of the best solution to this which can

enforce network robustness in case of node failures.

DYMO_MQ [1] is a novel multipath approach which is a

multipath extension to Dynamic MANET On-demand

(DYMO). In this paper the author are making an effort to

implement the DYMO_MQ protocol NS2. Results gives the

confirmation of successful implementation.

General Terms

Wireless Sensor Network, MANET, DYMO.

Keywords

Multipath Routing, QoS, NS2 simulator, DYMO_MQ.

1. INTRODUCTION
Wireless sensor network (WSN) is a wireless network which

consists of spatially distributed nodes with optionally attached

sensors. These sensors can be used for monitoring physical

and environmental conditions such as temperature, sound or

vibration at different locations. WSNs are very useful in

variety of application in industrial environments. They can be

used to monitor areas which are difficult to reach even by

humans in a cost-effective way. The main challenge in the

field is achieving suitable performance with minimal

processing and bandwidth usage for maximum energy

efficiency, as the only power source is the included battery.

A routing protocol is needed to achieve the connectivity

throughout the network. It should allow for decentralized

network configuration and for reconfiguration in the event of

a defective path [2]. In the past single path routing protocols

have been heavily discussed and examined.

A more recent research topic for WSN is multipath routing

protocols. Multipath routing allows more than one paths to be

maintained between a source and a destination. These

multiple paths play very important role to deliver data

reliably. These alternative paths can be used in case of failure

of current path or simultaneously for load balancing by using

several paths parallely [3]. Second case is out of the scope of

our project work. These paths can also be classified in three

principal categories such as: link disjoint paths, not disjoint

paths and node disjoint paths. Project only considers the third

category because the independence and resilience that the

nodes disjoint paths provide.

In this paper the author are implementing the protocol

DYMO_MQ (Multipath Dynamic MANET On-demand with

Quality of Service) described in Section 3. It adapts and

extends Dynamic MANET On-demand (DYMO) routing

protocol for WSN. DYMO Routing is an on-demand unicast

hop-by-hop protocol for MANETs. It is being developed as a

simplified combination of previous reactive routing protocols

[4], [5] and uses distance vector routing like AODV to

maintain loop-free routes. DYMO_MQ is a multipath on-

demand protocol with QoS that establishes multiple loop-free

node disjoint paths between a source and a destination.

Protocol can establish multiple paths in one route discovery

using single query flood and uses them to backup routes in

case of link failure.

The remainder of the paper is organized as follows. In section

2, describes some more multipath routing protocols. Section 3

explains DYMO_MQ protocol in detail. Section 4 gives

implementation work and Section 5 elaborate on results

achieved. Finally section 6 concludes this paper.

2. RELATED WORK
In this section various on- demand multipath routing protocols

especially from the viewpoint of route discovery strategy are

briefly described.

AODV-BR [6]: All neighboring nodes of the primary route

maintain a backup route to the destination. In case a link in

the primary path fails, data packets are sent to a neighbor

which redirect packet and sends it to the destination. It is

actually not a multipath protocol since only single path per

destination is maintained.

AODVM [7]: It is a multipath extension of AODV. But Ye et

al found the number of paths to be very low and propose

using special reliable nodes (in terms of being capable of

combating fading, more secure and equipped with better

batteries) to provide a reliable routing framework.

AODV Multipath [8]: is an extension of the AODV protocol

designed to find multiple node-disjoint paths. In these

intermediate nodes forwards Route Request (RREQ) packets

towards the destination. Duplicate RREQ for the same source-

destination pair is recorded in the RREQ table instead of

simply discarding them. The destination tries to maximize the

number of calculated multiple paths by replying appropriately

to all route requests (RM). Routing Reply (RREP) packets are

forwarded to the source via the inverse route traversed by the

RREQ. Node disjointness in paths is ensured by deleting the

corresponding entry of the transmitting node from their RREQ

table.

The DYMO routing protocol enables reactive, multi-hop

routing between source and sink nodes. It is a newly proposed

protocol currently defined in an IETF Internet-Draft [9].

DYMO is a successor of AODV routing protocol. It operates

similarly to AODV. However, it adopts some techniques found

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.16, January 2013

46

in source routing protocols (such as DSR), under the path

accumulation method described in the protocol. In this case,

each node adds itself in the routing message it forwards, in

order for nodes receiving these packets to construct paths

towards these nodes accumulated, before this is needed.

DYMO_MQ is an on-demand multipath routing

protocol with QoS developed as an extension to DYMO that

enables the source and the destination nodes to maintain more

than one path towards each other. It is detailed in following

section.

3. DYMO_MQ OVERVIEW
DYMO_MQ is an ‘On-demand Multipath Routing

Protocol with QoS’, developed as an extension to DYMO.

This enables the source and the destination nodes to maintain

multiple path towards each other.

DYMO_MQ algorithm has following two main phases:

a) Multiple Route Discovery Phase

b) Route Maintenance Phase

In DYMO_MQ routing messages from source and

destination are used to establish path between source and

destination. Since our main objective is to provide fault-

tolerance and reduce frequency of query floods, paths which

are loop-free and node-disjoint are only selected. To ensure

QoS, routing message of type RREQ is enriched with two

new fields as follows:

 Figure1. Extended RREQ message structure format

Routing messages are of two types RREQ and

RREP. They carry similar information but are handled

differently by each node. Both contain all fields shown in

above diagram except T_delay and T_error which are only

included in RREQ, not present in RREP.

T_delay: Maximum delay for a transmission from source

node to destination node

T_error: Refer to error rate of the path

A. Multipath Route Discovery

When a source node wants to send data to the destination

node and no route to this destination is available in its routing

table, in this case, the source creates and broadcasts a RREQ

packet. The initial value of the T_delay field represents the

end-to-end delay requirement for a QoS path fixed by the

target application.

Routing table is modified so that multiple paths to

destination node can be maintained.

1) Intermediate node task: Intermediate node

processes RREQ packet in following way:

 It subtracts from the T_delay indicated in the RREQ

the time required by this node to process the RREQ.

 Calculate the T_error as follows:

 (1)

Where, T (i, j): the error rate between the node i and the node

j α: a factor, D (i, j): the distance between i and j (a constant

distance), Vj: unused space in the queue of the node j

(calculated dynamically when a RREQ packet is received),

such as the value of the T_error is the multiplication of all the

error rates of nodes include on the actual path. The purpose of

the error rate calculation is to keep only paths with a minimal

congestion.

If T_delay is not positive and T_error > threshold, the

node drops the RREQ packet.

2) Destination node task and selecting node disjoints

paths: From a fault tolerance perspective, in case of route

failure, node disjointness of available multiple paths are

highly desirable. This node disjointness is ensured by the

destination node in centralized manner using RREQ and

RREP packets.

The destination node selects node disjoint paths in

following way: When the destination node receives first

RREQ packet, it records the list of all node IDs for the entire

route path in its cache and sends a RREP packet. If it is a

RREP, the destination includes next hop in the forward route

entry. For the duplicate Routing Message (RM) packets

received by the destination and which are not all node disjoint

paths, the destination compares the accumulated path of the

received RM to all the existing node disjoint paths in its

cache. Paths not containing any common node recorded in the

destination’s cache memory. Otherwise the RM packet is

dropped. RREP packets which arrive to the source node after

the node disjoint selection, source records them in the route

table as an alternative, can be used when a broken link is

detected.

4. IMPLEMENTATION
The authors have implemented DYMO_MQ in

popular simulator called NS-2. Details about NS-2 and

implementation are explained in following sub-section.

4.1 NS-2
 Following are the features of NS-2 used for implementing

the project work.

1. NS­2 is an open source discrete event simulator.

2. NS-2 is a clean slate design, aiming to be an easier to

use, more readily extensible platform.

3. Interface of NS-2 is ‘Tool Command Language (TCL)’

while back end is in C++.

NS-2 is released under the terms of the GNU General Public

License (GPL) and is freely available for download on

internet. NS-2 is modular in nature. It contains all commonly

used networking algorithms in it. It can be extended to even

implement newer algorithms. Module for new algorithm has

to be developed in C, C++ and then it can be patched in NS-2.

4.2 DYMOUM (NS-2) Package
DYMOUM is an implementation of

the DYMO (Dynamic Manet On-demand) routing protocol for

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.16, January 2013

47

both linux kernels and the NS-2 (Network Simulator). The

code is also released under the terms of the GNU General

Public License (GPL) and it freely available for download on

internet.

DYMOUM is developed in C, C++. Major modules are

explained with their functionality in following Table 1.

Module Functionality

dymo_generic.c Implements general DYMO protocol

pending_rreq.c Handles the pending RREQ requests in

queue of nodes.

dymo_re.h It is header file in which structure of

RREQ packet is defined

dymo_re.c Implements the processing methods for

different RM packets

dymo_socket.c Handles the socket creation part in UDP

packets

blacklist.c Stores the broken path information

dymo_hello.c Sends ‘Hello Packet’ to other nodes

dymo_rerr.c Handles Route Error (RERR) packet

dymo_timeout.c Implement timer for ‘Hello packet’

d_queue.c Buffer management

k_route.c Handles route information change

Icmp_socket.c Internet Control Message Protocol

d_netlink.c Network Management like bandwidth,

delay etc.

r_table.c Routing table

dymo_nb.c Handles neighbor information

main.c Main function

Table1: DYMOUM Modules Description

4.3 DYMO_MQ
DYMO_MQ as explained in above sections is

nothing but enriched DYMO protocol with multipath route

handling capacity as well as facility to ensure QoS included. It

is done by extending RREQ packet by including T_delay and

T_error fields as explained in Section 3. This is implemented

in NS-2 by incorporating these in DYMOUM patch as

follows:

1) Modification in Dymo_re.h: dymo_re.h is header

file. It defines the RREQ packet structure. Here, add

following two lines in struct i.e. T_delay and

T_error fields are included.

double t_delay;

 double t_error;

Also function at line no. 101 is modified as below:

 RE *re_create_rreq(struct in_addr target_addr,

 u_int32_t target_seqnum,

 struct in_addr re_node_addr,

 u_int32_t re_node_seqnum,

 u_int8_t prefix, u_int8_t g,

 u_int8_t ttl, u_int8_t thopcnt);

2) Modification in dymo_re.c: dymo_re.c is implement

the processing methods for different RM packets

like RREQ and RREP. As explained in Section 3 in

DYMO_MQ, RREQ and RREP are handled

differently as compared to DYMO. Initial values of

T_delay and T_error can be set at line no. 62. Also

function at line no. 387 is modified as below:

void NS_CLASS re_forward_rreq_path_acc(RE

*rreq, int blindex)

{

 int i;

 struct in_addr bcast_addr;

 rreq->t_delay=rreq->t_delay-1000.0;

 //DYMO_MQ

 rreq->t_error=5*200/(1000-searchposition());

 if(rreq->t_delay>=0||rreq->t_error<0.5)

 {

 dlog(LOG_DEBUG, 0, __FUNCTION__,

 "forwarding RREQ to find %s",

 ip2str(rreq->target_addr));

 bcast_addr.s_addr = DYMO_BROADCAST;

 i=0;

 while (i < DYMO_MAX_NR_INTERFACES)

 {

 if (DEV_NR(i).enabled)

 {

 rreq->re_blocks[blindex].re_node_addr =

 (u_int32_t) DEV_NR(i).ipaddr.s_addr;

 dymo_socket_queue((DYMO_element *)

 rreq);

 dymo_socket_send(bcast_addr,

 &DEV_NR(i));

 }

 i++;

 }

 }

 else

 {

 printf("\n RREQ packet dropped for QOS \n");

 free(rreq);

 }

}

3) Modification in pending_rreq.c: It handles the

pending RREQ requests in queue of nodes. T_delay

is the complete time required to reach RREQ packet

from source node to destination on node. Every time

RREQ packet reaches an intermediate node, total

time required to process RREQ packet by that node

is subtracted from T_delay. Following function

which calculates this time is added at the end of

pending_rreq.c file.

int NS_CLASS searchposition()

{

 dlist_head_t *pos;

 int count;

 dlist_for_each(pos, &PENDING_RREQ)

 {

 count++;

 }

 return count;

}

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.16, January 2013

48

5. Experimentation and Results
In this section, author would like to show the result

& analysis of the DYMO-MQ. In Figure 2 shows the result of

scenario having 3 nodes which are in moving state i.e.

dynamic nodes. When nodes are dynamic they may go out of

range, where they are not accessible from other nodes. In this

case packets sent to such nodes will be dropped.

Figure2. DYMO_MQ with 3 Dynamic Nodes

Since RREQ packet is broadcasted every time it is arrived at

any node, there are high chances of it getting delayed. Also

every node takes some time for processing it. In above

snapshot it can be clearly see that few RREQ packets are

dropped since they are not satisfying the QoS criteria. This

way enhanced DYMO_MQ overcomes the limitation of

DYMO and DYMO.

In Figure 3 shows the execution result for scenario which

considers 2 moving nodes. In case of just 2 nodes there is no

consideration of delay or error introduction.

Since in case of just 2 nodes either RREQ packet reaches the

target node or it does not. Also since RREQ packet goes only

to second node obviously there is no introduction of delay in

it. Therefore as shown above there is no packet drop for QoS.

Hello packet is sent to establish connection and as soon

connection is established RREQ packet is sent.

Figure3. DYMO_MQ with 2 Dynamic Nodes

In Figure 4 shows the execution result of scenario which

considers 3 static nodes. Nodes are static i.e. non-moving.

Figure4. DYMO_MQ with 2 static Nodes

Since nodes are not moving packets will always be received,

once connection is established it will remain. So there is no

question of packet drop even in this case.

From the above results, it can be clearly see that by including

the 2 parameters as t_delay and t_error in RREQ Packet, it

improves QoS. Based on the values of these parameters

RREQ Packet which are not satisfying the QoS are dropped.

Hence, the Quality of Service (QoS) in DYMO protocol is

ensured.

6. Conclusion
In this paper, authors have implemented

DYMO_MQ a multipath routing protocol supporting QoS for

WSN. This protocol can search multiple node disjoint paths

during a single multiple route discovery with QoS constraints

and using them as backup routes in case of link failure in

DYMO. For implementation authors have used NS-2 which is

an open source modular software. DYMOUM is a patch of

NS-2 which implements DYMO protocol. Authors have

modified DYMOUM code to incorporate all additional

functionalities of DYMO_MQ. Results confirm the successful

implementation of DYMO_MQ protocol.

7. REFERENCES
[1] Nawel BENDIMERAD, Bouabdellah KECHAR. IEEE

2011. Performance evaluation of QoS aware Multipath

extensions For the Dynamic MANET On-demand

protocol in Wireless Sensor Networks.

[2] I. Zarov, “Mesh Routing for Low-Power Mobil Ad Hoc

Wireless Sensor Networks Using DYMO-low”, Guided

Research Report, Jacob University Bremen, Germany,

May 15, 2007.

[3] N. Bendimerad, B. Kechar, Z. Bidai, H. Haffaf,

“Multipath On-demand Routing Protocol with Quality of

Service for Wireless Sensor Networks”, International

Conference on Applied Informatics, Bordj Bou Arréridj,

Algeria, November 15-17, 2008.

[4] David B. Johnson, David A. Maltz, and Yih-Chun Hu,

“The Dynamic Source Routing Protocol for Mobile Ad

Hoc Networks (DSR),” July 2004, INTERNET-DRAFT

draft-ietf-manet-dsr-10.txt.

[5] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-

Demand Distance Vector (AODV) Routing,” July 2003,

RFC 3561.

[6] Sung-Ju Lee and Mario Gerla, “AODV-BR: Backup

Routing in Ad hoc Networks,” in Proceedings of the

IEEE Wireless Communications and Networking

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.16, January 2013

49

Conference (WCNC 2000), Chicago, IL, September

2000.

[7] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A

Framework for Reliable Routing in Mobile Ad Hoc

Networks,” in INFOCOM 2003. Twenty-Second Annual

Joint Conference of the IEEE Computer and

Communications Societies. IEEE, 2003, vol. 1, pp. 270-

280.

[8] Ye , Krishnamurthy, Tripathi, “ A framework for reliable

routing in mobile ad hoc networks”. IEEE INFOCOM

(2003)

[9] I. Chakeres, C. “Perkins. Dynamic MANET On-demand

(DYMO) Routing”, draft-ietf-manet-dymo-17, March 8,

2009

