
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

35

SMSCQA: System for Measuring Source Code

Quality Assurance

Ayman Hussein Odeh

College of Engineering and IT
Al Ain University of Science
and Technology, Al Ain,UAE

ABSTRACT

Today software systems play a critical role in various aspects

of human life, and become part of everyday life. Many of

these systems are essential for the completion of day-to-day

activities. The increased reliance on computer applications,

and organization that produced software puts more and more

strain on software developers and software systems itself. For

these reasons many international standards, requirements, and

constrains were established to assure quality of software. In

this work the most important fundamentals of software quality

assurance used during life cycle development process (LCDP)

will be covered. Specially that used in coding phase. This

phase is a very important period for all software, because the

cure of software system will be established here. Therefore it

was sliced in detailes, and all of its aspects were recovered

like: Software metrics, Software quality factors, and software

quality models like McCall's model, Boehm's model, ISO

9126 model, and SATC NASA model. By comparing and

studying these models the System for Measuring Source Code

Quality Assurance was retrieved. Using this system over 30

source code metrics, 9 quality factors can be measured and

overall quality might be calculated.

General Terms

Software Quality Assurance: SQA, Lines Of Code : LOC,

Capability Maturity Model: CMM,

Keywords

Software Quality Assurance; Quality Models; ISO 9126;

McCall’s Quality Model; Boehm’s Quality Model; CMM

Model

1. INTRODUCTION
Producing high quality software is a very important condition

of staying in the market for the software companies, and

developers. This thing is enforcing them to think about

improving quality assurance of there products. This is

probably the cause why so many process improvement

experiments and measurement systems are initiated, but few

of them are really successful. The basic quality assurance

difficulties for software-producing organizations and

developers are understanding the relationships among basic

elements of software production, software products, the

processes which produce the product, the resources involved

in software production, the selection of relevant quality

attributes in each case, the metrics to be applied for measuring

the selected quality attributes, usage of the measurements'

results in order to improve software quality[1]. In the

literature, there are a huge variety of descriptions about

standards, models, best practices, all of them connected to

software quality assurance, but there is no unified view or

model to tell software developers, how to start an efficient

quality measurement system, and how to evaluate quality of a

source code [2].

The scope of this work was to understand the existing

approaches and models about software quality assurance and

the relationships among the different approaches, and based

on these approaches, the new solution (approach) will be

proposed to help a software developer to deal with quality

assurance for source codes in a unified, balanced way.

2. REVIEW OF SQA MODELS

2.1 Product Quality Assurance Models
The elements defining software product quality assurance and

the relationships between these elements have been

summarized first time in two software quality models

developed in the USA. One of these models was developed in

1977 by a team of researchers, lead by Barry W. Boehm [3,4].

The development of the other model is connected to the work

done in 1978 by James A. McCall [3,5]. The two quality

models focus on the final product, and identify key attributes

of the product, called quality factors. The quality factors are

high-level quality attributes, like reliability, usability,

maintainability. Both models assume that the quality attributes

are still on a high level to be meaningful or to be measurable,

therefore further decomposition is needed. This-lower-level of

the quality attributes are called quality criteria. In a third level

of decomposition the quality criteria are associated with a set

of directly measurable attributes called quality metrics.

The ISO 9126 model is a derivation of McCall's

model. It defines software quality as "The totality of features

and characteristic of a software product that bear on its ability

to satisfy stated or implied needs" [6]. The standard claims

that the quality is composed of 6 factors: functionality,

reliability, efficiency, usability, maintainability, portability,

and that one or more of them are enough to describe any

component of software quality [7,8]. The deficiency of this

model is that it does not provide proper definition of the

lower-level details and metrics needed to attain a quantitative

assessment of product quality. This lack of specifics in these

models offers little guidance to software developers who need

to build quality products. ISO 9126 is the software product

evaluation standard. It identifies six Software Quality

Characteristics [9] as following: Functionality which covers

the functions that a software product provides to satisfy user

needs. Reliability which relates to capability of software to

maintain its level of performance. Usability which relates to

the effort needed to use software. Efficiency which relates to

the physical resources used when the software is executed.

Maintainability which relates to the effort needed to the

make changes to the software. Portability which relates to the

ability of software to be transferred to a different environment.

ISO 9126 suggests sub-characteristics for each of the primary

characteristics. It is perhaps indicative of difficulties of

gaining widespread agreement that these sub-characteristics

are outside the main standard and are given in the document

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

36

for information only. They are useful as they clarify what is

meant by the main characteristics [9, 5].

2.2 Process Quality Assurance Models
In this part Capability Maturity Model (CMM) will be

presented as elements of another possible way of approaching

software quality assurance: the process quality assurance

approach.

A well-known framework for process assessment is the

Capability Maturity Model of SEI [10] .

The Software CMM developed at the Software Engineering

Institute (SEI) of Carnegie - Mellon University [11]. It

describes software process management maturity relative to

five levels [10], see Fig1

 The CMM leveles: Initial - the starting point for use of a new

or undocumented repeat process. Repeatable: the process is at

least documented sufficiently such that repeating the same

steps may be attempted. Defined: the process is defined as a

standard business process, and decomposed to levels 0, 1 and

2. Managed: the process is quantitatively managed in

accordance with agreed-upon metrics. Optimizing: process

management includes deliberate process optimization or

improvement.

A maturity model can be viewed as a set of structured levels

that describe how well the behaviors, practices and processes

of an organization can reliably and sustainably produce

required outcomes [11, 10].

3. The PROPOSED SYSTEM
The goal of a System for Measuring Source Code Quality

Assurance (SMSCQA) is measuring quality for source code,

and represents it by single value, lists 9 quality factors, and

more than 30 source code metrics. See Fig3. Typically,

software quality is measured with a weighted sum of criteria

measurements [12, 13] as it is used in this research.

3.1 The General Structure
the general structure of proposed system shown in Fig2, and it

consists of following blocks:

1. Source Code Reader: this block used to read and

load file which contains tested source code script.

2. Source Code Analyzer: used analyze and classify

source code lines into separated sub-blocks

corresponding to the code structure.

3. Source Code Metrics Measurement: this block used

to measure all directly measurable source code

metrics such as: LOC, operators, operands, total

LOC, comments, and many of other metrics, see

Table 1.

4. Quality Factors Measurement: It used to calculate

and retrieve non-directly measurable metrics, then

grouping them regarding to used model shown in

Fig3 to achieve 9 quality factors using algorithm

used in this system, finally this block calculates a

final overall quality for measured source code.

5. Quality Reports Generator: This block used to

generate four quality reports, these reports can be

used as evaluation report to improve quality

assurance of measured source code.

6. Common Quality Standards Database: It contains

the most common quality standards.

3.2 The SMSCQA Algorithm
The following algorithm used in this proposed system to

calculate quality factors, and overall quality:

1. Define weight (w) for each metric (0<=w<=1).

2. Scale value for metric scores (0<=scale<=1).

Fig1: CMM Levels

Level 1: Initial

Level 2: Repeatable

Level 3: Defined

Level 4: Managed

Level 5: Optimizing

Tim

e

Maturity level

source

code

Standards

Project Analyzer Generator of Quality

Reports

Quality Factors Measurement

SMSCQA

Evaluation

Report:

…………

…………

…………

…………

…………

…………

…………

Fig 2: The general structure of SMSCQA

Source Code Measurement

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

37

3. Define minimum and maximum target value for

each metric defined by the user and development

team.

4. Define minimum and maximum target value for

each factor score defined by the user and

development team.

5. Give each metric a score.

6. Compute a weighted sum and divide it by the sum

of weights and;

7. Compare this value with the preset min-max factor

scoring range.

8. If this value is outside the min – max scoring range,

compare each individual metric score with the

preset min-max metric score range.

The value for each factor in the SMSCQA system has the

following form:








n

i
i

n

ni
ii

W

WC
QF

1

*

 (1)










m

j
j

m

nj
jj

W

WQF
Quality

1

*

 (2)

Where (QF) is quality factor, (Wi) are the weight for each

metric included in computing this factor, (Ci) are the value of

the metrics, and (n) is the number of metrics. Then the overall

quality of the product is measured using the formula (2).

Where jQF are the values of quality factors. jW are the

weights for quality factors, and (m) is the number of quality

factors.

Note that: The maintainability factor is excluded from this

model, it computed as maintainability index with special

formula, using the following formula [14,15]:

CCaveEMI *23.0)ln(*42.31711_ 

)*4.2sin(*50)ln(*2.162_ perCMaveLOCMI 

2_1_ MIMIMI  (3)

Where (MI) is a maintainability index, (aveE) is the average

of Halstead effort[16] per module, (CC) is the average of

cyclomatic complexity per module, (aveLOC) is the average

lines of code per module, and perCM is the average

percentage of lines of comments per module.

3.3 Weighted Selection
The values of weights in this system are very important.

Therefore they must be used correctly dependence on the

nature of the problem, solved by the source code submitted to

measurement by this system model. For example, if the

measured source code solves tasks related to military

software, then this model must be use a suitable matrix of

weights for this kind of problems. Different weight matrix

reflects that this system is adaptive to measure many types of

source codes, like which used in: System Software, Real-time

Software, Business Software, Scientific Software, Embedded

Software, Artificial Intelligence Software, Military Software,

and Other.

Fig3: SMSCQA Model

Maintaiability

Overall

Quality

Portability

Reliability

Reusability

Auditability

Readability Index

Understandability

Simplicity

Testability

LOC

Comments

S/S Independence

Option Explicit
Structural Fan In

Structural Fan Out

Int. Documentation

Standard comp.

Var. N. Convention

Cn. N. Convention

InLine Comments

Identifier Length

Goto Usage

Neted Condition

Dead Variables

Conciseness

Degree of Coupling

Error Handling

H/W Independence

Cycl Complexity

Halstead Effort

Dead procedures

Lev. of abstraction

Quality Factors

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

38

The weights can be changed to achieve a good quality if this

system used to provide and advice or quality reports to a

development team.

4. EXPERIMENTAL RESULTS
In this section two examples will be discussed to illustrate its

metrics and specifications, and will be measured to

demonstrate the results provided by SMSCQA. These

examples are written by different programmers; they solve

one task, and have identical interface compliance to our

requirements see Fig4. They do the following: Generate 10

integer numbers and store them in an array. Sort these

numbers and store them in another array. Extract a minimum

and maximum numbers. Calculate average of these numbers.

The Table 1 shows all source code metrics for each procedure

used in both examples; where :

p11 is a Command1_click procedure

p12 is a Form_load procedure

p13 is a b_sort procedure. .

p14 is a Min Function.

P15 is a Max Function.

p16 is a Ave Function.

p21 is a cmdGo_click procedure

p22 is a Form_load procedure

p23 is a BubbleSort procedure

p24 is a Min Function.

P25 is a Max Function.

p26 is a Ave Function

the quality factors chart , and overall quality for each

examples are shown in Fig5, and Fig6. Where:

overall quality1=0.550, and overall quality2=0.773.

5. CONCLUSION
Introducing software quality assurance in a life cycle

development process can not be done at once: it takes time, it

has to be done step by step[17]. If a company or developer

aims to really understand software quality assurance for

source code and implement it in an efficient way, this work is

done for this purpose. The attributes of interest software

measurement often belong to either processes in the

development life cycle, products that are created by those

processes or resources used by the processes.

 Measurement may be fundamental or derived, that is,

measured directly or derived by combining two or more other

measurements. Halstead Software Science measurements have

been discredited on both empirical and theoretical grounds.

However, it should be noted that the use of delivered source

instructions and number of unique operands uses can by

themselves be useful measurements.

Cyclomatic complexity can be a useful measurement in the

planning and assessment of testing. Outside this application

area, its usefulness may be limited because of its close

Fig4: Interface of proposed example

Table 1. Metrics of all procedures of two examples

No Metric

Value for example1 Value for example2

p11 p12 p13 p14 p15 p16 p21 p22 p23 p24 p25 p26

1 Dead No No No No No No No No No No No No

2 Cyclomatic complexity 3 1 4 3 3 2 3 1 4 3 3 2

3 Structural fan in 0 0 1 1 1 1 0 0 1 1 1 1

4 Structural fan out 4 0 0 0 0 0 4 0 4 0 0 0

5 Informational fan in 5 0 3 2 2 2 6 0 3 2 2 2

6 Informational fan out 0 0 1 1 1 1 1 0 3 2 2 2

7 Informational complexity 0 0 36 20 20 18 108 0 117 44 40 36

8 Nested conditions 1 0 3 2 2 1 1 0 3 2 2 1

9 Nested loops 1 0 2 1 1 1 1 0 2 1 1 1

10 Total lines 16 9 14 10 10 9 37 22 14 20 20 19

11 LOC 15 0 12 10 10 9 18 12 12 11 10 9

12 Comments line 1 0 2 0 0 0 19 9 9 9 9 9

13 Space lines 0 0 0 0 0 0 0 1 1 1 1 1

14 Local variables 0 0 1 1 1 1 0 0 1 1 1 1

15 Operators 9 7 6 5 5 7 9 7 6 5 5 6

16 Unique operators 1 4 2 2 2 3 1 4 2 2 2 3

17 Operands 19 15 14 12 12 14 19 15 14 12 12 12

18 Unique operands 14 11 7 7 7 9 14 11 7 7 7 8

19 Procedure Vocabulary 15 15 9 9 9 12 15 15 9 9 9 8

20 Procedure Length 28 22 20 17 17 21 28 22 20 17 17 18

21 Procedure Volume 109.39 85.95 63.39 53.88 53.88 75.28 109.39 85.95 63.39 53.88 53.88 62.26

22 Level of abstraction 0.85 0.366 0.5 0.583 0.583 0.428 0.92 0.366 0.5 0.583 0.583 0.444

23 Effort 74 234 126 92 92 175 74 234 126 92 92 140

24 Time (sec) 4 13 7 5 5 9 4 13 7 5 5 7

25 Goto Usage 0 0 0 0 0 0 0 0 0 0 0 0

26 Error Handling usage No No No No No No Yes Yes Yes Yes No Yes

27 InLine Comments 4 0 1 0 0 0 3 0 1 1 0 2

28 Complexity/size 0.2 0.11 0.333 0.3 0.3 0.222 0.166 0.083 0.333 0.272 0.3 0.222

29 Internal Documentation 0.062 0 0.142 0 0 0 0.513 0.428 0.142 0.45 0.473 0.5

30 Estimated length 53.3 46.05 21.65 21.65 21.65 33.28 53.3 46.05 21.65 21.65 21.65 28.75

31 Impurity 1.90 2.09 1.08 1.27 1.27 1.58 2.33 2.09 1.08 1.27 1.27 1.59

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

39

relationship with LOC. Quality by itself is a vague concept

and practical quality requirements have to be carefully

defined. Most of the qualities that are apparent to the users of

software can only be tested for when the system is completed.

Increasing inline comments cause to increase readability.

Comments line and average value of cyclomatic complexity

affect on maintainability factor. A very important reliability

indicator was calculated before delivering the software

measured by SMSCQA. By comparing SMSCQA with

Project Analyzer [18], more reports and more quality factors

were used, and it is better by computing overall quality and

quality factors for source code.

Future work : The software source code quality

assurance system that was constructed by this work allows

developer to evaluate source code in general form, but its

implementation related to VB language. It can be completed

to use its facilities with programs written in other

programming language by the following methods:

1. Reconstruct its implementation to measure and

evaluate Pseudo code. and add a module to

convert source codes from high level languages,

like C++, Java, Pascal, and VB to Pseudo code

format, Using this property it can be used to

evaluate any source code regardless at used

language.

2. Build an expert system to interpretate output

results from SMSCQA and propose set of

recommendations to improve quality of measured

software. Also, it can be used to select software

quality models depending on the feature of the

source code (metrics).

6. REFERENCES
[1] Murali Chemuturi 2010, Mastering Software Quality

Assurance, J. Ross Publishing.

[2] Susan Elliott Sim, Steve Easterbrook, Richard C. Holt,

2003, Using Benchmarking to Advance Research: A

Challenge to Software Engineering; icse, page. 74, 25th

International Conference on Software Engineering

(ICSE'03).

[3] R. E. Al-Qutaish, 2010, Quality Models In Software

Engineering Literature: An Analytical And Comparative

Study, Journal of American Science, Marsland Press,

Michigan, USA, vol. 6, no. 3, pages. 166-175.

[4] B. Behkamal, M. Kahani and M. K. Akbari 2009,

Customizing ISO 9126 Quality Model For Evaluation Of

B2B Applications, Journal Information and Software

Technology, vol. 51, Issue 3.

[5] I. ISO, ISO 8402:1994- Quality management and quality

assurance-Vocabulary.

[6] Fenton N. 1991, Software Metrics - A Rigorous

Approach; Chapman & Hall, London.

[7] Syahrul Fahmy, Nurul Haslinda, Wan Roslina and Ziti

Fariha 2012, Evaluating the Quality of Software in e-

Book Using the ISO 9126 Model, International Journal

of Control and Automation, Vol. 5, No. 2,June, 2012.

[8] Grant Rule P. 2001, The Importance of the size of

software requirements; NASSCOM Conference, page.18.

[9] Harry M. Sneed 1999, Applying size complexity and

quality metrics to an object-oriented application, Shaker

Publishing , ISBN 90-423-0075-2.

[10] Sasa Baskarada 2010, IQM-CMM: Information Quality

Management Capability Maturity Model,

Vieweg+Teubner Verlag, edition (Nov 17 2009)

[11] Fenton N. And M. 1999, Software Metrics and Risk,

European Software Measurement Conference.

[12] Jan Bosch 2000, Design and Use of Software

Architectures: Adopting and Evolving a Product-Line

Approach, Addison-Wesley Professional, 1 edition (May

29, 2000)

[13] Ulas Bardak 2006, Information Elicitation in Scheduling

Problems, Carnegie Mellon University Pittsburgh.

[14] Mr. Sandeep Sharawat 2012, Software Maintainability

Prediction Using Neural Networks, International Journal

of Engineering Research and Applications (IJERA), Vol.

2, Issue 2,Mar-Apr 2012, pp.750-755

[15] Riaz, M., Mendes, E. Tempero 2009,A systematic review

of software maintainability prediction and metrics,

Empirical Software Engineering and Measurement, 2009.

ESEM 2009. 3rd International Symposium on , vol., no.,

pp.367-377.

[16] Bob Hughes 2000, Practical software measurement;

McGraw-Hill Companies.

[17] Linda H. Rosenberg 2002, What is Software Quality

Assurance?, STC conference 2002

[18] Aivosto — Programming Tools for Software Developers,

http://www.aivosto.com/

[19] Rosenberg, Linda; Hammer, Theodore 1999,A

Methodology for Writing High Quality Requirement

Specifications and for Evaluating Existing Ones, NASA

Goddard Space Flight Center.

Fig5: Quality factors for example No1

 Fig6: Quality factors for example No2

