
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

33

An Experiment in Software Component Retrieval based

on Metadata and Ontology Repository

Shekhar Singh
 Assistant Professor

Department of Computer Science & Engineering
 Panipat Institute of Engineering and Technology, Samalkha, Panipat, India

ABSTRACT

Software component reuse is the use of existing software

components to build a new software system. Effective storage

and retrieval of software components is much essential in

software components reuse process. The researchers have

developed a number of software components reuse techniques

for storage and retrieval of software components. No one

technique is complete in its own; every technique has its own

merits and demerits. This paper presents a meta-data model

and faceted classification for storage and retrieval of software

components that considers domain semantic information

based on ontologies and texonomies. In contrast to most

existing repositories, which only retrieve a limited set of

components, the proposed meta-data model makes possible

the recommendation of interrelated components, as ontology

and taxonomies characteristics were incorporated. The

software component retrieval based on facet classification is a

method which has been widely applied in software component

retrieval, but the precision of software component retrieval is

poor as a result of subjective factor in faceted classification

retrieval. The architecture of software component retrieval

system and the model of software component retrieval system

were designed, the corresponding match algorithm was

provided. According to the relation of facet and term space,

meta-data repository was established and abstracted from

domain knowledge which formed coherent retrieval in the

domain and was applied to software component retrieval

process. These terms in the meta-data repository were then

used to match software components which described in the

software component description repository with facet

classification, related software components were retrieved

from the software component repository. The results of

application show that the new software component retrieval

method can evidently improve the component retrieval

precision and take care of the full-scale of the searching

results.

General Terms
Software reuse, software component, Metadata, component

retrieval, Component based engineering, Appropriate

Components, General query terms, accurate describing terms

Keywords

Metadata repository, Search Engine, faceted classification,

component model, heuristic algorithm, ontology, accurate

query terms, ontology repository, component repository

1. INTRODUCTION
Software component reuse is an important concept to software

development, as it reduces software development effort, time

and cost and increase reliability and flexibility. Software

component-Based Software Engineering proposes the reuse of

software components, which can be retrieved and assembled

into applications of specific domains [1]. In order to build

these applications successfully, it is fundamental to choose

appropriated software components from a collection of

available software components. Thus, it is desirable to have a

repository that supports the storage, query and retrieval of

software components and makes reuse possible. Most existing

software component repositories only retrieve a limited set of

Software components and some do not satisfy user queries.

Interrelated software components may exist and would be

useful, but the user either does not know about them or is

unable to retrieve them because the query is defined too

narrowly [2]. The schema of the repository itself often does

not consider semantic relationships among software

components and thus omits important component retrieval

information. A technique to software component repositories

is needed that provides the retrieval and recommendation of

semantically interrelated software components. This paper

presents ontology and faceted classification based meta-data

repository and component repository for storage and retrieval

of software components.
The method of faceted classification and retrieval is most

extensive [2]. A term is putted into stated language context

and is classified by specific angle of view (is called facet)

which reflect essential characteristic of a software component

in faceted classification [3][4], a facet is a basic characteristic

which is described in a domain. A software component is

classified by each facet from different profiles, a component

can be described by many facets and many terms in a facet,

different facet can describe a component from different angle

of views. There are a set of terms in a facet, structured term

space is formed by common and special relation. The value of

a term can be only attained from given facet. It is helpful to

understand correlative domain for the reused that travel in

term space, the term space can be evolved. The method of

faceted classification is most accurate to express information

of a software component and can be easily understood by

users in various methods of software component retrieval,

therefore, if the method of faceted classification can be

provided in some software component meta-data and

component repositories which include many methods of

software component retrieval, then it will achieve the best

effect that the method of faceted classification is used [5]. But

the type of software components and the requirement of

organizations and user are different, the models of faceted

classification are different too, in other words, the condition

of retrieval for target software component is quite other, a

user wish search appropriate software components from a

component repository, the model of faceted classification

must be understood and the condition of retrieval must be

constructed, these manmade and subjective factors lead to the

retrieval precision is low, when the main information of

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

34

software component retrieval is provided, a user must make

the most of generic terms or accepted terms. The metadata

repository integrates expert knowledge of correlative domains

and generalizes crucial concepts and relations among concepts

in these domains [6] [7]. These query terms which are formed

in virtue of metadata knowledge can improve the software

component retrieval precision.

2. SOFTWARE COMPONENT STORING

AND RETRIEVAL SYSTEM

The function of a software component retrieval storing system

is that construct the model of software component retrieval, in

the model, functions, applied domains, work environments,

working , static and dynamic behaviors of a software

component can be accurately expressed, the software

component can be store, searched and reused [8]. A software

component includes the entity, describing and metadata

information in a software component repository. The three

can be stored together or discretely. The discrete scheme is

adopted so that reduce burthen, improve openness and is

convenient for upgrade and maintenance, a component

repository is divided into a describing repository and an entity

repository. The software component retrieval system is based

on meta-data, ontology faceted classification and adopts the

model of three layers (view layer, application layer and data

layer), the architecture is shown in Figure 1. The view layer is

web form, the layer provides searching interfaces for software

component users and library (repository) administration

interfaces for administrators and knowledge experts. The

application layer answer for describing component,

classification, administration, feedback, authority and log, the

layer realized by the view layer. There are four databases in

data layer: a describing repository, component repository, a

Meta data repository and ontology based component

repository. The metadata repository stores information in

special domains, provide accurate query terms, eliminate

some phenomena such as same meanings with different names

and same names with different meanings. According to

describing facets, the describing repository can provide some

information such as interfaces, functions, administrative

levels, applied domains, developed languages, applied

environments, editions and so on so that search software

components[9]. The component repository store components

and provide some services such as download and so on.

View Layer

Application Layer

Data Layer

 Fig 1: Software Component Storing and Retrieval System

Software Developer/

User

Repository Manager /

Software Expert

Administrator

Interface of

Component Retrieval

Interface of Metadata

Repository

Interface of

Component Retrieval

Engine of

Component retrieval

Administration of

Metadata Repository

Descriptio

n

Classification

Authority Log

Administration of Components

Maintenance, Administration, Controlling

Reliability, Security

Metadata

Repository
Component

Repository

Describing

Repository

Ontology based

component repository

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

35

3. ONTOLOGY –BASED META-MODEL

FOR STORAGE AND RETRIEVAL OF

SOFTWARE COMPONENTS
From an analysis of studies related to ontologies [36-41], it

was observed that some ontology characteristics are suitable

for software component retrieval, as they allow capturing

domain semantics and recommending interrelated software

components. Thus, ontology-based metadata were

incorporated. The incorporated metadata were identified from

elements belonging to the ontology creation language Web

Ontology Language [39, 40] and were also based on the

domain layer model of the ODEd ontology editor [37, 38].

Both ODEd and Web Ontology Language (OWL) support

basic ontology elements and allow the definition of formal

axioms that provide richer semantics to ontologies. The

ontology principles that were considered relevant to storage

and retrieval of software components were modeled. As the

meta-model shows, a Domain has usual attributes, name and

description, and also a modeling that graphically describes

how the domain is organized according to the elements

belonging to the meta-model. A domain is composed of

Entities; metadata attributes which refer to the main concepts

of the knowledge domain. In order to provide relationships

with richer semantics, axioms that would contribute toward

software component retrieval were investigated. In [38] [40]

[41] a series of axioms are presented, some of which are

considered relevant, namely, generalization/specialization,

disjunction, inverse and whole-part associations. Thus,

entities can have super-entities and sub-entities, and can be

disjoint with other entities. Inverse associations (inverse of)

indicate whether the relationship is bi-directional, allowing

navigation in both directions. Whole part associations include

axioms such as irreflection, ant symmetry and transitivity, and

are classified as Aggregations (parts compose the whole, but

not exclusively) and Compositions (parts exclusively compose

the whole). Through these axioms, it is possible to present

more information on the domain semantics and also infer

knowledge in order to recommend interrelated software

components. The captured domain information should be

related to the software components through an analysis of

their purposes and functionalities. Thus, it is possible to relate

software components to correspondent associations and

entities in domain semantics. Therefore, the elements

belonging to the meta-model permit retrieving and

recommending components based on the analysis of semantic

information.

4. SOFTWARE COMPONENT

RETRIEVAL PROCESS
The software component retrieval is implemented based on

the architecture of the software component retrieval system

that is shown in Figure 1. A user input query terms with the

interface of software component retrieval, these terms match

terms in the metadata repository, and the fittest describing

terms are chosen to feed back (if these terms cannot strictly

match terms in the meta data repository, the thesauruses are

chosen from the metadata repository by a heuristic algorithm

[10] [11]), these terms are further filtered and refined by users

so that accurate query describing terms is formed. An accurate

requirement of users is reflected to a describing repository of

software component based on faceted classification by a

module of accurate query processing, appropriate software

components will be searched by a fixed retrieval algorithm;

users filter appropriate software components and download

from the component repository of component. The whole

retrieval process is shown in Figure 2. The component

retrieval model is based on Meta data, faceted classification

and ontology. The module of accurate query processing is

given by the server of the describing repository.

 Input query terms Related Accurate Query terms Appropriate Components

General query terms accurate describing terms accurate describing terms Appropriate Components Appropriate

 Components

 Accurate query terms

General query terms Accurate describing terms Component information Appropriate Components

Fig 2: Software Component Retrieval Process

USERS / EXPERT/ ADMINISTRATOR

Query terms

Query Interface

The original

query module
The accurate query module

Meta data

repository

Describing

repository

Component

repository
Ontology

repository

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

36

5. CONSTRUCTION OF AN

METADATA REPOSITORY
The construction of a metadata repository comes down to two

crucial problems: Meta knowledge representation and

knowledge reasoning. Knowledge representation is chiefly

solved; knowledge should be expressed by the method which

a computer can understand, at the same time, and result

should be told to users by the method which people can

understand [12] [13].

5.1 The design of a repository
Much domain knowledge is stored in a repository; knowledge

is expressed by rules which show implicit relations [14], these

rules are defined as follows:

If A comes into existence, then B can be concluded, the

confidence degree is CL, marked up A = (B, CL), hereinto, A

is called antecedent which is combination of a series of

conditions, i.e. A = A1 Λ A2 Λ A3………. Λ An, is used to

express preconditions; B is called consequent which express a

conclusion. A Meta data repository includes relation as

follows:

Table 1: A Metadata Repository includes Relation

Rule

Rule_Number Varchar (10)

Rule_Name Long varchar

Antecedent Long varchar

Consequent Long varchar

Confidence Float

Precondition Long varchar

Category Long varchar

Conclusion Long varchar

When a expert system is used, new Meta data knowledge need

be added, old meta data knowledge need be amended or

deleted, for the sake of administration of various rules in an

metadata repository, these rules need be classified and the

above relation need be standardized. Finally, the whole

metadata repository is composed of five relations tables.

Table 2: Precondition relation table

Rule_Precondition

Rule_Number Varchar(10)

Rule_Name Long varchar

Precondition Long varchar

Table 3: Antecedent relation table

Rule_Antecedent

Antecedent_number Varchar (10)

Antecedent_name Long varchar

Antecedent_capacity integer

Table 4: category relation table

Rule_category

Category_number Varchar (10)

Category_name Long varchar

Rule_number Varchar (10)

Rule_name Long varchar

Table 5: Conclusion relation table

Rule_conclusion

Rule_number Varchar(10)

Rule_name Long varchar

Antecedent_capacity Integer

Consequent_name Long varchar

Confidence Float

Category_number Varchar (10)

Category_name Long varchar

Table 6: Consequent relation table

Rule_consequent

Consequent_number Varchar (10)

Consequent_name Long varchar

In these relations, when the confidence degree is null,

knowledge is full; the antecedent capacity is amount of

conditions in precondition, its function will be explained in

the design of inference engine, the content of

Rule_Precondition and Rule_Conclusion expresses complete

rules (i.e.knowledge) together.

5.2 The design of an inference engine
The design of an inference engine is directly concerned with

the structure of a metadata repository, because the metadata

repository is created with relational schema, the inference

engine can be designed with SQL.

Definition: Set RA1 =Select Rule_Consequent.

Consequent_name from Rule_Conclusion, Rule_Precondition,

Rule_Consequent Where Rule_Precondition.Precondition= A1

AND Rule_Precondition.Rule_number=Rule_Conclusion.

Rule_number AND Rule_Conclusion.

Consequent_name =Rule_Consequent.Consequent_name,

RA1 is called set based on A1.

The design of an inference engine is that gain set RAi based

on Ai (i =1,2,……. ,n) according to preconditions A1 , A2

,….. , An of rule A, the algorithm is designed as follows:

1. The precondition A = A1Λ A2Λ……..ΛAn is put

forward.

2. RA1 is solved, i.e. S =“Declare Cur Cursor for

Select Rule_Consequent.Consequent_name from

Rule_Conclusion.Rule_Precondition.Rule_Consequ

ent Where Rule_Precondition.Precondition= A1

AND

Rule_Precondition.Rule_number=Rule_Conclusion.

Rule_number AND

Rule_Conclusion.Consequent_name=

Rule_Consequent. Consequent_name”

3. The derivation sentence of A2 Λ A3…….. ΛAn is

constructed as follows:

For i =2 to n

 S = S +“intersection Select Rule_Consequent.

Consequent_name from

Rule_Conclusion,Rule_Precondition,Rule_Conseq

uent Where Rule_Precondition.Precondition= Ai

AND

Rule_Precondition.Rule_numbe=Rule_Conclusion

.Rule_numbe AND

Rule_Conclusion.Consequent_name=

Rule_Consequent.Consequent_name” End For

4. The metadata repository is connected

5. The derivation sentence of S is executed

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

37

6. Fetch S Into A

7. Output A

8. Close S

In above algorithm, the operation of set is non backtracking,

the whole derivation process can be rapidly completed by

SQL, however, when the precondition such as “ A1 = B, A1 Λ

A2 = C ” is included in an metadata repository, a problem will

appear, therefore, the antecedent capacity is introduced into an

Metadata repository, “AND

Rule_Conclusion.Antecedent_capacity = n” is joined the

clause “Where” of sentence “Select” so that solve the

problem.

6. SOFTWARE COMPONENT

RETRIEVAL AND MATCHING
In above software component retrieval process, the module of

accurate query processing searches correlative software

Components in term of the software component matching

algorithm of component retrieval, above all, the facet

describing of software component must be given, in order to

describe static characteristic of a software component, e.g.

applied domains, levels of development, functions, key facets

(algorithm, languages, types and so on), applied environments

and so on[15], at the same time, dynamic characteristics of a

component should be described too [16], the different faceted

classification corresponds to different sub-domain, the

accuracy rate of formal specification should be improved, the

layered and synthetically representation of facet is

adopted[17][18], a component is regarded as twelve tuple, i.e.

component=<function, applied domain, level, object, source

object, middle object, interface, relationship, data type, core

algorithm, language, applied environment>.

7. THE DESIGN OF A COMPONENT

REPOSITORY
Software Components are stored in the form of component

files. Associated to each component file, an index table is

maintained. Some accurate Describing terms related to each

component are also stored in the table [10].

Component files accurate describing terms

showing functionality:
1. File1 ADT11, ADT12, ADT13, ADT14

2. File2 ADT21, ADT22, ADT23, ADT24, ADT25

3. File3 ADT31, ADT32, ADT33, ADT34, ADT35, ADT36

4. File4 ADT41, ADT42, ADT43, ADT44, ADT45

5. File5 ADT51, ADT52, ADT53, ADT54

…………………………………………………………..……

…………………………………………………………………

…………………………………………………………..……

…………………………………………………………………

For searching, a search function based on accurate Describing

terms is used to retrieve the required component. Input to this

function is a specification given by the users. Search function

returns the component file name from the table. A link is

established from returned file name to component file in the

library. A user can decide by checking the name of the

component file and select the component file by clicking on

the link. The component file can be opened, checked for

suitability, modified according to needs and can be saved by

users at desired location.

All the components of the library are stored in the memory of

the computer in folder. Name of component files and accurate

Describing terms are stored in a two dimensional matrix

known as index table. Accurate Describing terms of a

component file are stored as a single multi word string. A

delimiter can be used between two accurate Describing terms.

In the below table, ‘*’ is used as a delimiter. Corresponding to

each component file, a counter is also used to keep account of

accurate Describing terms matched. Initially value of each

counter will be set zero.

Table 7: Repository Index Table

Sr_no

Compone

nt File

Accurate Describing

terms

Counter

1 File1 ADT11, ADT12,

ADT13, ADT14

0

2 File2 ADT21, ADT22,

ADT23, ADT24,

ADT25

0

3 File3 ADT31, ADT32,

ADT33, ADT34,

ADT35, ADT36

0

4 File4 ADT41, ADT42,

ADT43, ADT44,

ADT45

0

5 File5 ADT51, ADT52,

ADT53, ADT54

0

……

….

……

…

………

…….

………

……

………………

………………

0

7.1 Updating Software Component Library
A new software component can be added to the library by

storing the component in the library, making its entry in the

index table and establishing a link from index table to

memory location in the library where it is actually stored.

Similarly when a component is to be deleted from the library,

it is removed from the physical memory along with its entry

in index table and link from index table to memory location.

Component can be stored anywhere in the library where free

space is there. To make the insertion easy, entry of new

component in index table is made at last position. This will

not disturb the rest of entries in the index table and also not

affect the efficiency as index table is searched linearly. But

when an entry of a component is deleted from the index table,

rest of the entries will have to be shifted one position above to

avoid null row in the table.

Algorithm for Library Construction:
1. Set LIBRARY_SIZE=1000 and SR=0;

2. Declare parallel arrays

a. S_NO [LIBRARY_SIZE]; int array to store Sr#

b. STORED_COMPONENT [LIBRARY_SIZE]; string array

to store file name

c. STORED_ACCURATE_DESCRIBING_TERMS [12];

string array to store accurate Describing terms associated with

each component file

d. COUNTER [LIBRARY_SIZE]; int array to store counting

of matches

3. Set CHARACTER=’Y’

4. While (CHARACTER = = ‘Y’), repeat steps from 5 to 12

5. Set SR=SR+1

6. Print ‘Enter component file name’

7. Read STORED_COMPONENT [SR]

8. Print ‘Enter accurate Describing terms ’

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

38

9. Read STORED_ACCURATE_DESCRIBING_TERMS

[SR]

10. Set COUNTER [SR] =0

11. Print ‘Want to add another component? (Y/N)’

12. Read CHARACTER [End of step 4 loop]

13. Exit.

7.2 Component Search and Retrieval
A Component retrieval method [5, 10] can be described from

three aspects: component representation, component query

(user’s requirements) specification, and component retrieval

process. In this free-text-based retrieval method, components

are represented as free-text-based documents, while a

component query is described using accurate Describing

terms. The retrieval process is to look up the accurate

Describing terms in all component description documents.

The components with most matched accurate Describing

terms will be selected. Vector space and indexing technology

are used to facilitate documents organizing and matching.

This method has low scores on both precision and recall.

Researchers and practitioners have proposed to use general

thesaurus to extend accurate Describing terms, by including

their synonyms and antonyms, to get more relevant

component. In addition, general domain knowledge is also

used to extend initial accurate Describing terms to get more

semantically relevant components. However, both of these

two improvements increase retrieval recall at the cost of

retrieval precision. Multi word query entered by users is

stored in string type array elements QUERY [1], QUERY [2]

and so on. A list of common words like ‘in”, “on”, “the”, “of”

etc. is stored at the time of library construction and these

common words cannot become part of query.
These string type array elements are compared with accurate

Describing terms of component files one by one. When

QUERY[i] matches with any of the accurate Describing terms

of a component file, value of its corresponding counter is

incremented by 1. Fraction of match is also taken into

consideration. It is possible by comparing QUERY[i] with

accurate Describing terms character by character.

Let the number of character in QUERY [i] = y and number of

characters matched with accurate Describing terms of

particular component = x. Fraction of match (z) can be

calculated as z = x / y. now the value of corresponding

counter is incremented by z. First QUERY [1] is searched in

the first row of accurate Describing terms. Then QUERY [2]

is searched in this row of accurate Describing terms linearly

and so on. After updating the value of first counter, the same

procedure is applied on the second row and so on. Now the

entire index table is sorted on counter column in descending

order. This places the most relevant component file at first

position with highest value of its counter, lesser relevant

component at second place and so on. All the components

with positive value of their counters are accessed and the

components with zero value of their counters are discarded.

Algorithm for Searching:
1. Declare one dimensional array QUERY [] of suitable

length to store the words of given query

2. Repeat for i=1 to n; n is the total number of components in

the library Set COUNTER[i] = 0 [End of loop]

3. Set i=1

4. Print ‘Enter your specification/ query’

5. Repeat step 6 and 7 while (Entered key =/= Return key)

6. Read QUERY[i]

7. i=i+1 [End of step 5 loop]

8. Set m=i-1; m is the number of accurate Describing terms

entered by user

9. Repeat steps 10 for i=1 to n

10. Repeat step 11 to 14 for j=1 to m

11. Calculate the no. of characters in QUERY[j]; Let it be y

12. Compare QUERY[j] with

STORED_ACCURATE_DESCRIBING_TERMS [i]

character by character; Let no. of matched

characters=X

13. Calculate float value Z = X /Y

14. COUNTER[i] = COUNTER[i] + Z [End of step 10 loop]

[End of step 9 loop]

15. Sort the table on COUNTER column in descending order

16. Set i=1

17. Repeat step 18 and 19 while (COUNTER [i] =/= 0)

18. Print STORED_COMPONENT[i]

19. Calculate i = i + 1 [End of step 17 loops]

20. Exit.

Search mechanism described above is based on blind search.

Efficiency of search mechanism can be improved by

classifying the components into different categories. Required

component can be searched into that particular category in

spite of searching in the whole library. This approach will

save time and improve efficiency of the search. Efficiency can

also be improved by using fast sorting method for sorting the

index table.

8. EXPERIMENT RESULTS

Precision: Precision is defined as the number of relevant

components retrieved divided by the total number of

components retrieved.

Precision = Number of relevant components retrieved / Total

number of components retrieved

Recall: Recall is defined as the number of relevant

components retrieved divided by the total number of relevant

components in the index.

Recall = Number of relevant component retrieved / Total

number of relevant components in the index

The Method of Retrieval Components

in Repository

Components

Retrieved

Relevant

Component

Retrieved

Relevant

Components

in the Index

Precision Recall

Traditional faceted retrieval 400 380 320 350 84% 91%

MDL File based retrieval 400 372 323 348 86% 92%

Metadata repository based retrieval 400 375 340 344 90% 97%

Metadata repository and ontology based

component retrieval (proposed method)

400 392 375 380 96% 98%

Table 8: The Experiment results of software Components retrieval

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

39

Case 4: Metadata, Component and ontology repository

based Search:

Total components in the repository = 400

Total number of components retrieved = 392

Total number of relevant components retrieved = 375

Total number of relevant components in the index =380

Precision =375 / 392 = 0.9566

Recall = 375/380 = 0.9868

 Attaining the precision of 0.9566 in Case 4 is

considerably good which indicates that match is up to

96%.

 Recall value of 0.9868 indicates that we would have been

able to retrieve 99% relevant components, in Case 4.

9. CONCLUSION
Software component reuse, as in other engineering

disciplines, also evolved with fruitful results in case of

software components reuse. The basic step in reusing already

developed software artifacts is to build a library of such

components. Such library is not just a collection of software

artifacts but it is built with the objective in mind that the

software components in such a library will be stored and

retrieved for the purpose of software components reuse.

Software components to be stored are developed such that

these become more and more reusable. Making such a reuse

library requires some different mechanism for storage and

retrieval of software components. One such approach based

on metadata, Component and Ontology repository searching

was described in this paper with algorithm for building library

and searching mechanisms. Fraction of match is also taken

into consideration to make the retrieval mechanism more

relevant. Combining software reuse with component and

metadata is a new emerging trend in software development

process. Combining these technologies helps the software

development process by locating pre-existing software

components at the design time only, due to which the total

effort of software development is decreased.

10. REFERENCES

[1] K. Feiyui and W. Zhijian, “A Concept Model of

Web Components”, Proceedings of 2004 IEEE

International Conference on Services Computing,

pp.464-475, 2004.

[2] Y. Haining and L. Etzkorn, “Towards a semantic-based

approach for software reusable component classification

and retrieval”, Proceedings of the 42nd Annual Southeast

Regional Conference, New York: ACM, pp.110-115,

2004.

[3] F. Gibb, C. Mccartan and O. DonnellR, “The Integration

of Information Retrieval Techniques within a Software

Reuse Environment”, Journal of Information Science,

vol. 26, no. 4, pp.520- 539, 2000.

[4] W. Yuanfeng, Z. Yong and R.Hongmin, “Retrieving

Components Based on Faceted Classification”, Journal of

Software, vol. 13, no. 8, pp.1546-1550, 2002.

[5] W. Yuanfeng, “Research on retrieving components

classified in faceted schem”, Fudan University, 2002.

[6] Lina and Z. Shijie, “Progress and prospects of expert

system”, Application Research of Computers, vol. 24,

no. 12, pp.1-5, 2007.

[7] Z. Zipeng and L. Longshu, “Construct the expert system

knowledge base with XML”, Computer Technology and

Development, vol. 17, no. 7, pp.31-34, 2007.

[8] D. Hemer, “Specification-based retrieval strategies for

component architectures”, Proceedings of the 2005

Australian Software Engineering Conference

(ASWEC’05), pp.233-242, 2005.

[9] R. Giliane, S. Luciana and H. Peter, “A Reference Model

for Reusable Components Description”, Proceedings of

the 38th Annual Hawaii International Conference on

Systems Sciences, Los Alamitos: IEEE Computer

Society, pp.282-283, 2005.

[10] H . Wang, Y. Feng and C. David, “Verifying the

Reusability of Software Component Specification

Framwork and Algorithms”, Information Science, vol.

112, no. 12, pp.169-197, 1998.

[11] E.Gamma, R. Helm and P. Johnson, “Design Patterns:

Elements of Reusable Object Oriented Software”,

Beijing: China Machine Press, 2002.

[12] Y. Wensheng, T. Pinghui and C. Xiuguo, “Problem

Oriented Analysis and Decision Expert System with

Large Capacity Knowledge-base”, Proceedings of 2008

International Conference on Intelligent System and

Knowledge Engineering, China, pp.32-37, 2008.

[13] Q. Yu and X. Li, “An expert system for real-time fault

diagnosis of complex chemical processes”, Expert

Systems with Applications, vol. 24, no. 4, pp.425-432,

2006.

[14] P. Vitharana, F. Zahedi and H. Jain, “Knowledge-Based

Repository Scheme for Storing and Retrieving Business

Components: A Theoretical Design and an Empirical

Analysis”, IEEE Transactions on Software Engineering,

vol. 29, no. 7, pp.649-664, 2003.

[15] Hiroyuki Kanazawa, Naoki Onishi, Yuri Mizusawa,

Takahiro Tsunekawa, Hitohide Usami, “Application

Hosting Services for Research Community on Multiple

Grid Environments”, JCIT: Journal of Convergence

Information Technology, vol. 5, no. 4, pp.152-163, 2010.

[16] F.Yuku, “Dynamic Behavior Specification of Web

Component Based on Logic Programming”, Proceeding

of the First International Multi-Symposiums on

Computer and Computational Sciences, pp.480-482,

2006.

[17] Chuang Chih-Feng, Cheng Chao-Jen, “A study of

institutional repository service quality and users' loyalty

to college libraries in Taiwan: The mediating &

moderating effects”, JCIT: Journal of Convergence

Information Technology, vol. 5, no. 8, pp.10, 2010.

[18] K. Wen, Research of Component Reuse in CAPP

Domain, Nanjing University of Aeronautics and

Astronautics, 2003.

[19] L. Xiaobo, M. Huaikou and L. Jing, “Components

Matching Based on Formal Specifications”, Computer

Applications and Software, vol. 23, no. 10, pp.10-12,

2006.

[20] Guo, Jiang, “A pull-push combined architecture for

federating information spaces”, AISS: Advances in

Information Sciences and Service Sciences, vol. 3, no. 3,

pp.19-24, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.14, January 2013

40

[21] L.Yuhua, Z. Bandar and D. Mclean, “An approach for

measuring semantic similarity between words using

multiple information sources”, IEEE Transactions on

Knowledge and Data Engineering, vol. 15, no. 4, pp.871-

882, 2003.

[22] Yong-liu, Aiguang-yang; Research and Application

of Software-reuse; Eighth ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/ Distributed

Computing, IEEE, 2007, pp. 588-593.

[23] Prieto-Diaz, Ruben, Freeman, Peter; Classifying

Software for Reuse; IEEE Software, 1987, vol. 4, no. 1,

pp. 6-16.

[24] Haining Yao, Letha Etzkorn; Towards A Semanticbased

Approach for Software Reusable Component

Classification and Retrieval; ACM Software

Engineering, 2004.

[25] Ostertag, Eduardo, Hendler, James, Prieto-Diaz, Ruben,

Braun, Christine; Computing Similarity in a Reuse

Library System an AI-based Approach; ACM

Transaction on Software Engineering and Methodology,

1992, vol. 1, no. 3, pp. 205-228.

[26] Mili, Rym, Mili, Ali, Mittermeir, Roland T.; Storing and

retrieving software components: a refinement based

system; IEEE Transaction on Software Engineering,

1997, vol. 23, no. 7, pp. 445-460.

[27] Vitharana, Padmal, Zahedi, Fatemeh M., Jain, Hemant;

Knowledge-based repository scheme for storing and

retrieving business components: a theoretical design and

an empirical analysis; IEEE Transactions on Software

Engineering, 2003, vol. 29, no. 7, pp. 649-664.

[28] Sugumaran, Vijayan, Storey, Veda C.; A Semantic-

Based Approach to Component Retrieval; The DATA

BASE for Advances in Information Systems – Summer

2003, Vol. 34, No. 3, pp. 8-24.

[29] Rajender Nath, Harish Kumar; Building Software Reuse

Library; 3rd International Conference on Advanced

Computing and Communication Technology- ICACCT-

08; Asia Pacific Institute of Information Technology,

Panipat , India; November 08-09, 2008, pp. 585-587.

[30] Mili and Edward Addy, Reuse Based Software

Engineering (A Wiley-Interscience Publication, John

Wiley and Sons, Inc.2002) .

[31] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Retrieval of

most relevant reusable Component using genetic

algorithms”, Software Engineering Research and Practice

2006, 151-155.

[32] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “A Hybrid

Technique for Searching a Reusable Component from

Software Libraries”, DESIDOC Bulletin of Information

Technology, Vol.27, No.5, September 2007, pp. 27-34.

[33] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Ant Colony

Based Rule Generation for Reusable Software

Component Retrieval”, Proceedings of the 1st

Conference on India Software Engineering Conference,

pp 129-130, Feb 19-22, 2008, Hyderabad, India.

[34] Rajiv D. Banker, Robert J Kauffman and Dani Zweig,

“Repository Evaluation of Software reuse”, IEEE

Transactions on Software Engineering, Vol. 19, No 4,

April 1993.

[35] Rym Mili, Ali Mili and R.T.Mittermeir, “Storing and

Retrieving Software Components: A Refinement Based

System”, IEEE Transactions on Software Engineering,

Vol.23, No 7, July 1997.

[36] S. Araban, “A Two level Matching Mechanism for

Object-Oriented Class libraries”, Ada-Europe 1998:

Uppsala, Sweden, pp 188-200, no.1, Jan 1993. [10] Noy,

N.F. and C.D. Hafner, The State of the Art in Ontology

Design, AI Magazine. 1997. p. 53-74.

[37] Guarino, N. Formal Ontology and Information Systems.

In International Conference on Formal Ontologies in

Information Systems. 1998. Trento, Italy.

[38] Mian, P.G. and R.A. Falbo, Supporting Ontology

Development with ODEd. Journal of the Brazilian

Computer Society, 2003. 9(2): p. 57-76.

[39] Prieto-Díaz, R. A faceted approach to building

ontologies. In IEEE International Conference on

Information Reuse and Integration. 2003. Las Vegas,

USA.

[40] Smith, M.K., C. Welty, and D.L. McGuiness, W3C

Proposed Recomendation: OWL Web Ontology

Language Guide. 2004. Available in

<www.w3.org/TR/2004/RECowl- guide-20040210>.

Accessed in May 2004.

[41] Staab, S. and A. Maedche. Ontology Engineering beyond

the Modeling of Concepts and Relations. In ECAI'2000

Workshop on on Applications of Ontologies and

Problem-Solving Methods. 2000. Berlin, Germany.

