
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.15, January 2013

30

An Analysis of Scan Converting a Line with

Multi Symmetry

Md. Khairullah

Shahjalal University of Science and Technology
Sylhet-3114, Bangladesh

ABSTRACT
Line is a very important primitive in computer graphics. In

this paper we analyze and discussan algorithm that exploits

the multi symmetry present in certain line segments during

scan conversion.This feature is implemented with the simple

technique of direct line equation; digital differentiation

analyzer (DDA) algorithm and the floating-point operation

free Bresenham’s Algorithm. The benefit of exploiting this

feature is clearly seen in the test results. Test results also show

that by exploiting this feature, execution times of all these

algorithms are very close, as the variations in these algorithms

work for very small fraction of the line and the rest of the line

is simply replicated from this pre-computation.

General Terms
Computer graphics, scan conversion of line

Keywords
Scan conversion, greatest common divisor, relative primality,

symmetry, identical division

1. INTRODUCTION
The process of scan conversion or rasterizationis a

fundamental operation that is used extensively in computer

graphics and visualization. The problem statement of scan

conversion is “Given two points P and Q in XY plane, both

with integer coordinates, determine which pixels on raster

screen should be on in order to draw a unit-width line segment

starting at P and ending at Q”. Sothe process of scan

conversion algorithm for lines is to compute the coordinates

of pixels that lie on or near an actual straight line imposed on

a 2D-raster grid.The simplest way for scan conversion of lines

is the sequence of operations: (i) to compute the slope m as

dy/dxwhere dx and dy are the differences between the end

points of the line along the x-axis and the y-axis

respectively;(ii) to compute the y-intercept c as y1-m*x1 where

(x1,y1) is the coordinate of the left end point; (iii) to increment

x by 1 starting with the leftmost point to calculate yi = mxi+c

for each xi and to intensify the pixel at (xi,

round(yi)orfloor(0.5+yi)). This calculation finds the closest

pixel. However, this strategy needs each point to be calculated

requiring floating-point multiplications, addition and invoking

the floor operation [1].Sometimes designs require hundreds of

lines to be refreshed or redrawn in a fraction of a second. This

clarifies the importance of efficientline drawing

techniques.There are many elegant algorithms to handle this

issue. However, by a special trick, the computation time for

scan conversion can be significantly reduced for certain type

of lines. Naturally every straight line has a two-way symmetry

around the mid point of the linealong the both ends. That is,

the change in both the coordinates for the points has the same

characteristics in terms of change of coordinates, when

approached from both ends of a straight line. However, beside

this symmetry some line segments possess more symmetry.

We say multi symmetry in a line exists when the distance

along the x-axisor dx and the distance along the y-axisor dyare

such that they are not co-prime or relatively prime [2]. When

a greatest common divisor(gcd) exists other than 1, then we

have the line property that we can divide the line in some

equal length divisions which are replicas of each other in

terms of changing of the coordinates of the contained points’

coordinates. In these situations we need to scan convert the

first division only. Changes in the points’coordinates of other

divisions only need to be replicated from the computations of

the first division.This phenomenon can significantly reduce

the computation time of scan conversion.

2. PREVIOUS WORKS
Bresenham developed an elegant line drawing algorithm,

which uses only integer arithmetic and allows incremental

calculations for finding next pixel’s coordinate [3, 4]. This

incremental technique can be applied to integer computation

of circles as well.In [5]a slightly different formulation of

Bresenham’s algorithm known as the midpoint technique was

proposed, which was later adapted by Van Aken [6] and other

researchers. Wu and Rokne [7] modified Bresenham’s

algorithm so that a single decision variable works for 2 pixels

and consequently the line drawing time becomes half. In [8]

another midpoint algorithm for line drawing is introduced. For

lines and integer circles, the midpoint formulation reduces to

Bresenham’s formulation and therefore generates the same

pixels [9].Parallel methods for generating lines have been

discussed in [10] and [11] to exploit multiple processors.

In [12] a new line drawing algorithm is developed which

groups the points according to the less changing axis. It

computes the first point of each group according to the

algebraic equation and subsequent points of the group are

obtained by incremental process. In [13] a novel approach for

line drawing is shown based on the grouping idea of [12].

Here instead of explicit computation of the line equation

decisions are taken by some integer operation involving the

group length and the value of the unused amount in the

current group or carry, and to be considered in the next

group.In [14] a new approach is introduced to line drawing

with logarithmic time complexity that attempts to maintain a

uniform packing density of horizontal segments to diagonal

segments throughout the line.

In [15], a new method is developed for drawing straight lines

based on signal processing concepts related to resampling,

multirateprocessing and sample rate conversion generally,

and decimation in particular. This method eliminates test,

compare and branch operations within the inner plotting loop.

Furthermore, all multiplication, division, shifts and other

complex CPU operations are eliminated from the inner loop,

as well.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.15, January 2013

31

Initial idea of an improved algorithm for scan converting a

line with multi symmetry is presented in [16]. However, we

present a rigorous analysis of the test results of the

implementation. Also we discover the hidden limitation of

this approach.

3. EXPLOITING MULTI SYMMETRY
If two numbers are not co-prime or relatively prime we have

the feature that we can divide both the numbers with their

greatest common divisor and the results will be integers with

the same ratio. For a line if the distances along the y-axis and

the x-axis are not co-prime, we can divide both the lengths

with their greatest common divisor and have some divisions,

which ends on some integer coordinatesandhave

theidenticalchanging behavior. This implies that we need to

compute the pixels’ coordinates only for the first division and

pixels’ coordinates for other divisions can be simply

replicatedfrom the first division. For example, in figure-1 we

have a line with end points A(0,0) and D(15,9). The distances

along the x-axis and y-axis between the end points are 15 and

9 units respectively, having a greatest common divisor 3 and

resulting in 3 equal length divisions of the main line. Each

division has the lengths 5 and 3 units along the x-axis and the

y-axis respectively. We observe the line divisions A(0,0) and

B(5,3); B(5,3) and C(10,6); and C(10,6) and D(15,9) have the

same changing behaviors and hence we need to compute the

changes of the pixels’ coordinates only for the first division

A(0,0) and B(5,3).

However this benefit is not universal as all combinations of

line’s end points will not give us this feature. For the example

in figure-2 a line having end points (0,0) and (15,8) will have

no multi symmetry, as the distances along the x-axis (i.e. 15)

and y-axis (i.e. 8) are co-prime. Probability of two numbers to

be co-prime is 61% [17]. So for any raster graphics device we

will have only 39% of lines having this special feature of

multi symmetry.

As in other approaches of line drawing we divide atwo-

dimensional plane into four quads, which ranges from 0° to

360°. Most of the line drawing algorithms limit the

computation of the lines lying in the range 0° to 45° as the

lines in other ranges can be easily drawn with slight

modification of the same algorithm [18]. Below we list the

algorithm, which exploits potential benefit of multi symmetry.

AlgorithmExploit-Multi-Symmetry

Input: End points of a line A(x1,y1) and B(x2,y2).

1. divisor=gcd(y2-y1,x2-x1);

2. yy=y1+(y2-y1)/divisor;

3. xx=x1+(x2-x1)/divisor;

4. length=-1;

5. oldY=y1;

6. Repeat steps 6a-6f for x=x1+1 to xx

6a. Compute y using any line drawing

algorithm; //ex. DDA or Bresenham

6b. length=length+1;

6c. store[length]=y-oldY;

6d. oldY=y;

6e. intensify pixel at (x,y)

6f. x = x+1

7. Repeat steps 7a and 7b for count=1 to divisor-1

7a. Repeat steps i-iv for kount=0 to length-1

i. y=y+store[kount];

ii. intensify pixel at (x,y)

iii. x=x+1;

iv. kount=kount+1

7b. count=count+1;

Figure 1: a line having 3 identical divisions

Figure 2: a line having no symmetry

4. RESULTS AND DISCUSSIONS
We already discussed the fact that the probability of a line

having multi symmetry is only about 39%. Hence we confine

all following discussion regarding test cases, results and

performance analysis only to lines having multi symmetry and

avoid other lines. We used the OpenGL routine glVertex2fto

draw or intensify a pixel described in the algorithm. As the

time to draw a single line is very little we drew 10,000 lines to

have a significant time measures for comparison purposes. We

worked with 3 different lines having various degree of multi

symmetry. Line 1 has the end points (0,100; 1200,700)

having greatest common divisor 600 and the highest amount

of potential symmetry (600 identical divisions each having 2

pixels). On the contrary, line 2 has end points (0,100;

1200,102), the greatest common divisor 2 and the lowest

amount of symmetry (2 identical divisions each having 600

pixels). Line 3 is in between in terms of multi symmetry,

compared to line 1 and line 2. It has the end points (0,100;

1200,125), the greatest common divisor 25 and 25 identical

divisions (each with 48 pixels) in it.

Table 1 lists the execution time of the simple algorithm (direct

line equation), the DDA algorithm and the Bresenham’s

algorithm on these lines. It shows the difference between the

classical version of these algorithms and the new version

exploiting multi symmetry and also shows the acceleration,

which we define as the ratio of the scan conversion times by

the classical versions to the new versions.

Figure-3 shows the execution time of different new algorithms

exploiting multi symmetry for the mentioned 3 lines. The

interesting thing is that for the line 1 having the highest

amount of multi symmetry, all the algorithms performs quite

same. For the line 2, the differences among the drawing time

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.15, January 2013

32

are significant and the performance graph follows the case in

the classical version of the algorithms. For line 1 we have to

compute the y-coordinates only for 2 pixels by using the

algorithms. Remaining pixels in rest of the divisions are

replicated based on the computations for the first division.

Computations for the first division having only two pixels do

not have enough impact on the total execution time and hence

we have the quite the same execution time for all the

algorithms. On the other hand, line 2 has only two identical

divisions and we need to go up to the middle of the line (600

pixels) using the classical algorithms for computations of the

pixels and hence we have a significant difference among the

execution time of the 3 algorithms. In line 3, 48 pixels need to

be computed using the classical algorithms and 24 divisions

can reuse these results and hence has less impact on the total

execution time.

Figure-4, figure-5 and figure-6 depict the reduction in

execution time by exploiting multi symmetry compared to the

classical versions of the algorithms for line 1, line 2 and line 3

respectively. We can also perceive the acceleration in

performance by these figures. In table 1 we observe that the

acceleration in the simple algorithm for line 1 and line 3 is

roughly 160% where in the worst case (line 2) it falls to

133%. For the DDA algorithm we again observe that the

acceleration for line 1 and line 3 is quite same (137% and

134% respectively) which is 125% for the worst case (for line

2). As the classical version of DDA algorithm is better than

the classical version of the simple method, we had less scope

to enhance by exploiting multi symmetry.

For the same reasons Bresenham’s algorithm achieves the

lowest acceleration by exploiting multi symmetry, as it is the

best algorithm among the three in their classical versions. And

also an interesting thing regarding exploiting multi symmetry

by Bresenham’s algorithm is that accelerations for all the

three lines are quite same (roughly 123%). This is a

contradiction to the other two algorithms where a clear fall in

the acceleration for the line 2 is observed. This may be due to

the fact that the Bresenham’s algorithm in its classical version

is very good and has not enough potentiality to improve

significantly by exploiting multi symmetry.

By these results, we can derive the totalacceleration by

introducing this new feature of multi symmetry. We consider

the probability of a line having multi symmetry to derive the

totalacceleration by the formula:

totalacceleration = acceleration using multi

symmetry*probability of a line having multi symmetry+100*

probability of a line lacking multi symmetry

Then, for the simple algorithm the acceleration is

(161*0.39+100*0.61)% or 124% in the best case and

(133*0.39+100*0.61)% or 113% in the worst case. For the

DDA algorithm the acceleration is (137*0.39+100*0.61)% or

115% in the best case and (125*0.39+100*0.61)% or 110% in

the worst case. For Bresenham’s algorithm the acceleration is

(123*0.39+100*0.61)% or 109% roughly for all the cases. So

we can say by exploiting multi symmetry feature we can

speed up scan conversion of line by about 10% to 25%.

Table 1: Execution time (in seconds) of the classical and new version of various algorithms

 Line 1 (0,100; 1200,700) Line 2 (0,100; 1200,102) Line 3 (0,100; 1200,125)

Algorithm Classical New Acceleration Classical New Acceleration Classical New Acceleration

Simple 0.147399 0.091555 1.610 0.146449 0.110364 1.327 0.147063 0.09271 1.586

DDA 0.127206 0.092833 1.370 0.124050 0.099488 1.247 0.125672 0.093756 1.340

Bresenham 0.112921 0.091798 1.230 0.114078 0.093119 1.225 0.112003 0.090649 1.236

Figure 3: Comparison of the execution time exploiting multi

symmetry

Figure 4: Comparison of the execution time of the classical

and the new algorithm for line 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Line 1 Line 2 Line 3

E
x

e
cu

ti
o

n
 t

im
e

 (
s)

Simple

DDA

Bresenham
0

0.05

0.1

0.15

0.2

E
x

e
cu

ti
o

n
 t

im
e

 (
s)

Original

Modified

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.15, January 2013

33

Figure 5: Comparison of the execution time of the classical

and the new algorithm for line 2

Figure 6: Comparison of the execution of the classical and the

new algorithm for line 3

5. CONCLUSION
Other than devising new strategies for scan conversion of line,

simply by exploiting the inherent multi symmetry property,

we can enhance the process of line drawing to a certain

extent.This approach can be applied to any newly discovered

algorithm and the level of acceleration can be investigated.

While a line has natural 2-way symmetry with respect to both

the ends, the multi symmetry feature is affectively exploited

for certain line orientations (end points). On the other hand a

circle has a natural 8-way symmetry and an ellipse has a

natural 4-way symmetry. It can be investigated whether there

exists more symmetry for certain circle and ellipse orientation

(center and radius for circle; center and axis’s for ellipse) and

also the corresponding probability. Then performance

acceleration and also overall performance acceleration can by

measuredfor these primitives when exploiting multi

symmetry.

6. REFERENCES
[1] Roy, P. A., and Kaley, G., Fundamentals of Computer

Graphics, Schaum’s Outline Series, International Edition.

[2] Graham,R. L., Knuth, D. E., Patashnik, O., Concrete

Mathematics, Addison-Wesley Publishing Company

[3] Bresenham, J. E., Algorithm for computer control of a

digital plotter. IBM Systems Journal 1965; 4(1): 25–30.

[4] Bresenham, J. E., A Linear algorithm for incremental

digital display of circular arcs. CACM 1977; 20(2): 100–

6.

[5] Pitteway, M. L. V., Algorithm for drawing ellipses or

hyperbolae with a digital plotter. Computer Journal 1967;

10(3): 282–9.

[6] Van Aken Jr., An efficient ellipse-drawing algorithm.

CG&A 1984; 4(9): 24–35.

[7] Wu, X. and Rokne,J. G. , Double-Step Incremental

Generation of Lines and Circles, Computer Vision,

Graphics and Image Processing, 37: 331-334.

[8] Kappel, M.R., An ellipse-drawing algorithm for faster

displays. Fundamental algorithms for computer graphics,

Springer, Berlin, 1985, pp. 257–280,.

[9] Van Aken Jr, Novak, M., Curve-drawing algorithms for

raster displays. ACM TOG 1985; 4(2): 147–69.

[10] Pang, A. T., Line-drawing algorithms for parallel

machines. IEEE Computer Graphics and Applications

1990; 10(5): 54–9.

[11] Wright, W. E., Parallelization of Bresenham’s line and

circle algorithms. IEEE Computer Graphics and

Applications 1990; 10(5): 60–7.

[12] Hasan, M. and Kashem, M. A., An Efficient Line

Drawing Algorithm, Proceedings of ICCIT’99, pp. 204-

207.

[13] Karmakar, C. K., Shams, S. M. S., and Rahman, M. S.,

Line Drawing Algorithm: A New Approach, SUST

Studies, 2002, 4 (1): 65-69.

[14] Haque, A., Rahman, M. S., Bakht, M., Kaykobad, M.,

Drawing lines by uniform packing, International journal

of Computers and Graphics, Elsevier, 30(1): 207-212,

2006

[15] Bond,C.,A New Line Drawing Algorithm Based on

Sample Rate Conversion,

http://www.crbond.com/papers/newline.pdf, last visited

on 07-12-2012.

[16] Kabir, M. H., Hasan, I., and Azfar, A., An Improved

Algorithm for Scan Converting a Line, Asian Journal of

Information Technology 2005; 4 (9): 835-839

[17] Co-prime Integers, from Wikipedia, the free

encyclopedia,

http://en.wikipedia.org/wiki/Coprime_integers, last

visited on 09-12-2012.

[18] Foley, J. D., Andries van F, Steven, K., Hughes J. F.,

Computer graphics principles and practice, 2nd ed. in C,

Fourth Indian Reprint, 2000, Addison Wesley Longman,

Singapore

0

0.05

0.1

0.15

0.2
E

x
e

cu
ti

o
n

 t
im

e
 (

s)

Original

Modified

0

0.05

0.1

0.15

0.2

E
x

e
cu

ti
o

n
 t

im
e

 (
s)

Original

Modified

