
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

7

Decentralized Dynamic Query Optimization

based on Mobiles Agents for Large Scale Data

Integration Systems

Mohammad Hussein1, 2
1
Lebanese University, faculty of business, Tripoli, Lebanon

2
Lebanese French University of Technology and Applied Sciences, Deddeh, El Koura, Lebanon

ABSTRACT

The query processing in large scale distributed mediations

systems raises new problems and presents real challenges:

efficiency of access, communication, confidentiality of

access, availability of data, memory allocation. In this paper,

we propose an execution model based on mobile agents for

the distributed dynamic query optimization. In this model,

each relational operator of an execution plan is executed by a

mobile agent. Also, we embed into agent a migration policy

allowing agent to choose an execution site among execution

sites of the considered system. The performance evaluation

shows that the proposed model improves the response time

whatever the variation of estimations errors.

Keywords

Distributed mediation systems, Query optimization, Cost

model, mobile agents.

1. INTRODUCTION
With the success and the fast evolution of network

technology, the number of data sources accessible through

these networks continues to grow. This growth has given rise

to new applications referencing several data sources. Indeed,

data on a topic is often scattered over several autonomous and

heterogeneous sources. For example, consider the query that

is to find the molecular functions of genes implicated in

Alzheimer's disease. To produce the result of this query, it is

first necessary to identify the genes of Alzheimer's disease by

querying sources for genetic diseases such as GeneReviews

(http://www.genetests.org/) and Genes and Disease (http://

www.ncbi.nlm.nih.gov/disease/). Then, the data sources

describing molecular functions of genes (e.g. Gene Ontology,

http:// www.geneontology.org/) are queried to determine the

functionality of the identified genes.

In order to access uniformly on data from multiple sources,

data integration systems based mediators and wrappers [5, 22,

28] were designed and developed. This architectural approach

avoids copying all sources on a single site, which is not

possible when the sources are distributed on a large scale. In

this context, efficiently process queries present great

difficulties. The optimizer’s role is to generate, for a given

SQL query, an optimal (or close to the optimal) execution

plan from the considered search space. The optimization goal

is to minimize response time and maximize throughput, while

minimizing optimization costs. The general problem of the

query optimization can be expressed as follows [14]: let a

query q, a space of execution plans E, and a cost function

cost, find the execution plan calculating q such as the cost(q)

is minimum. Generally, an optimizer can be decomposed

into three elements [14]: a search space corresponding to the

virtual set of all possible execution plans, a search strategy

generating an execution plan close to the optimal, and a

cost model [28, 35] allowing to annotate operators' trees in

the considered search space.

An execution plan generated by classical distributed query

optimizer can have poor performance for four main reasons:

(i) the centralized optimization, (ii) the imprecision of

estimates, (iii) the unavailability of resources (i.e. data, CPU,

network bandwidth, and memory). In response to these

events, dynamic query optimization queries methods [1, 2, 9,

10, 21, 24, 25, 26, 29] have been developed. These methods

correct, at run-time, the sub-optimality of execution plans.

The majority of proposed dynamic query optimization

methods are centralized. This centralization creates a

bottleneck and produces a relatively large exchange messages

on a low speed network and high latency. Thus, it becomes

important to make autonomous and self-adaptable query

execution.

In this paper, we present an approach proposes autonomous

and mobile execution of every relational operator of an

execution plan, able to react in an autonomous and

decentralized way with the evolution of the system state (e.g.

workload of sites, bandwidth) and with the estimation errors.

Furthermore, it can move from one site to another to continue

its execution. The site of migration of the agent is chosen,

among a set of sites determined by the optimizer, according to

several metrics: the workload of sites, the data unavailability,

the costs to produce the data, the cost to send the result and

the cost of the agent migration.

The remainder of paper is organized in the following way: in

the section 2 we describe state of the art of the main

optimization dynamic methods. Section 3 proposes an

execution model based on mobile agents for dynamic query

optimization. Section 4 presents the experimentation

environment and the experiments results. Finally, we

conclude and present the perspectives.

2. RELATED WORKS
In data base systems, the optimization methods can be

classified in two types [16]: static and dynamic. A dynamic

optimization method is characterized by three elements [18] :

(i) it receives information from its environment, (ii) uses this

information to determine its behavior, and (iii) it carries out

the steps (i and ii) iteratively, which enables a dynamic

optimization method to adapt the drawings to changes in the

execution environment.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

8

The proposed dynamic optimization methods are

distinguished according to several aspects. For example, they

correct sub-optimality of the execution plans in various

manners. Moreover, the correction level of the execution

plans can be also different from a method to another. These

methods can be addressed for various environments (single

processor, parallel and distributed) and to adapt to different

events. The table 1 presents a set of parameters allows

differentiating the methods. Some of these parameters were

quoted or described in several reviews [17, 18, 15, 30].

Table 1: comparison of dynamic optimization methods

2.1 Decision making
A characteristic of dynamic optimization methods is the

decision making nature of the modifications of the execution

plans (decision making column in the Table 1). We

distinguish two classes: centralized methods [1, 2, 3, 4, 5, 12,

24] and decentralized dynamic optimization methods [9,

19,20, 21, 23,27]

A method of optimization known as centralized if it is based

on a main process which is charged to supervise, control and

modify the execution plans. This process can be based on

other modules ensuring the production of necessary

information for the control and the modifications of an

execution plan. However, centralization does not allow these

methods to scale due to: (i) the relatively large number of

messages on a low speed network and high latency, and (ii)

the bottleneck of the optimizer because all messages converge

to a single point.

Decentralization of control and changes in execution plans in

dynamic optimization methods avoid the bottleneck of

centralization. For a flexible, dynamic and decentralized

execution of the queries submitted to the large scale

distributed mediation systems, [9] proposed an execution

model based on broker. The broker is the basic unit of the

execution of a query. The process of execution of a query can

be compared with a set of brokers. Each broker ensures the

execution of a sub-query. Thus, an execution plan of a query

is represented by a tree which nodes are the brokers who are

charged to execute the sub-queries. The broker supervises the

execution of his sub-query, it detects the inaccuracies and it

adapts it according to these inaccuracies. Moreover, it can

communicate with the user and the other brokers to take into

account the changes of the execution environment. In the

methods proposed by [21], the join operators are autonomous,

decentralized and dynamic in order to deal with the changes in

the execution environment. This method improves the cost of

local processing by adapting the use of CPU, I/O and memory

to changes in the execution environment (e.g. estimation

error, delays of data arrivals rates). However, the proposed

methods focus mainly on the resources (CPU, I / O and

memory) and do not consider network resource. In this

method, the volume of data transferred determined at

compile-time remain the same regardless of the estimation

errors observed during execution.

2.2 Actions correcting the sub-optimality

of execution plans
The actions used for correcting the sub-optimal execution

plans can be classified in four types : (i) replacement,(ii)

Methods
Decision

making

Actions correcting the

sub-optimality of

execution plans

Causes leading to

the sub-optimality

of execution plans

Modification time

of the sub-

optimality of

execution plans

[3] centralized re-scheduling all intra-operator

[34] centralized re-scheduling all intra-operator

[12] centralized re-scheduling estimation errors inter-operator

[24] centralized re-optimization estimation errors inter-operator

[5] centralized re-optimization

delays

memory

unavailable

inter-operator

[1,2] centralized re-optimization delays inter-operator

[21,22]
centralized/

decentralized

re-optimization

dynamic operator
all

inter-operator/

intra-operator

[20] decentralized Dynamic operator
Delays

user preferences
intra-operator

[19,27] decentralized re-optimization all intra-operator

[9] decentralized re-optimization all inter-operator

[23] decentralized re-optimization estimation errors inter-operator

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

9

scheduling, (iii): re-optimization, and (iv) uses of dynamic

operators. A solution to correct the sub-optimal execution

plans consists of changing the operations sequences of the

execution plan at runtime [31] proposes strategies of dynamic

re-scheduling of the operators inter-sites (e.g. joint, union) in

order to react to the inaccuracies of estimation. The operators

inter-sites can be executed as soon as two sub-queries

executed on different sites produced their results. These

strategies are based on the real execution times of the sub-

queries instead of their estimated costs. They use the partial

results available at runtime to define the scheduling of the

executions between the operator inter-sites. In this method,

processing of the queries is done in two steps [12]: (i)

Compilation: during this stage, a global query is decomposed

into local sub-queries. The sub-queries are sent in parallel to

the sources in order to be executed. (ii) Dynamic scheduling:

this step defines a dynamic scheduling between the operations

consuming of the results of sub-queries sent on sites. As soon

as a sub-query produces its result, a threshold is associated

with the result. This threshold is used to determine whether

the result must be consumed immediately to execute a join

with another available result, or the consumption of this result

will be delayed while waiting for another one which is

unavailable in this moment. The threshold associated with a

result is calculated according to the costs and of the selectivity

factors of all join connected to this result. Thus, the

executions of the joins costs are higher than the thresholds

associated with their operands which are delayed, and the join

of lower and most selective cost is executed.

The alternative approach, with the operators re-scheduling, is

the re-optimization [1, 4, 5, 21]of the execution plans. This

approach can produce for the remainder of the query a sub-

plan completely different from that generated during

compilation. It can also introduce new operators or change

scheduling between the operators. Several methods were

proposed in the context of this approach. Each one of them

was addressed to a specific environment and was designed to

deal with the sub-optimality caused by one or more events

(e.g. errors in estimation). For example, the technique of

query scrambling [1,2] proposes solutions to deal with the

data arrival rates. Another method [24] proposes solutions to

react to the estimation errors.

2.3 Causes leading to the sub-optimality of

execution plans
Each dynamic optimization method is able in adapting the

execution plans in order to react to one or several causes.

Methods have been proposed to react to each of the following

causes:

(i) Estimation errors: in several cases, the statistics

describing the data are unavailable or inaccurate. A

solution to solve this problem is to collect statistics at

runtime. The methods which are based on this principle

re-optimize the remainder of the execution plan as soon

as these statistics become available.

(ii) Memory available: the memory allocated to the

operators of an execution plan can become available

because of the simultaneous and concurrent executions

of several queries or any other external event. For that,

several methods try to adapt to the memory

unavailability at runtime.

(iii) Delays in data arrival rates: in a large scale

environment, the access to the data implies a great

number of distant data sources, intermediate sites and

links of communication which are vulnerable to the

congestion. The congestion can generate unexpected

delays in data arrivals. Thus, methods propose some

solutions to adapt to this event.

(iv) Users Preferences: the users have preferences to

receive certain partial results as soon as possible. Thus,

the users can classify the tuples of results according to

their degree of importance. In this case, methods adapt

their behaviors in order to accelerate the production of

the most important tuples of result.

2.4 Modification time of the sub-optimality

of execution plans
The modification level of the executions plans can also be

differing from a method to another. Methods propose to

modify the execution plans either between executions of two

operators, or after materialization of the temporary relations.

What we will call modification on the inter-operator level in

the remainder of the paper. Others propose to modify the

execution plans during the execution of a physical operator.

What we will call modification on the intra-operator level in

the remainder of the paper. Sometimes two levels of

modifications are combined in only one method.

To modify the sub-optimal execution plans on the intra-

operator level, two approaches were proposed: the first is

based on the routing of tuples named Eddy [3], and the second

is based on the dynamic partitioning of data [22]. Eddy [3] is a

mechanism of query processing which changes continuously

the execution schedule of operators in order to adapt to the

changes of the execution environment. Eddy can be

considered as a router of tuples positioned between a number

of data sources and a set of operators. Each operator

participate in an Eddy must have one or two input queues to

receive the tuples sent by Eddy and an output queue to return

the results tuples to Eddy. The tuples received by an Eddy are

redirected towards the operators in different orders. Thus, the

scheduling of the operators is encapsulated by the dynamic

routing of tuples. The method proposed by [22] corrects the

sub-optimality of execution plans relied on the dynamic data

partitioning. The execution plan of a query is constantly

supervised, at runtime, and it can be replaced by a new plan in

the case where we consider that the current plan is sub-

optimal. The tuples processed by each used plan represent a

data partitioning which is dynamically given. When an

execution plan is replaced, a new data partitioning is

produced. The dynamic optimization methods described in [3,

22] carry out the modification of the sub-optimal execution

plans during the execution of an operator (intra-operator).

Other approaches propose to modify the sub-optimal

execution plans after the materialization of a temporary

relation or after the termination of the execution of an

operator. These modifications vary from operators re-

scheduling of execution plan, re-optimization of the remainder

of the plan until replacement of the execution plan.

3. EXECUTION MODEL BASED

MOBILE AGENTS FOR

DECENTRALIZED DYNAMIC QUERY

OPTIMIZATION
In this section, we describe an execution model based on

mobile agents for decentralized dynamic queries optimization.

During the query optimization, the optimizer of mediator

generates an execution plan including : (i) the number of

mobile agents participating in the evaluation of execution

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

10

plan, (ii) the operator will be executed by each agent, and (iii)

the execution site of each agent. In the rest of this section, we

present the mobile join algorithms [20]. Then, we propose an

execution model based on mobile agents for queries including

cooperation policy allowing the agents to run efficiently the

execution plans. Finally, we describe a migration policy of

mobiles agents based on two cost models: the mediator cost

model and the embedded cost model in a mobile agent.

3.1 Mobile join algorithms
In a distributed environment an interesting aspect in the query

optimization is the selection of execution sites of the

operators. The unary operators (e.g. selection, projection) are

placed on the sites of their operands. However, for the binary

operators (e.g. join, union), the optimizer chooses a site in

order to execute these operators. Another interesting aspect is

the execution of joining two operands residing on different

sites. In literature, there are two approaches to execute the

joining of two operands residing on different sites: (i) the

direct join, and (ii) the join based semi-join [7].

In order to deal with the unexpected changes in large scale

distributed environment, we propose to use the mobile agent

[16, 25] for extension of join algorithms which is called

mobile join for two reasons: (i) they are executed by mobile

agents, and (ii) they can change their execution site locations.

This extension allows the join to change their execution site.

The decision and change control of the execution site are

made in a decentralized and autonomous manner. It is no

longer the optimizer chooses the join execution site, but the

join itself chooses its execution site. Indeed, the mobile agent

executing a join adapts to changes in characteristics of the

execution environment (e.g. network bandwidth, available

memory, estimations errors). To simplify the rest of this

article we present briefly the simple mobile hash join

algorithm. In the simple hash join algorithm, during the

building of the hash table, the characteristics of R1 (e.g. size,

values distribution of every attribute) can be calculated

precisely. So, from the precise statistics of R1, the statistics of

R2 estimated at the optimization, the statistics revised of T

from R1 and R2, the unavailability of R2 and the state of the

system, it is possible to make a decision on the localization of

the probe step and eventually move this step to another site.

3.2 Mobile query
In this sub-section, we propose an execution model based on

mobile agents for queries in distributed mediations systems.

In this model, each operator execution plan is executed

through a mobile agent. During the generation of execution

plan, the agents are associated with the operators of the

execution plan and also the initial execution site locations are

determined. These agents can be placed either on the

mediators or the wrappers. Agents placed on mediators can

migrate at run-time from site to another. Instead, the agents

placed on wrappers are static and they finish their executions

on the wrappers selected during the optimization step. The

association between operators and mobile agents is illustrated

in Figure 1.

Join

R1

Result

Join

Join

R2 R3 R4

Generation of

execution plans
Mobile

join

Mobile

join
Mobile

join

Result

Scan of

R1

Scan of

R2

Scan of

R3

Scan of

R4

Fig. 1 : mobile agents associated with an execution plan

3.2.1 Cooperation policy
We recall that a mobile agent executing a mobile join can

change its execution site in order to improve its response time.

Thus, this agent can migrate its current execution site to the

new chosen one. This migration from one site to another is

taken autonomously and decentralized. The decision to

migrate for an agent cannot be made without taking into

account the decisions of the other communicating agents.

Indeed, a global optimum cannot be reached by a sum of local

optimum. For example (Figure 2), let us consider two joins J1:

T = Join(R1, R2) and J2: res=Join(T, R3) processing

respectively on the sites S1 and S2. Now, if J1 decides to

migrate on S2 in order to minimize the communications

between S1 and S2. Also J2 decides to migrate on S1 for the

same reasons. We will have, thus, a lack of cooperation

between J1 and J2. Another example of cooperation concerns

the propagation of the estimation corrections. Indeed, the join

operator J1, establishing of an error on R1 after building the

hash table, can propagate the error correction to J2. This

propagation will lead, eventually, J2 to migrate on another

site. In the rest of the paper, we will name the various

communicating agents with a join J noted AJ, in the following

way:

− AR1 and AR2 are the agents producing R1 and R2,

− AT is the agent consuming the join result.

J1

J2

J1

J2

 Migration of AJ1

 for reducing the

 communications

 with AJ2

 Migration of AJ2

 for reducing the

 communications

 with AJ1

Site 1 Site 2

 Fig. 2 : Example of not cooperation between two agents

We have seen above, the need to make a cooperation policies

between agents involved in the evaluation of a query. The

agent needs to make a decision about his migration are three

fold: (i) the execution site about other agents communicating

with him, (ii) the estimate data volume, and (iii) the resources

availability (e.g. CPU, network bandwidth). In this sub-

section, we focus on cooperation between agents from the

same query. Thus we focus on the knowledge of the execution

sites of agents, on the estimation of the data volume and on

the data unavailability.

In order to design an efficient cooperation methods [27] and

to study the impact of the number of exchanged messages

between the agents. The proposed cooperation policy [27]

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

11

consists in the cooperation of the agents to know the

execution sites of the agents which communicate between

them. For an agent AJ processing a hash join (R1, R2), the

decision to migrate is made after the Build step and before the

Probe step. Thus, after its decision, the only communicating

agents with it will be AR2 and AT. To minimize the

communications between the agents during its decision phase,

this one is taken hierarchically. The agent AJ will make its

decision to migrate after AT made its decision. Thus, when AJ

makes its decision, it knows the site of AT and the site of AR2

since AR2 cannot migrate as long as AJ did not make its

decision. The advantage of this method is that it also avoids

the duplication of the data messages. Indeed, AJ knows the

AT execution site. Thus AJ can sent its data directly to AT

without passing by an intermediary. We do not need to set up

strategies such as the forwarding pointer or the use of a

central server which duplicate part of the data messages.

Another factor strongly influencing the response is the

precision of the data volume estimations. In addition to the

communication of the execution sites of the agents, we

propagate the correction of the estimation errors. After the

hash table building, the R1 characteristics are known more

precisely. If AR2 is able to improve the R2 estimation and to

communicate this result to AJ, the estimation of the data

volume processed by AJ could be only more precise.

Moreover, AJ can communicate to AT the new estimated

characteristics of T. Hence, the decisions made by AJ and AT

will be better. The propagation of estimation corrections is

processed in the opposite direction of the site communication.

3.2.2 Migration policy
Let us remind that a mobile agent can move from a mediator

to another. The migration site is chosen by the mobile agent

according to several metrics. This metrics are computed by

the mediator where the mobile agent builds its hash table. The

problem here is that this mediator does not have all necessary

information to compute the metrics of this mobile agent (e.g.

operands profile, the production costs of operands). In order

to assure the autonomy of the mobile agent, this one needs to

provide for the mediator whe : (i) the profile of the second

operand (R2), (ii) The sites where it can move, and (iii) the

parameters involved in the formula estimating the production

costs of the second operand (R2). These components are

necessary to compute the metrics of the agent and they

constitute the agent cost model. In this section we describe

the various parts of the cost model intervening in the

estimation of the cost of the execution plans. We distinguish

between two cost models involved in the estimation of

executions plans costs: the part residing in the mediator which

is called mediator [28] cost model and the part embedded in

the agent which is called the agent cost model [19]

4. PERFORMANCE EVALUATION
This section compares the results obtained with the execution

model based on mobile agents and with a classical execution.

We study the behavior of proposed model and the classical

according to the tree structure of the execution plan generated

by an optimizer. In the following sub-sections, we describe

the experimentation environment, the query experimentation

and the experiments.

4.1 Experimentation environment
We realized our experiments in distributed environment. It is

constituted of five workstations (HP) interconnected by

Internet. The all workstations are located in Lebanon at

different cities. These workstations will be called respectively

Tripoli, Beirut, Saida, Baalbeck, and Zahle. To handle our

experiments, we installed on every workstation a platform of

mobile agents [13] including the mobile hash join algorithm,

the cooperation policy and the migration policy. In this one,

every mobile agent runs on a Virtual Machine Java (JDK

1.6.2). The response times are measured by real executions.

These are carried out between sites interconnected via a

network. Our experiments are handled in multi-user

environments, where several users can start up applications. In

these environments, it is difficult to reproduce an experiment

in identical conditions. Indeed, the workload of an execution

site varies from moments to another (available memory,

number of running processes, etc.) and the amount of the data

transferred through the network also varies.

The costs associated with the execution of these algorithms

are deduced by calibration. The migration cost of an agent

given in the table Tab.2 includes the serialization cost, the

transfer cost and the de-serialization cost. Of course, when

the agent migrates with its data, it must be added the

serialization cost, the transfer and the de-serialization of the

data which is proportional to its size.

 Table 2: environment parameters

4.2 Experimentation query
To compare quantitatively the various methods, we consider

that four relations R1, R2, R3 and R4 are respectively on the

sites: Tripoli, Beirut, Saida and Baalbeck. The relation size

estimated by the optimizer are respectively 15 000, 30 000, 30

000 and 37 500 tuples. The join selectivity factor Ri ∞ Rj is

1.5/Max (||Ri||, ||Rj||) where ||Ri|| indicates the Ri number of

tuples [6, 8]. The query Q = R1 ∞ R2 ∞ R3 ∞ R4 is expressed

on a Zahle site. This query is constituted of tree joins called

J1, J2 and J3. Every join is executed by a mobile agent. The

migration space of the cost model embedded in each agent is

Networks parameters

 Banwidth (KB/s) Time to send a page(ms)

[Tripoli, Beirut, Saida, Baalbeck, Zahle  Tripoli, Beirut, Saida, Baalbeck, Zahle] [104.3-112.7] [727.89-749.52]

Mobile agent parameters

 Agent migration(ms)

[Tripoli, Beirut, Saida, Baalbeck, Zahle  Tripoli, Beirut, Saida, Baalbeck, Zahle] [28457- 29713]

Workstations parameters

 Time to write a page (ms) Time to read a page (ms)

[Tripoli, Beirut, Saida, Baalbeck, Zahle] [0.71-0.79] [0.58-0.65]

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

12

constituted of the all sites Tripoli, Beirut, Saida, Baalbeck,

and Zahle.

4.3 Experimentation results
In this sub-section, we describe the results of the experiments

handled for the execution model based on mobile agents that

we will call mobile execution and the traditional method that

we will call classical execution applied to a left deep tree,

right deep tree and bushy tree. Here, we present and discuses

the behavior of the proposed model according to the variation

between the parameters estimated at compile-time (the

estimated number of tuples of R1 noted ||R1es||) and that

computed by agent at runtime (the computed number of tuples

of R1 noted ||R1comp).

4.3.1 Results applied to left deep tree
In the optimal execution plan left deep tree of the query q, the

joins J1 : T1= R1 ∞ R2, J2 : T2= T1 ∞ R3 and J3 : Res = T2∞

R4 are respectively on the site Tripoli, Beirut and Zahle.

Fig. 3 :Left deep tree performance by decreasing ||R1||

Figure 3 shows the response time of mobile execution and the

classical execution by decreasing the R1 number of tuples.

We observe that the response times of mobile execution are

slightly higher than classical execution (about 4%) when the

error on ||R1|| is between 0% and 30%. This difference is

mainly due to the mobility overhead. This overhead takes into

account the agent serialization, the agent migration and the

agent start-up on its new site. From -30%, mobile execution

obtain better performance (between 10% and 70%) by

modifying the execution plan generated by the optimizer. We

obtain the best performance by moving joins 2 and 3 before

their execution.

Fig. 4 :Left deep tree performance by increasing ||R1||

The curves of Figure 4 shows the response time of each

method by increasing the R1 number of tuples. We note that

the performance of mobile execution is even worse than those

of classical execution (between 3% and 4%) when the error on

||R1|| is between 0% and 30%. On the other hand, when the

error is higher than 30%, mobile execution obtains better

performance (between 3% and 9%) by moving j2 on Zahle

and by moving the Probe of the j1 on Zahle.

4.3.2 Results applied to right deep tree
In the optimal execution plan left deep tree of the query q, the

joins J1 : T1= R1 ∞ R2, J2 : T2= R3 ∞ T1 and J3 : Res = R4

∞ T2 are respectively on the site Tripoli, Saida and Baalbeck.

Fig. 5 : Right deep tree performance by decreasing ||R1||

Figure 4 shows the response time of mobile execution and the

classical execution by decreasing the R1 number of tuples.

We observe that the response times of mobile execution have

a slightly higher response time between 0% and -20%. From -

30%, they improve the performance compared to standard

(between 10% and 75%). same behavior. Indeed, on this tree,

mobile execution cannot anticipate the migration of a join

since all the Build steps of the joins are started at the same

time.

Fig. 6 : Right deep tree performance by increasing ||R1||

The curves of Figure 6 shows the response time of each

method by increasing the R1 number of tuples. We notice that

between 0% and 20% , mobile execution have a response time

slightly higher than standard approximately 4%. From 30 %

mobile executions have a better response time by moving all

the join on Zahle after the Build step

4.3.3 Results applied to bushy deep tree
In the optimal execution plan left deep tree of the query q, the

joins J1 : T1= R1 ∞ R2, J2 : T2= R3 ∞ R4 and J3 : Res = T1∞

T2 are respectively on the site Tripoli, Beirut and Zahle.

250
400
550
700
850

1000
1150
1300
1450
1600
1750

0% -15% -30% -45% -60% -75% -90%

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on ||R1||

Classical execution

Mobile execution

1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050

0% 15% 30% 45% 60% 75% 90%

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on ||R1||

Classical execution

Mobile execution

120
220
320
420
520
620
720
820
920

0% -15% -30% -45% -60% -75% -90%

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on ||R1||

Classical execution
Mobile execution

900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400

0% 15% 30% 45% 60% 75% 90%

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on ||R1||

Classical execution

Mobile execution

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

13

Fig. 7: Bushy deep tree performance by decreasing ||R1||

The curves of Figure 7 show response time of each method by

decreasing the number of tuples of R1. We observe that

between 0% and -30%, mobile execution have a higher

response time (approximately 4%) compared to classical

execution. In this bushy deep tree, an estimation error on ||R1||

has impact only on J1 and J3. Moreover J2 (i.e. R3 ∞ R4) is

the most significant join of this plan. In this case, the

migration of the J1 and J3 following an error on R1 have little

impact on the performance of the bushy execution. Thus, the

performance improvements of mobile execution are relatively

weak.

Fig. 8: Bushy deep tree performance by increasing ||R1||

We observe the same behavior between mobile execution and

the classical execution when the number of tuples of R1

increases (Figure 8). From 90% of error on R1, the J1

migration starts to have really an impact over the response

time because the join J1 is close the data volume processed by

the join J2.

5. Conclusions and perspectives
In a large-scale mediation system, centralized dynamic

optimization methods cannot be valid due to the centralization

of the control and the modifications of execution plans. In this

paper, we proposed an execution model based on mobile

agents and cost model approaches for large scale distributed

query optimization. Also, we show mobile agents who can

react dynamically to the estimation errors of the cost models

and to the data unavailability. In this context, to guarantee the

autonomy of an agent we propose a cooperation and migration

policies for the mobile agents executing a relational operator.

The proposed cooperation policy consists in the cooperation

of the agents to know the execution sites of the agents which

communicate between them and the propagation of correction

estimations errors. The migration policy of an agent is based

on embedded cost model in the agent which must be as small

as possible in order to minimize the agent migration cost on a

large scale network.

In the next future we will develop a decision policy

considering, in an incremental way, the data availability, the

workload of the sites, memory allocation on the sites, as well

as the network bandwidth heterogeneity. This new policy will

have to minimize to the maximum the number of messages

exchanged between mobiles agents. Also, we plan to define

methods which determine the migration space of the agents

participating in execution of a query. These methods must

take into account the migration spaces of the other agents

participating in the execution of a query and the tree structure

of execution plan of the query. Finally we will extend our

performance evaluation in order to study the behaviors of the

agents on the level of the complex queries.

6. REFERENCES
[1] L. AMSALEG et al.; Scrambling query plans to cope

with unexpected delays, Proc. of the Fourth International

Conference on Parallel and Distributed Information

Systems, IEEE Computer Society, Miami, Florida, USA,

December 1996, pp. 208-219.

[2] L. AMSALEG, M. FRANKLIN, A. TOMASIC;

Dynamic query operator scheduling for wide-area remote

access, Distributed and Parallel Databases, vol. 6, no3,

Kluwer Academic Publishers, 1998, pp. 217-246.

[3] R. AVNUR, J.-M HELLERSTEIN; Eddies: continuously

adaptive query processing, Proc. of the ACM SIGMOD

International Conference on Management of Data, ACM

Press, Dallas, Texas, USA, May 2000, pp. 261-272.

[4] S. Babu, P. Bizarro, D. -J. DeWitt; Proactive Re-

optimization. Proc. of the ACM SIGMOD International

Conference on Management of Data, ACM Press,

Baltimore, Maryland, USA, June 2005, pp.107-118.

[5] L. BOUGANIM and al.; A dynamic query process-ing

architecture for data integration systems. Journal of IEEE

Data Engineering Bulletin, IEEE Computer Society, vol.

23, no2, June 2000, pp. 42-48.

[6] N. BRUNO, S. CHAUDHURI; Efficient Creation of

Statistics over Query Expressions, Proc. of the 19th

International Conference on Data Engineering, IEEE

Computer Society, Bangalore, India, March 2003,

pp.201-212.

[7] D.-M. Chiu, Y.-C. Ho ; A Methodology for Interpreting

Tree Queries Into Optimal Semi-Join Expressions, Proc.

of the ACM SIGMOD International Conference on

Management of Data, ACM Press, Santa Monica,

California, USA, Mai 1980, pp. 169-178.

[8] C.-M. CHEN, N. ROUSSOPOULOS; Adaptive

Selectivity Estimation Using Query Feedback, Proc. of

the ACM SIGMOD International Conference on

Management of Data, ACM Press, Minneapolis,

Minnesota, USA, May 1994, pp. 161-172.

[9] C. COLLET, T.-T. VU ; QBF: A Query Broker

Framework for Adaptable Query Evaluation, Proc. of

6th International Conference on Flexible Query

Answering Systems, Springer Verlag Publishers, Lyon,

France, June 2004, pp. 362-375.

[10] A. DESHPANDE, J.-M. HELLERSTEIN; Lifting the

Burden of History from Adaptive Query Processing,

Proc. of the Thirtieth International Conference on Very

Large Data Bases, Morgan Kaufmann, Toronto, Canada,

August 2004, pp. 948-959.

550
650
750
850
950

1050
1150
1250
1350

0% -15% -30% -45% -60% -75% -90%

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on ||R1||

Classical execution

Mobile execution

1050
1150
1250
1350
1450
1550
1650

0% 15% 30% 45% 60% 75% 90%

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on ||R1||

Classical execution
Mobile execution

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.8, December 2012

14

[11] R.-S. EPSTEIN, M. STONEBRAKER, E. WONG ;

Distributed Query Processing in a Relational Data Base

System, Proc. of the ACM SIGMOD International

Conference on Management of Data, ACM Press,

Austin, Texas, June 1978, pp. 169-180.

[12] C. EVRENDILEK et al.; Multidatabase Query

Optimization, Journal of Distributed and Parallel

Databases, Kluwer Academic Publishers, vol 5, no1,

January 1997, pp. 77-113.

[13] A. FUGGETTA, G.-P. PICCO, G. VIGNA;

Understanding Code Mobility, IEEE Transactions on

Software Engineering, IEEE Computer Society, vol. 24,

no5, May 1998, pp. 342-361.

[14] Ganguly, S., Hasan, W., Krishnamurthy, R.: Query

Optimization for Parallel Execution. In: Proc. of the 1992

ACM SIGMOD, vol. 21, pp. 9–18. ACM Press, San

Diego (1992)

[15] A. GOUNARIS and al.: Adaptive Query Processing: A

Survey, Proc. of the 19th British National Conference on

Databases, Sheffield, UK, July 2002, pp. 11-25.

[16] A. GOUNARIS and al.: Resource Scheduling for Parallel

Query Processing on Computational Grids. In: Proc. of

the 5th IEEE/ACM Intl. Workshop on Grid Computing,

pp. 396–401 (2004).

[17] A. HAMEURLAIN, F. MORVAN; Parallel Query

Optimization Methods and Approaches: a Survey,

Journal of Computers Systems Science & Engineering,

CRL Publishing Ltd9 De Montfort Mews, vol. 19, no5,

September 2004, pp. 95-114.

[18] J.-M. HELLERSTEIN et al.; Adaptive query processing:

Technology in evolution, IEEE Data Engineering

Bulletin, IEEE Computer Society, vol. 23, no2, June

2000, pp. 7-18.

[19] M. Hussein, F. Morvan, A. Hameurlain ; Embedded Cost

Model in Mobile Agents for Large Scale Query

Optimization, Proc. of the 4th International Symposium

on Parallel and Distributed Computing, IEEE Computer

Society, Lille, France, Juillet 2005, pp. 199-206.

[20] M. Hussein, Mobile Join Algorithms based on Mobiles

Agents for Large Scale Distributed Query Optimization.

International Journal of Applied Information Systems

(IJAIS), Volume 4– No.1, September 2012 , pp 55-61.

[21] Z.-G. IVES et al.; An Adaptive Query Execution System

for Data Integration, Proc. of the ACM SIGMOD

International Conference on Management of Data, ACM

Press, Philadelphia, Pennsylvania, USA, June 1999, pp.

299-310.

[22] Z.-G. IVES, A.-Y. HALEVY, D.-S. WELD; Adapting to

Source Properties in Processing Data Integration

Queries, Proc. of the ACM SIGMOD International

Conference on Management of Data, ACM Press, Paris,

France, June 2004, pp. 395-406.

[23] R. JONES, J. BROWN; Distributed Query Processing

Via Mobile Agents, find the 14 november 2002,

accessible via:

http://www.cs.umd.edu/~rjones/paper.html, 1997.

[24] N. KABRA, D.-J. DEWITT; Efficient Mid-Query Re-

Optimization of sub-optimal query execution plans, Proc.

of the ACM SIGMOD International Conference on

Management of Data, ACM Press, Seattle, Washington,

USA, June 1998, pp. 106-117.

[25] L. KHAN, D. MCLEOD, C. SHAHABI; An Adaptive

Probe-Based Technique to Optimize Join Queries in

Distributed Internet Databases, Journal of Database

Management Idea Group, vol. 12, no4, Octobre 2001, pp.

3-14.

[26] F. MORVAN, A. HAMEURLAIN; Dynamic Memory

Allocation Strategies For Parallel Query Execution, Proc.

of the ACM Symposium on Applied Computing, ACM

Press, Madrid, Spain, March 2002, pp. 897-901.

[27] F. MORVAN, M. HUSSEIN, A. HAMEURLAIN ;

Mobile Agent Cooperation Methods for Large Scale

Distributed Dynamic Query Optimization, Proc. of the

14th International Workshop on Database and Expert

Systems Applications, IEEE Computer Society, Prague,

Czech Republic, Septembre 2003, pp. 542-547.

[28] H. NAACKE, G. GARDARIN, A. TOMASIC ;

Leveraging Mediator Cost Models with Heterogeneous

Data Sources, Proc. of the Fourteenth International

Conference on Data Engineering, IEEE Computer

Society, Orlando, Florida, USA, February 1998, pp. 351-

360.

[29] B. NAG, D.-J. DEWITT; Memory Allocation Strategies

for Complex Decision Support Queries, Proc. of the

ACM CIKM International Conference on Information

and Knowledge Management, ACM Press, Bethesda,

Maryland, USA, November 1998, pp. 116-123.

[30] M. OUZZANI, A. BOUGUETTAYA; Query Processing

and Optimization on the Web, Distributed and Parallel

Databases, Kluwer Academic Publishers, vol. 15, no3,

May 2004, pp. 187-218.

[31] F. OZCAN et al. ; Dynamic query optimization in

multidatabases, Data Engineering Bulletin, IEEE

Computer Society, vol. 20, n°3, Septembre 1997, pp. 38-

45.

[32] V. RAMAN, A. DESHPANDE, J.-M. HELLERSTEIN;

Using State Modules for Adaptive Query Processing,

Proc. of the 19th International Conference on Data

Engineering, IEEE Computer Society, Bangalore, India,

March 2003, pp. 353-362.

[33] G.-M. SACCO, S.-B. YAO; Query Optimization in

Distributed Data Base Systems, Advances in Computers,

vol. 21, 1982, pp. 225-273.

[34] Y. ZHOU et al. ; An adaptable distributed query

processing architecture, Data & Knowledge Engineering,

vol. 53, no3, June 2005, pp. 283-309.

[35] Q. ZHU, S. MOTHERAMGARI, Y. SUN; Cost

Estimation for Queries Experiencing Multiple

Contention States in Dynamic Multidatabase

Environments, Journal of Knowledge and Information

Systems, Springer Verlag Publishers, vol. 5, no1,

Februray2003, pp. 26-49.

