
International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.15, January 2013 

30 

An Analysis of Scan Converting a Line with 

Multi Symmetry 

 
Md. Khairullah 

Shahjalal University of Science and Technology 
Sylhet-3114, Bangladesh 

 

 

ABSTRACT 
Line is a very important primitive in computer graphics. In 

this paper we analyze and discussan algorithm that exploits 

the multi symmetry present in certain line segments during 

scan conversion.This feature is implemented with the simple 

technique of direct line equation; digital differentiation 

analyzer (DDA) algorithm and the floating-point operation 

free Bresenham’s Algorithm. The benefit of exploiting this 

feature is clearly seen in the test results. Test results also show 

that by exploiting this feature, execution times of all these 

algorithms are very close, as the variations in these algorithms 

work for very small fraction of the line and the rest of the line 

is simply replicated from this pre-computation. 
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1. INTRODUCTION 
The process of scan conversion or rasterizationis a 

fundamental operation that is used extensively in computer 

graphics and visualization. The problem statement of scan 

conversion is “Given two points P and Q in XY plane, both 

with integer coordinates, determine which pixels on raster 

screen should be on in order to draw a unit-width line segment 

starting at P and ending at Q”. Sothe process of scan 

conversion algorithm for lines is to compute the coordinates 

of pixels that lie on or near an actual straight line imposed on 

a 2D-raster grid.The simplest way for scan conversion of lines 

is the sequence of operations: (i) to compute the slope m as 

dy/dxwhere dx and dy are the differences between the end 

points of the line along the x-axis and the y-axis 

respectively;(ii) to compute the y-intercept c as y1-m*x1 where 

(x1,y1) is the coordinate of the left end point; (iii) to increment 

x by 1 starting with the leftmost point to calculate yi = mxi+c 

for each xi and to intensify the pixel at (xi, 

round(yi)orfloor(0.5+yi)). This calculation finds the closest 

pixel. However, this strategy needs each point to be calculated 

requiring floating-point multiplications, addition and invoking 

the floor operation [1].Sometimes designs require hundreds of 

lines to be refreshed or redrawn in a fraction of a second. This 

clarifies the importance of efficientline drawing 

techniques.There are many elegant algorithms to handle this 

issue. However, by a special trick, the computation time for 

scan conversion can be significantly reduced for certain type 

of lines. Naturally every straight line has a two-way symmetry 

around the mid point of the linealong the both ends. That is, 

the change in both the coordinates for the points has the same 

characteristics in terms of change of coordinates, when 

approached from both ends of a straight line. However, beside 

this symmetry some line segments possess more symmetry. 

We say multi symmetry in a line exists when the distance 

along the x-axisor dx and the distance along the y-axisor dyare 

such that they are not co-prime or relatively prime [2]. When 

a greatest common divisor(gcd) exists other than 1, then we 

have the line property that we can divide the line in some 

equal length divisions which are replicas of each other in 

terms of changing of the coordinates of the contained points’ 

coordinates. In these situations we need to scan convert the 

first division only. Changes in the points’coordinates of other 

divisions only need to be replicated from the computations of 

the first division.This phenomenon can significantly reduce 

the computation time of scan conversion.  

2. PREVIOUS WORKS 
Bresenham developed an elegant line drawing algorithm, 

which uses only integer arithmetic and allows incremental 

calculations for finding next pixel’s coordinate [3, 4]. This 

incremental technique can be applied to integer computation 

of circles as well.In [5]a slightly different formulation of 

Bresenham’s algorithm known as the midpoint technique was 

proposed, which was later adapted by Van Aken [6] and other 

researchers. Wu and Rokne [7] modified Bresenham’s 

algorithm so that a single decision variable works for 2 pixels 

and consequently the line drawing time becomes half. In [8] 

another midpoint algorithm for line drawing is introduced. For 

lines and integer circles, the midpoint formulation reduces to 

Bresenham’s formulation and therefore generates the same 

pixels [9].Parallel methods for generating lines have been 

discussed in [10] and [11] to exploit multiple processors. 

In [12] a new line drawing algorithm is developed which 

groups the points according to the less changing axis. It 

computes the first point of each group according to the 

algebraic equation and subsequent points of the group are 

obtained by incremental process. In [13] a novel approach for 

line drawing is shown based on the grouping idea of [12]. 

Here instead of explicit computation of the line equation 

decisions are taken by some integer operation involving the 

group length and the value of the unused amount in the 

current group or carry, and to be considered in the next 

group.In [14] a new approach is introduced to line drawing 

with logarithmic time complexity that attempts to maintain a 

uniform packing density of horizontal segments to diagonal 

segments throughout the line. 

In [15], a new method is developed for drawing straight lines 

based on signal processing concepts related to resampling, 

multirateprocessing and sample rate conversion generally, 

and decimation in particular. This method eliminates test, 

compare and branch operations within the inner plotting loop. 

Furthermore, all multiplication, division, shifts and other 

complex CPU operations are eliminated from the inner loop, 

as well. 
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Initial idea of an improved algorithm for scan converting a 

line with multi symmetry is presented in [16]. However, we 

present a rigorous analysis of the test results of the 

implementation. Also we discover the hidden limitation of 

this approach. 

3. EXPLOITING MULTI SYMMETRY 
If two numbers are not co-prime or relatively prime we have 

the feature that we can divide both the numbers with their 

greatest common divisor and the results will be integers with 

the same ratio. For a line if the distances along the y-axis and 

the x-axis are not co-prime, we can divide both the lengths 

with their greatest common divisor and have some divisions, 

which ends on some integer coordinatesandhave 

theidenticalchanging behavior. This implies that we need to 

compute the pixels’ coordinates only for the first division and 

pixels’ coordinates for other divisions can be simply 

replicatedfrom the first division. For example, in figure-1 we 

have a line with end points A(0,0) and D(15,9). The distances 

along the x-axis and y-axis between the end points are 15 and 

9 units respectively, having a greatest common divisor 3 and 

resulting in 3 equal length divisions of the main line. Each 

division has the lengths 5 and 3 units along the x-axis and the 

y-axis respectively. We observe the line divisions A(0,0) and 

B(5,3); B(5,3) and C(10,6); and C(10,6) and D(15,9) have the 

same changing behaviors and hence we need to compute the 

changes of the pixels’ coordinates only for the first division 

A(0,0) and B(5,3). 

However this benefit is not universal as all combinations of 

line’s end points will not give us this feature. For the example 

in figure-2 a line having end points (0,0) and (15,8) will have 

no multi symmetry, as the distances along the x-axis (i.e. 15) 

and y-axis (i.e. 8) are co-prime. Probability of two numbers to 

be co-prime is 61% [17]. So for any raster graphics device we 

will have only 39% of lines having this special feature of 

multi symmetry. 

As in other approaches of line drawing we divide atwo-

dimensional plane into four quads, which ranges from 0° to 

360°. Most of the line drawing algorithms limit the 

computation of the lines lying in the range 0° to 45° as the 

lines in other ranges can be easily drawn with slight 

modification of the same algorithm [18]. Below we list the 

algorithm, which exploits potential benefit of multi symmetry. 

AlgorithmExploit-Multi-Symmetry 

Input: End points of a line A(x1,y1) and B(x2,y2). 

1. divisor=gcd(y2-y1,x2-x1); 

2. yy=y1+(y2-y1)/divisor; 

3. xx=x1+(x2-x1)/divisor; 

4. length=-1; 

5. oldY=y1; 

6. Repeat steps 6a-6f for x=x1+1 to xx 

6a. Compute y using any line drawing 

algorithm; //ex. DDA or Bresenham 

6b. length=length+1; 

6c. store[length]=y-oldY; 

6d. oldY=y; 

6e. intensify pixel at (x,y) 

6f. x = x+1 

7. Repeat steps 7a and 7b for count=1 to divisor-1 

7a. Repeat steps i-iv for kount=0 to length-1 

i. y=y+store[kount]; 

ii. intensify pixel at (x,y)  

iii. x=x+1; 

iv. kount=kount+1  

7b. count=count+1; 

Figure 1: a line having 3 identical divisions 

 

 
Figure 2: a line having no symmetry 

 

4. RESULTS AND DISCUSSIONS 
We already discussed the fact that the probability of a line 

having multi symmetry is only about 39%. Hence we confine 

all following discussion regarding test cases, results and 

performance analysis only to lines having multi symmetry and 

avoid other lines. We used the OpenGL routine glVertex2fto 

draw or intensify a pixel described in the algorithm. As the 

time to draw a single line is very little we drew 10,000 lines to 

have a significant time measures for comparison purposes. We 

worked with 3 different lines having various degree of multi 

symmetry.  Line 1 has the end points (0,100; 1200,700) 

having greatest common divisor 600 and the highest amount 

of potential symmetry (600 identical divisions each having 2 

pixels). On the contrary, line 2 has end points (0,100; 

1200,102), the greatest common divisor 2 and the lowest 

amount of symmetry (2 identical divisions each having 600 

pixels). Line 3 is in between in terms of multi symmetry, 

compared to line 1 and line 2. It has the end points (0,100; 

1200,125), the greatest common divisor 25 and 25 identical 

divisions (each with 48 pixels) in it. 

Table 1 lists the execution time of the simple algorithm (direct 

line equation), the DDA algorithm and the Bresenham’s 

algorithm on these lines. It shows the difference between the 

classical version of these algorithms and the new version 

exploiting multi symmetry and also shows the acceleration, 

which we define as the ratio of the scan conversion times by 

the classical versions to the new versions. 

Figure-3 shows the execution time of different new algorithms 

exploiting multi symmetry for the mentioned 3 lines. The 

interesting thing is that for the line 1 having the highest 

amount of multi symmetry, all the algorithms performs quite 

same. For the line 2, the differences among the drawing time 
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are significant and the performance graph follows the case in 

the classical version of the algorithms. For line 1 we have to 

compute the y-coordinates only for 2 pixels by using the 

algorithms. Remaining pixels in rest of the divisions are 

replicated based on the computations for the first division. 

Computations for the first division having only two pixels do 

not have enough impact on the total execution time and hence 

we have the quite the same execution time for all the 

algorithms. On the other hand, line 2 has only two identical 

divisions and we need to go up to the middle of the line (600 

pixels) using the classical algorithms for computations of the 

pixels and hence we have a significant difference among the 

execution time of the 3 algorithms. In line 3, 48 pixels need to 

be computed using the classical algorithms and 24 divisions 

can reuse these results and hence has less impact on the total 

execution time. 

Figure-4, figure-5 and figure-6 depict the reduction in 

execution time by exploiting multi symmetry compared to the 

classical versions of the algorithms for line 1, line 2 and line 3 

respectively. We can also perceive the acceleration in 

performance by these figures. In table 1 we observe that the 

acceleration in the simple algorithm for line 1 and line 3 is 

roughly 160% where in the worst case (line 2) it falls to 

133%. For the DDA algorithm we again observe that the 

acceleration for line 1 and line 3 is quite same (137% and 

134% respectively) which is 125% for the worst case (for line 

2). As the classical version of DDA algorithm is better than 

the classical version of the simple method, we had less scope 

to enhance by exploiting multi symmetry. 

For the same reasons Bresenham’s algorithm achieves the 

lowest acceleration by exploiting multi symmetry, as it is the 

best algorithm among the three in their classical versions. And 

also an interesting thing regarding exploiting multi symmetry 

by Bresenham’s algorithm is that accelerations for all the 

three lines are quite same (roughly 123%). This is a 

contradiction to the other two algorithms where a clear fall in 

the acceleration for the line 2 is observed. This may be due to 

the fact that the Bresenham’s algorithm in its classical version 

is very good and has not enough potentiality to improve 

significantly by exploiting multi symmetry. 

By these results, we can derive the totalacceleration by 

introducing this new feature of multi symmetry. We consider 

the probability of a line having multi symmetry to derive the 

totalacceleration by the formula: 

totalacceleration = acceleration using multi 

symmetry*probability of a line having multi symmetry+100* 

probability of a line lacking multi symmetry 

Then, for the simple algorithm the acceleration is 

(161*0.39+100*0.61)% or 124% in the best case and 

(133*0.39+100*0.61)% or 113% in the worst case. For the 

DDA algorithm the acceleration is (137*0.39+100*0.61)% or 

115% in the best case and (125*0.39+100*0.61)% or 110% in 

the worst case. For Bresenham’s algorithm the acceleration is 

(123*0.39+100*0.61)% or 109% roughly for all the cases. So 

we can say by exploiting multi symmetry feature we can 

speed up scan conversion of line by about 10% to 25%.

 

Table 1: Execution time (in seconds) of the classical and new version of various algorithms

 Line 1 (0,100; 1200,700) Line 2 (0,100; 1200,102) Line 3 (0,100; 1200,125) 

Algorithm Classical New Acceleration Classical New Acceleration Classical New Acceleration 

Simple 0.147399 0.091555 1.610 0.146449 0.110364 1.327 0.147063 0.09271 1.586 

DDA 0.127206 0.092833 1.370 0.124050 0.099488 1.247 0.125672 0.093756 1.340 

Bresenham 0.112921 0.091798 1.230 0.114078 0.093119 1.225 0.112003 0.090649 1.236 

 

 

Figure 3: Comparison of the execution time exploiting multi 

symmetry 

 

Figure 4: Comparison of the execution time of the classical 

and the new algorithm for line 1 
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Figure 5: Comparison of the execution time of the classical 

and the new algorithm for line 2 

 

Figure 6: Comparison of the execution of the classical and the 

new algorithm for line 3 

5. CONCLUSION 
Other than devising new strategies for scan conversion of line, 

simply by exploiting the inherent multi symmetry property, 

we can enhance the process of line drawing to a certain 

extent.This approach can be applied to any newly discovered 

algorithm and the level of acceleration can be investigated. 

While a line has natural 2-way symmetry with respect to both 

the ends, the multi symmetry feature is affectively exploited 

for certain line orientations (end points). On the other hand a 

circle has a natural 8-way symmetry and an ellipse has a 

natural 4-way symmetry. It can be investigated whether there 

exists more symmetry for certain circle and ellipse orientation 

(center and radius for circle; center and axis’s for ellipse) and 

also the corresponding probability. Then performance 

acceleration and also overall performance acceleration can by 

measuredfor these primitives when exploiting multi 

symmetry. 
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