
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.13, January 2013

29

A Meta-Model for Migrating a Legacy Information System

based on Procedural Software Architecture towards

Service Oriented Architecture

Slim Jendoubi
National School of Informatics

Sciences (ENSI)
University of Manouba, 2010

Tunisia

Jamil Dimassi
National School of Informatics

Sciences (ENSI)
University of Manouba, 2010

Tunisia

Henda Ben Ghezala

National School of Informatics
Sciences (ENSI)

University of Manouba, 2010
Tunisia

ABSTRACT

During several years, the computing environments became

more complex and more heterogeneous because of the

diversity of customer’s needs and of the technological

evolutions. The agreement between applications and different

technologies became a critical activity. So, to face this

problem of interoperability, companies often resort to the

solutions of enterprise application integration (EAI).

In what concerns us, we consider the EAI as being at the same

time the strategy and the process that companies allow to

reach a solution of optimal integration of the various

heterogeneous, autonomous and distributed applications.

In this context, this paper consists on presenting a generic

meta-model for integrating legacy applications with service

oriented architecture. Indeed, to resolve the problem of

interoperability between applications, this meta-model aims at

capitalizing on procedural legacy applications and their

integration into modern environments.

Keywords

procedural information system; legacy application;

interoperability; software architecture; management process;

SOA.

1. INTRODUCTION
During the last three decades, a significant number of

software based on procedural paradigm was developed.

Nowadays, these developments constitute a big part of the

application heritage of companies. Indeed, this paradigm is

allowed to release itself from the code machine and to

strengthen a separation between the data representations and

their processing. However, the development of complex

systems using this paradigm was generated chaotic structures

for information system.

So, the maintenance of the procedural systems is a complex

and an expensive task and the re-use of the code is often

compromised. Consequently, the modernization of these

systems became indispensable.

To satisfy increasing needs to integrate applications, various

tools are proposed. However, most of them present several

limits [11]. On the one hand, these solutions miss abstraction

and strategic methodology; they are developed without

strategic vision and prioritize technological objectives. On the

other hand, these solutions do not considerate the software

architecture of the applications to be integrated. Moreover,

none of these solutions answers strategically the need of

integrating procedural legacy applications with service

oriented architecture.

The interest to worry about these two paradigms, legacy and

service oriented, comes because the first one is very former.

Besides, the procedural legacy applications constitute a big

part of the application heritage of most of the companies and

envisage several difficulties for their integration with the new

technologies, whereas the second is recent and fashionable.

Furthermore, the service oriented architecture appears as the

best approach allowing a flexible integration of the

autonomous, distributed and heterogeneous applications

within the company.

This paper is organized as follow: The second section gives a

brief description of software architectures based on the

procedural paradigm. The third section presents a meta-model

that we propose for integrating procedural legacy applications

with service oriented architecture.

2. THE LEGACY SYSTEMS

2.1 Definition
A legacy system is defined as " Any information system

inherited from the last years, in practice from 1970 till 1995,

generally developed ‘in-house’ to support the important

functions, essential in the functioning of companies " [7].

Concerning us, legacy systems are information systems

potentially impossible to maintain, whose total ownership cost

is very high and for whom the skills are lacking. These

systems are not rather flexible to support the evolution of the

technologies and the business enterprise needs. However,

these legacy systems represent the core of several information

systems of companies, which depend on their specifications

and their daily activities.

2.2 Problems related to legacy systems
The presence of legacy systems within companies creates

certain problems, the main clauses of which are [12]:

- The technological disuse: difficulties to develop

technical environments which are more or less

supported by their suppliers.

- The rarity of the skills: given the competent staff on

this type of applications is more and more rare

(retirements, promotions, progress of career), the

maintenance and the evolution of these systems

became complex, even impossible.

- A significant loss of consciousness and a more and

more anarchy development due to the age of the

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.13, January 2013

30

applications and the staff turnover of the

development teams.

- This type of systems underwent several revisions of

code without maintaining the documentation up to

date. So, it will be more difficult to understand their

functionalities.

- The challenge to modernize enormous IT

applications in a reasonable cost without risking to

destabilize the daily functioning of the organization.

- The concern to release itself from the heaviness and

from the rigidity of the legacy applications which

were developed 20 or 30 years ago and which had

the effect of crystallizing the working processes and

often of depending them on the computing

processes and on the data of the company.

Thus it is relevant that the preservation of the legacy systems,

their evolution and their modernization put more and more a

major challenge to the companies which, at present, are very

dependent on technological environments of another age.

2.3 The legacy procedural systems
During the last three decades, a significant number of

software was developed basing on the procedural paradigm.

Nowadays, these developments establish a big part of the

application heritage of companies. Indeed, this paradigm

allowed to release itself from the code machine and to

strengthen a separation between the representation of the data

and the processing made on these data. However, the

development of complex systems using it paradigm generated

structures in "dishes of spaghetti ". Besides, the

interoperability between the procedures is made by the global

variables which are approachable by various procedures what

engendered side effects. Moreover, the inter-dependence

between the procedures makes that during the maintenance,

the modification of a procedure can affect the others.

2.4 The migration towards SOA: benefits

and techniques
According to Jiang and Willey [3], the service oriented

architecture is an architectural style of development and of

dynamic integration of the company’s applications. It allows

to the information system to be a collection of services (the

basic brick of this architecture) which can be reused by the

other information systems. The systems based on the service

oriented architectures can offer a flexible solution to the

problem of integrating information systems, data and

processes.

Consequently, the strategies of modernization by migration

towards SOA become more and more needed by companies to

benefit from advantages of this architecture. So, it implies

changes more vast than simple maintenance, while preserving

a significant part of the former system. These changes often

include the restructuring of the system, the improvement of

the features or the modification of the software attributes [6].

So, the resultant system well be more agile and allows the

company to release itself from problems bound to the re-use,

the composition, the interoperability, and the coupling

reduction between the various components of the information

system by means of the Web services.

The evolution from legacy to SOA can be beneficial from

both economical and technical perspectives. From an

economical perspective, legacy to SOA evolution fosters

change management including intra-organizational changes,

and changes in enterprises [5][8]. From a technical

perspective, seamless enterprise collaboration through service

composition [4] and reduction in maintenance cost are

claimed as long term benefits [8][10]. Motivated by these

benefits, there has been significant research in legacy to SOA

evolution. However, there is no systematic overview of legacy

to SOA evolution, particularly focusing on the techniques,

methods and approaches used to evolve legacy systems to a

SOA environment. In the systematic literature review

conducted by Razavian [9], an overview of SOA migration

families is reported. It focuses on classifying the SOA

migration approaches into eight distinct families. The

classification is inspired by the reengineering horseshoe

method [2] rather than giving a historical overview of SOA

migration methods. Also, a brief overview of legacy to SOA

evolution is reported by Almonaies [1] that divides the legacy

to SOA evolution approaches into four categories:

replacement, redevelopment, wrapping and migration.

3. A META-MODEL FOR

INTEGRATING LEGACY

PROCEDURAL APPLICATION INTO

SERVICE ORIENTED ARCHITECTURE
In this section, we propose a meta-model for integrating a

legacy information system with service oriented architecture.

This solution is based on the “Wrapping” principle, which

consists in surrounding the company’s legacy system by a

software coat which hides its complexity and its

heterogeneousness and exports a modern interface.

The software coat consists of a set of adapters or "Wrappers",

which are mainly used to mask the disagreement between the

exported interface by the former system and the interfaces

required by the new environment. Such solution requires a

thorough understanding of the various modules of the system

to be adapted [6].

3.1 A general model for the proposed

solution
The proposed solution concerns systems composed by a

myriad of heterogeneous applications, which are procedural

legacy applications and service oriented applications. These

two types of applications are confronted with a problem of the

interoperability between their software architectures. So, we

suggest encapsulating the procedural application by a

software coat in order to mask this heterogeneousness and

incompatibility, as comic in the figure1.

This coat must be separated from the procedural application,

and having an independent implementation that it must not

affect the functioning of this application. This software coat

has to support service oriented architecture. Therefore, the

procedural application is seen as being a service oriented

application, as far as it can:

- On the one hand, consume the services supplied by

the other applications, through the web service

connector. Indeed, this component makes the

intermediary between the procedural application

and the other service oriented applications in order

to allow him to consume their services. Moreover, it

takes care of the data exchanges managing, namely

the format compatibility of managed data, the

synchronization and the integrity of the data...

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.13, January 2013

31

- On the other hand, to expose its reused features as

web services, that should be consumed by external

other applications.

The main component of the proposed solution is the web

service connector. This component allows managing the

exchange in both directions between the concerned

information system and the external applications, as well as

the synchronization of the data between the various managed

Databases. The design and the implementation of this

component are exposed on the next subsection.

Fig 1: General architecture of the proposed solution

3.2 The web service connector
designing

This component that we consider essential for our process of

integration will be the object of this section. In fact, with the

aim of loosening a generic design of the connector, we

propose a set of solutions for implementing this component.

3.2.1 Implementing the web service connector as

a web service
The web service connector should be considered as being a

web service which takes care of the integration at the level of

data, including the management of the data compatibility and

the data synchronization...

So, some applications cannot support calls of web services

(applications in COBOL, VB6,…), what requires the use of

tools allowing the invocation of these services. We propose in

this case the use of the “soap toolkit” tool of Microsoft.

The major inconveniences of such solution are that:

- This tool, although it is compatible with a

significant number of programming languages,

imposes constraints on the nature of the concerned

system, as far as this solution is applicable only to

Windows operating systems.

- The procedural application should call web services,

what means that it became a customer of Web

services, what will affect in a way its procedural

architecture.

3.2.2 Implementing the web service connector as

a Dynamic Link Library (DLL)
To mitigate the inconveniences of the previous solution, we

tried not to affect the architectural characteristics of the

procedural application. So, the web service connector takes

care of the invocation of the web services and the data

exchanges.

To do it, we propose to conceive our web service connector as

being a Dynamic Link Library. So, the procedural application

uses the existing web services by means of the DLL functions

without caring about their details of invocation.

Legacy

procedural

application

Data

Base

WS

WS

WS

WS Oracle

Oracle

SQL server

Web

service

Connector

Service oriented

application

Service oriented

application

Service oriented

application

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.13, January 2013

32

The advantage of the DLLs is that it can be developed and

called by various programming languages; thus, the

implementation of the DLL is independent from that of

calling it.

However, a DLL works only under Microsoft Windows.

There are similar mechanisms for the other operating systems

(the shared libraries ‘.so’ for Linux for example). Besides that,

the dependence in the operating system and the application is

not autonomous anymore; it needs a separate module of DLL.

3.2.3 A description of the interface in IDL

(Interface Definition Language)
Both solutions proposed previously, although they are

functional and effective, add constraints to the concerned

system. So, to release itself from requirements depended on

platforms, on implementation and to give a generic

conception of the connector, we suggest describing the

interface of the component in IDL.

So, an effective interaction between incompatible applications

on heterogeneous platforms requires a strict separation

between the interface and the implementation. IDL helps to

carry out this separation; it defines the types of objects by

specifying their interfaces. An interface consists of a set of

operations and their parameters. Afterward, we should make a

projection of this interface definition towards an

implementation suitable to the studied system. We note that

the interface definition depends on the concerned system seen

that every system requires a set of operation specifying him.

3.3 Architecture meta-model of the
target system

Our model of architecture illustrated by the figure2 can be

considered as meta-model because it will be instantiated

within every information system, to be able to integrate his

procedural applications into service oriented architecture.

The procedural application is composed of a set of procedures

containing its processings. These procedures represent the

features offered by the procedural application which can be

reused by the other oriented service applications in the form

of Web services; these are the services that well be exposed.

Of other one quoted, to be able to consume the external Web

services, the procedural application needs a component which

comes to interface with that this, to allow it to communicate

with heterogeneous service oriented applications. This

component serves to call upon existing Web services and to

communicate the result with the procedural application.

Fig 2: Architecture meta-model of the target system

Before instancing the meta-model on the concerned

information system, the latter has to undergo several

processings to determine its architectural and functional

characteristics.

These treatments are based on the analysis of the concerned

system. It supplied the necessary information concerning the

architecture of the system, the software components which

constitute it and the current state of the system (as the level of

1..1
1..* *

*

is connected to

1..1

*

correspends *

calls

*

0..1

uses

1

*

*

synchronize

1..1

1..*

1..1
1..*

1..1

1..*

*

*

is connected to

1..11..*

*

1..*

calls

Procedural application

procedure

<<interface>>

Web service connector

Method resulting from reusable features

Data base

Method

Service to be exposed

external service

Web service

Service oriented application

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.13, January 2013

33

maintenance, the level of complexity and the level of coupling

of its software components)… So, we can speak about a

reengineering of the concerned information system which can

be based on several steps such as:

- Use cases study: it allows us to have a global vision

of the functional behavior of the concerned system

and afterward, to know the features offered by the

various applications. This stage can be combined

with the reengineering of the business process of the

concerned system to be able to insure an effective

re-use of the features.

- Reengineering of business process: this step is

based on the revision, the update and the analysis of

the existing "As Is". Afterward, this stage

recommends the design of the target business

process "To Be ". This stage allows us to

re-conceive the business logic of the system, to find

the improvements which be brought to the

procedural application through the consumption of

the existing services and identify the features which

it can expose as web services. Then, we suggest

modeling this business process, by using for

example the language BPMN (Business Process

Management Notation).

- Cartography of data: this step allows to list all the

structures and the constraints concerning the data

managed by the concerned system and to

understand the data exchanges. This stage is

necessary to define the integrity constraints of data

and insure their synchronization during the

integration. Besides, this cartography of data is

indispensable afterward, because it gives us a global

vision onto the managed data which facilitates the

integration at this level.

4. CONCLUSION
Generally, the information systems of companies present a

delicate assembly of independent applications designed to

satisfy a specific need which engendered complex architecture

hardly managed, where from the necessity of the adoption of

an approach of IS urbanization and the integration of its

applications. The importance of such approach lives in the

capitalization of the application heritage of the company and

its integration into modern environments.

From this assertion, in this paper, we have exposed a

meta-model for integrating legacy procedural applications into

oriented service architecture.

To test its efficiency, the proposed meta-model was applied

on a procedural information system implemented with VB6,

that we want to integrate it with external web services

implemented with VB.net.

We also have tested the data synchronization between the

existing database source (implemented with Microsoft access

on 2003) and a new database that we implemented with

MYSQL4.0.

The results are very satisfying, and the proposed solution will

be confirmed by the other experimentations.

5. REFERENCES
[1] Almonaies, A. A., Cordy, J. R., and Dean, T. R. (2010).

Legacy system evolution towards service-oriented

architecture. Paper presented at the Interrnational

Workshop on SOA Migration and Evolution (SOAME

2010), Madrid, Spain.

[2] Bergey, J., Smith, D., Weiderman, N., and Woods, S.

(1999). Options Analysis for Reengineering (OAR):

Issues and Conceptual Approach (No. CMU/SEI-99-TN-

014): SEI.

[3] Jiang, M. and Willey, A. Service-Oriented Architecture

for Deploying and Integrating Enterprise Applications,

Proceedings of the 5th Working IEEE/IFIP Conference

on Software Architecture (WICSA’05), 2005.

[4] Khadka, R., and Sapkota, B. (2010). An evaluation of

dynamic web service composition approaches.

Ppresented at the 4th International Workshop on

Architectures, Concepts and TechnologiesService

Oriented Computing (ACT4SOC 2010).

[5] Khadka, R., Sapkota, B., Pires, L. F., Sinderen, M., and

Jansen, S. (2011). Model-Driven Development of

Service Compositions for Enterprise Interoperability.

Paper presented at the 3rd International IFIP Working

Conference on Enterprise Interoperability (IWEI'11).

Retrieved from http://dx.doi.org/10.1007/978-3-642-

19680-5_15.

[6] Malinova, A. Approaches and techniques for legacy

software modernization, 2010.

[7] National Computing Centre, How Advanced Are Your

Legacy Applications?, Atos Origin, May 2006.

[8] Papazoglou, M., Traverso, P., Dustdar, S., and Leymann,

F. (2007). Service-oriented computing: State of the art

and research challenges. Computer, 40(11), 38-45.

[9] Razavian, M., and Lago, P. (2010). A Frame of

Reference for SOA Migration. In E. Di Nitto and R.

Yahyapour (Eds.), Towards a Service-Based Internet

(Vol. 6481, pp. 150-162): Springer Berlin / Heidelberg.

[10] Schelp, J., and Aier, S. (2009). SOA and EA-sustainable

contributions for increasing corporate agility. Paper

presented at the 42nd Hawaii International Conference

on System Sciences.

[11] Spackman, D. and Speaker, M. Solution for the EAI,

French Quercy, Microsoft edition, February 2005.

[12] http://www.technocompetences.qc.ca/files/systemes_patr

imoniaux.pdf, March 2012.Tavel, P. 2007 Modeling and

Simulation Design. AK Peters Ltd.

