
 International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

29

Do Programming Languages Influence the Impact of

Software Changes?

Shaista Ghafoor
Dept. of Computer Science

University of Sargodha
Sargodha, Pakistan

Javed Ferzund
Dept. of Computer Science

University of Sargodha
Sargodha, Pakistan

Bushra Jamil
Dept. of Computer Science

University of Sargodha
Sargodha, Pakistan

ABSTRACT
During a software development process, changes happen in

almost every phase: requirements, design implementation, and

maintenance. Software-change impact analysis, or simply impact

analysis (IA), has been recognized as a key maintenance

activity. IA aims at estimating the potentially impacted entities

of a system due to a proposed change. In this paper, we present a

study to investigate the role of programming languages in

change impact analysis. We try to find whether changes made in

different language programs have same impact on different

entities or not same. In this study IA is based on number of files

impacted, number of revisions impacted, number of developers

involved and changes made per hour.

Keywords
Software Maintenance, Software Changes, Bugs, Programming

Language.

1. INTRODUCTION
Change impact analysis is an important activity in software

maintenance. The purpose of impact analysis is to study the

software entities that are affected or impacted by a given change.

A single change may affect a single file or a group of files.

Within a single file, a change may affect a single code location

or multiple code locations. So, a single change can create

challenges for the testing team. A tester will have to test all the

possible impacted source code locations which can be in

different files and different modules.

The knowledge of the impacted files and modules is not known

unless project history is studied. We can extract this information

by mining software repositories. Software repositories hold all

the information related to a particular change like when a change

was made, who made that change, which files were modified,

how many lines were affected, which lines were affected and the

reason for a change. This information is easily accessible by

using configuration management systems like CVS and SVN.

A lot of work has been done on change impact analysis and still

more work is going on. Researchers have tried to identify

different change patterns like co-changed modules, co-changed

files, co-changed lines and time periods when changes are more

risky. Some other researchers have studied the spectrum of

change impact and developed different prediction models for

changed entities and the developers involved. To our knowledge,

no work exists on the comparison of different programming

languages. In other words, how changes impact in programs

written in different programming languages.

In this paper, we present an empirical study on change impact

analysis. Three languages are selected for impact analysis

including C, C++ and JAVA. To eliminate the differences in

project domains, we have selected a single project, parts of

which are developed in C, C++ and JAVA. Mozilla is used as a

case study, which is a large project having long development

history. Mozilla is an internet suit that comprises a browser

(Firefox), an email client (thunderbird) and other tools regarding

editing and authoring of web pages. We obtain the required data

from the Mozilla project repository. We study the impact of

changes in different language programs based on the number of

files affected, number of revisions affected, number of

developers required to implement a change and the number of

changes implemented in one unit time. We have established the

following four hypotheses to fulfill our research objectives:

Research Hypotheses:

H01: Average number of files affected by a single change is

similar in different languages.

H02: Average number of revisions affected by a single change is

similar in different languages.

H03: Average number of developers to implement a single

change is similar in different languages.

H04: Average number of changes implemented in one hour is

similar in different languages

Remaining paper is distributed into the following sections: In

section II we discuss the related work and in section III the

methodology is discussed. Results are described in section IV

and finally we conclude the paper in section V.

2. RELATED WORK
Change Impact Analysis is a collection of techniques for

determining the effect of a change. Different techniques are used

for impact analysis like conjunctive approach and disjunctive

approach. The result of cvs repositories is used to understand

developer role on software projects like interaction frequency. It

is defined as interaction between two developers based on

frequency of email correspondence, frequency of co-editing,

frequency of task sharing, and so on [11]. Mining software

repositories can provide information about what classes changed

together. Zhang and Zhao studied the possible impacts of a

proposed change in AspectJ programs [12]. Software engineers

use their knowledge about the dependencies in the software

architecture to properly perform impact management. Souza and

Redmiles studied how developers manage dependencies and

changes [9].

Canfora and Cerulo used CVS and Bugzilla to study impact of

change requests [3]. The information retrieval algorithm used

source files and developers for predicting impacted source files

by new change request and gave list of candidate developers for

resolving new CR. Mockus and Weiss [7] compute experience

of developer by checking out the number of changes a specific

developer has made to change software. While Mockus and

Herbsleb introduced a visualization tool Expertise Browser

(ExB) that is used to find the desire expert for particular artifact

of code, or to find profile of expertise of specific person, group

of people or organization [6].

 International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

30

Minto and Murphy [5] introduced Emergent Expertise Locator

(EEL) tool that is used to recommend ranked list of expert team

within their development environment. They used this tool on

Eclipse’s, Firefox’s, and Bugzilla’s historical data. Used two

matrices, one was file dependency, and second was file

authorship matrix that produced third matrix of expertise. Wong

et al. developed a tool Clio for predicting coordination structures

of change requests. This framework predicted related files and

owner of these files that can be changed to fulfill modification

request, based not only on historical data but also on the design
structure [10].

Cerulo and Canfora linked new CR descriptions with revision

files impacted by the past similar fixed CRs. They used textual

similarity for this purpose. They also showed that mining

software repositories are not just used in software evolution but

can also used for impact analysis [4]. Siy et al. recorded

modified files with respect to the developer who changed them.

This work is done by splintering CVS change data of each

developer. They showed that most of the developers worked on

same files/directories [8]. Through this way one can easily know
about individual developer expert area.

3. METHODOLOGY
Any study on change impact analysis requires data from

software repositories. Some data is transparent and other is

hidden in these repositories. The hidden data is mined to extract

useful information for further analysis. This study is completed

in five phases: CVS Checkout, Data Extraction, Data Storage,

Data Transformation and Statistical Analysis.

CVS Checkout:

 A CVS Client [1] can be used to check out source code of a

project managed by concurrent versioning system. CVS client

provides a checkout command that uses the path to the

repository for access. Using CVS checkout, we downloaded the

source code of browser, plugins, mail and modules from the

Mozilla repository [2]. Table 1 shows the number of components

for each programming language.

Table 1. Components for different Languages

Language Number of components

JAVA 4

C++ 4

C 3

Data Extraction:

Whenever a change is made to a file, CVS creates a new

revision for that file. CVS also records some information about

each change like date and time of change, author of change, lines

of code added or deleted and a brief description about the

change including the change request id/bug id. This information

can be extracted using the log command of CVS. We executed

the log command on the root directory and stored the log

information into a text file. This text file is further processed to

store information into a database.

CVS also provides the facility to take difference between two

revisions. The difference shows the lines of code added, deleted

or modified between two revisions. We executed the CVS diff

command and obtained the difference of all consecutive revision

pairs. This information was stored into a text file for each

component separately.

Data Storage:

The text file containing the log information was processed and

information relevant to individual files was stored into a MySQL

table named “Files”. The attributes of the Files table are shown

in Table 2. Information relevant to revisions of a file was stored

into a MySQL table named “Revisions”. The attributes of the

Revisions table are shown in Table 3.

Table 2. Files table description

Field Name Description

rcscode A unique id for each file

filename File name consisting of

complete path to root

directory

head Most recent revision

totalrev Total no of revisions for this

file

Table 3. Revisions table description

Field Name Description

revcode A unique id for each revision

rcscode Foreign Key for Files table

revision Revision no

rdate Revision Date

rtime Revision Time

developer Developer who made the

change

comment Information about the change

buglist Bug ids extracted from the

comment

The text file containing the difference was processed and the

information on changed code was stored into a MySQL table

named “Difference”. The attributes of the difference are shown
in Table 4.

We applied different SQL queries to extract data from Tables 2,

3 and 4. These queries were designed to obtain the data relevant

to our research hypotheses. These queries were executed
separately for each language programs.

 The first query is designed to find out total number of

files affected as a result of a particular change. The
information was grouped on the basis of change id.

 Second query is designed to determine the number of

revisions that have been made to fix a particular

bug/change request.

 Third query is designed to find out the number of

developers who worked on a single change.

 Fourth query was designed to determine the number of
changes implemented in one hour.

Table 4. Difference table description

Field Name Description

rcscode Foreign Key for Files table

revision Revision no

changedelta Information on portions of

source code that are

changed

changecode The code changed as a

result of change request

 International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

31

Transformation:

The queries mentioned in the previous sub-section were

executed and the results were transformed into CSV format. The
transformed data was used for statistical analysis.

Statistical Analysis:

Mann Whitney test is selected to test the established hypothesis.

It is a non-parametric test used to compare the medians of two

samples of independent observations. Histograms are also used

to compare the frequency distribution of different samples of

observations.

4. RESULTS

In order to test the Null Hypotheses established in section 1, we

have split each hypothesis into three sub-hypothesis, one sub-

hypothesis for each pair of languages. The three sub-hypotheses

for H01 are given below:

H01A: Average number of files affected by a single change is

similar in C and CPP programs.

H01B: Average number of files affected by a single change is

similar in C and JAVA programs.

H01C: Average number of files affected by a single change is

similar in CPP and JAVA programs.

Similarly, sub-hypotheses were established for H02, H03 and

H04. Mann Whitney test was used to accept or reject the Null

Hypotheses. The variable ‘Number of Files’ is selected as “Test

Variable” and ‘Programming Language’ is selected as “Group

Variable”, for H01. Similarly, the variable ‘Number of

Revisions’ is selected as “Test Variable” and ‘Programming

Language’ is selected as “Group Variable” for H02. The variable

‘Number of Developers’ is selected as “Test Variable” and

‘Programming Language’ is selected as “Group Variable”, for

H03. Similarly, the variable ‘Number of Changes’ is selected as

“Test Variable” and ‘Programming Language’ is selected as

“Group Variable”, for H04.

After applying the Mann Whitney test, following results have

been found for H01A.

Since (p-value= 0.101> 0.05 =α), the null hypothesis is accepted.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is no statistically significant difference in the number
of files affected by a change in C and CPP programs.

For H01B, following results have been obtained.

Since (p-value= 0.001< 0.05 =α), the null hypothesis is rejected.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is statistically significant difference in the number of
files affected by a change in C and JAVA programs.

For H01C, following results have been obtained.

Since (p-value= 0.834> 0.05 =α), the null hypothesis is accepted.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is no statistically significant difference in the number

of files affected by a change in CPP and JAVA programs.

After applying the Mann Whitney test, following results have

been found for H02A.

Since (p-value= 0.002< 0.05 =α), the null hypothesis is rejected.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is statistically significant difference in the number of

revisions affected by a change in C and CPP programs.

For H02B, following results have been obtained.

Ranks

123 130.49 16050.00

123 116.51 14331.00

246

languagegrp1

C

CPP

Total

f iles

N Mean Rank Sum of Ranks

Test Statisticsa

6705.000

14331.000

-1.642

.101

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

f iles

Grouping Variable: languagegrp1a.

Ranks

123 136.98 16849.00

123 110.02 13532.00

246

languagegrp2

C

java

Total

f iles

N Mean Rank Sum of Ranks

Test Statisticsa

5906.000

13532.000

-3.473

.001

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

f iles

Grouping Variable: languagegrp2a.

Ranks

123 122.77 15101.00

123 124.23 15280.00

246

languagegrp3

CPP

java

Total

f iles

N Mean Rank Sum of Ranks

Test Statisticsa

7475.000

15101.000

-.209

.834

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

f iles

Grouping Variable: languagegrp3a.

Ranks

123 136.32 16767.50

123 110.68 13613.50

246

languagegrp1

C

CPP

Total

rev ision

N Mean Rank Sum of Ranks

Test Statisticsa

5987.500

13613.500

-3.023

.002

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

rev ision

Grouping Variable: languagegrp1a.

 International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

32

Since (p-value= 0.001< 0.05 =α), the null hypothesis is rejected.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is statistically significant difference in the number of

revisions affected by a change in C and JAVA programs.

For H02C, following results have been obtained.

Since (p-value= 0.806> 0.05 =α), the null hypothesis is accepted.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is no statistically significant difference in the number

of revisions affected by a change in CPP and JAVA programs.

After applying the Mann Whitney test, following results have

been found for H03A.

Since (p-value= 0.982> 0.05 =α), the null hypothesis is accepted.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is no statistically significant difference in the number

of developers involved in implementing a change in C and CPP

programs.

For H03B, following results have been obtained.

Since (p-value= 0.146> 0.05 =α), the null hypothesis is accepted.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is no statistically significant difference in the number

of developers involved in implementing a change in C and

JAVA programs.

For H03C, following results have been obtained.

Since (p-value= 0.142> 0.05 =α), the null hypothesis is accepted.

Conclusion: At α = 0.05, there is enough evidence to conclude

that there is no statistically significant difference in the number

of developers involved in implementing a change in CPP and

JAVA programs.

Based on the results of Mann Whitney test, H04A, H04B and

H04C were rejected. It indicates that number of changes

implemented in a single hour is statistically different in the

studied different language programs.

Figure 1 represents the frequency distribution of number of

revisions affected by a single change. First part shows the

number of revisions for C programs. It is evident that most of

Ranks

123 136.98 16848.50

123 110.02 13532.50

246

languagegrp2

C

java

Total

rev ision

N Mean Rank Sum of Ranks

Test Statisticsa

5906.500

13532.500

-3.193

.001

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

rev ision

Grouping Variable: languagegrp2a.

Ranks

123 124.50 15313.50

123 122.50 15067.50

246

languagegrp3

CPP

java

Total

rev ision

N Mean Rank Sum of Ranks

Test Statisticsa

7441.500

15067.500

-.245

.806

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

rev ision

Grouping Variable: languagegrp3a.

Ranks

123 123.45 15184.00

123 123.55 15197.00

246

languagegrp1

C

CPP

Total

developers

N Mean Rank Sum of Ranks

Test Statisticsa

7558.000

15184.000

-.023

.982

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

developers

Grouping Variable: languagegrp1a.

Ranks

123 126.48 15556.50

123 120.52 14824.50

246

languagegrp2

C

java

Total

developers

N Mean Rank Sum of Ranks

Test Statisticsa

7198.500

14824.500

-1.454

.146

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

developers

Grouping Variable: languagegrp2a.

Ranks

123 126.50 15560.00

123 120.50 14821.00

246

languagegrp3

CPP

java

Total

developers

N Mean Rank Sum of Ranks

Test Statisticsa

7195.000

14821.000

-1.467

.142

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

developers

Grouping Variable: languagegrp3a.

 International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

33

the changes were implemented by less than ten revisions. Very

few changes required more than ten revisions and in some cases

this number exceeded even 80 revisions. Similar is the case for

CPP and JAVA programs as represented in second and third part

of Figure1.

Frequency distribution of number of files affected by a single

change is represented in Figure 2. First part shows the number of

files affected in C programs. It can be seen that most of the

changes affected less than 10 files. A significant number of

changes also affected between 10-20 files. Very few changes

affected more than 20 files. In CPP and JAVA programs

majority of the changes affected less than 5 files, as depicted in

second and third part of Figure 2. Very few changes affected

more than 10 files.

Frequency distribution of number of developers involved in a

change and number of changes made per hour are represented in

Figure 3 and Figure 4 respectively.

Fig 1: Histograms of Number of Revisions for C, CPP and Java Programs

Fig 2: Histograms of Number of Files for C, CPP and Java Programs

Fig 3: Histograms of Number of Developers for C, CPP and Java Programs

 International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

34

5. CONCLUSIONS

In this paper we have presented an empirical study on change

impact analysis. Our objective was to investigate the influence

of programming languages on the impact of changes. We

established four hypotheses to satisfy our research questions.

The research questions were related to number of files impacted

by a change, number of revisions impacted by a change, number

of developers involved in a change and number of changes made

per hour.

It is found that there is no statistically significant difference

between C and CPP programs for the number of files impacted

by a single change. Similar is the case for CPP and JAVA

programs. However, C and JAVA programs significantly differ

in the number of files impacted by a single change.

In case of number of revisions impacted by a single change,

statistically significant differences have been found between C

and CPP programs and C and JAVA programs as well.

However, CPP and JAVA programs are found similar in the

number of revisions impacted by a change.

Average number of developers required to implement a change

and the number of changes implemented per hour have been

found similar in C, CPP and JAVA programs.

6. REFERENCES
[1] http://www.nongnu.org/cvs/

[2] http://www.mozilla.org

[3] G. Canfora, L. Cerulo, "How Software Repositories can

help in Resolving a New Change Request", 2005.

[4] L. Cerulo, G. Canfora, "Impact Analysis by Mining

Software and Change Request Repositories", 2005.

[5] S. Minto and G. C. Murphy, "Recommending Emergent

Teams" , 2007.

[6] A. Mockus and J. D. Herbsleb, "Expertise Browser: A

Quantitative Approach to Identifying Expertise", 2002.

[7] A. Mockus and D. Weiss, "Predicting risk of software

changes", vol. 5(2), 2000.

[8] H. Siy, P. Chundi, and M. Subramaniam, "Summarizing

developer work history using time series segmentation:

challenge report," in MSR ’08: Proceedings of the 2008

international working conference on Mining software

repositories, 2008, pp. pages 137–140.

[9] C. R. B. de Souza and D. F. Redmiles," An empirical study

of software developers’ management of dependencies and

changes", In ICSE’08 : Proceedings of the 30th

international conference on Software engineering,

pages241–250, New York, NY, USA, 2008. ACM.

[10] S. Wong, Y. Cai, and M. Marron, "Predicting Coordination

Structure by Change Impact Analysis”, 2010.

[11] L. Yu and S. Ramaswamy, "Mining CVS Repositories to

Understand Open-Source Project Developer Roles", In

Proceedings of the 4th International Workshop on Mining

Software Repositories, IEEE Computer Society,

Washington DC (2007).

[12] S. Zhang and J. Zhao, “Change impact analysis for AspectJ

programs”, Technical Report SJTU-CSE-TR-07-01, Center

for Software Engineering, SJTU, Jan 2007. Bowman, M.,

Debray, S. K., and Peterson, L. L. 1993. Reasoning about

naming systems.

Fig 4: Histograms of Number of Bugs Fixed/ Hour for C, CPP and Java Programs

