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ABSTRACT 

The query processing in large scale distributed mediations 

systems raises new problems and presents real challenges: 

efficiency of access, communication, confidentiality of 

access, availability of data, memory allocation. In this paper, 

we propose an execution model based on mobile agents for 

the distributed dynamic query optimization. In this model, 

each relational operator of an execution plan is executed by a 

mobile agent. Also, we embed into agent a migration policy 

allowing agent to choose an execution site among execution 

sites of the considered system. The performance evaluation 

shows that the proposed model improves the response time 

whatever the variation of estimations errors.  
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1. INTRODUCTION 
With the success and the fast evolution of network 

technology, the number of data sources accessible through 

these networks continues to grow. This growth has given rise 

to new applications referencing several data sources. Indeed, 

data on a topic is often scattered over several autonomous and 

heterogeneous sources. For example, consider the query that 

is to find the molecular functions of genes implicated in 

Alzheimer's disease. To produce the result of this query, it is 

first necessary to identify the genes of Alzheimer's disease by 

querying sources for genetic diseases such as GeneReviews 

(http://www.genetests.org/) and Genes and Disease (http:// 

www.ncbi.nlm.nih.gov/disease/). Then, the data sources 

describing molecular functions of genes (e.g. Gene Ontology, 

http:// www.geneontology.org/) are queried to determine the 

functionality of the identified genes. 

 

In order to access uniformly on data from multiple sources, 

data integration systems based mediators and wrappers [5, 22, 

28] were designed and developed. This architectural approach 

avoids copying all sources on a single site, which is not 

possible when the sources are distributed on a large scale. In 

this context, efficiently process queries present great 

difficulties. The optimizer’s role is to generate, for a given 

SQL query, an optimal (or close to the optimal) execution 

plan from the considered search space. The optimization goal 

is to minimize response time and maximize throughput, while 

minimizing optimization costs. The general problem of the 

query optimization can be expressed as follows [14]: let a 

query q, a space of execution plans E, and a cost function 

cost, find the execution plan calculating q such as the cost(q) 

is minimum. Generally, an optimizer  can  be  decomposed  

into  three elements [14]: a search space corresponding to the 

virtual set of all possible  execution plans, a search strategy 

generating  an  execution plan  close to the  optimal, and a 

cost  model [28, 35] allowing to annotate operators' trees in 

the considered search space.  

 

An execution plan generated by classical distributed query 

optimizer can have poor performance for four main reasons: 

(i) the centralized optimization, (ii) the imprecision of 

estimates, (iii) the unavailability of resources (i.e. data, CPU, 

network bandwidth, and memory). In response to these 

events, dynamic query optimization queries methods [1, 2, 9, 

10, 21, 24, 25, 26, 29] have been developed. These methods 

correct, at run-time, the sub-optimality of execution plans. 

The majority of proposed dynamic query optimization 

methods are centralized. This centralization creates a 

bottleneck and produces a relatively large exchange messages 

on a low speed network and high latency. Thus, it becomes 

important to make autonomous and self-adaptable query 

execution.  

 

In this paper, we present an approach proposes autonomous 

and mobile execution of every relational operator of an  

execution plan, able to react in an autonomous and 

decentralized way with the evolution of the system state (e.g. 

workload of sites, bandwidth) and with the estimation errors. 

Furthermore, it can move from one site to another to continue 

its execution. The site of migration of the agent is chosen, 

among a set of sites determined by the optimizer, according to 

several metrics: the workload of sites, the data unavailability, 

the costs to produce the data, the cost to send the result and 

the cost of the agent migration. 

 

The remainder of paper is organized in the following way: in 

the section 2 we describe state of the art of the main 

optimization dynamic methods. Section 3 proposes an 

execution model based on mobile agents for dynamic query 

optimization. Section 4 presents the experimentation 

environment and the experiments results. Finally, we 

conclude and present the perspectives. 

 

2. RELATED WORKS 
In data base systems, the optimization methods can be 

classified in two types [16]: static and dynamic. A dynamic 

optimization method is characterized by three elements [18] : 

(i) it receives information from its environment, (ii) uses this 

information to determine its behavior, and (iii) it carries out 

the steps (i and ii) iteratively, which enables a dynamic 

optimization method to adapt the drawings to changes in the 

execution environment. 
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The proposed dynamic optimization methods are 

distinguished according to several aspects. For example, they 

correct sub-optimality of the execution plans in various 

manners. Moreover, the correction level of the execution 

plans can be also different from a method to another. These 

methods can be addressed for various environments (single 

processor, parallel and distributed) and to adapt to different 

events. The table 1 presents a set of parameters allows 

differentiating the methods. Some of these parameters were 

quoted or described in several reviews [17, 18, 15, 30]. 

Table 1: comparison of dynamic optimization methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Decision making  
A characteristic of dynamic optimization methods is the 

decision making nature of the modifications of the execution 

plans (decision making column in the Table 1). We 

distinguish two classes: centralized methods [1, 2, 3, 4, 5, 12, 

24] and decentralized dynamic optimization methods [9, 

19,20, 21, 23,27] 

 

A method of optimization known as centralized if it is based 

on a main process which is charged to supervise, control and 

modify the execution plans. This process can be based on 

other modules ensuring the production of necessary 

information for the control and the modifications of an 

execution plan. However, centralization does not allow these 

methods to scale due to: (i) the relatively large number of 

messages on a low speed network and high latency, and (ii) 

the bottleneck of the optimizer because all messages converge 

to a single point. 

 

Decentralization of control and changes in execution plans in 

dynamic optimization methods avoid the bottleneck of 

centralization. For a flexible, dynamic and decentralized 

execution of the queries submitted to the large scale 

distributed mediation systems, [9] proposed an execution 

model based on broker. The broker is the basic unit of the 

execution of a query. The process of execution of a query can 

be compared with a set of brokers. Each broker ensures the 

execution of a sub-query. Thus, an execution plan of a query 

is represented by a tree which nodes are the brokers who are 

charged to execute the sub-queries. The broker supervises the 

execution of his sub-query, it detects the inaccuracies and it 

adapts it according to these inaccuracies. Moreover, it can 

communicate with the user and the other brokers to take into 

account the changes of the execution environment. In the 

methods proposed by [21], the join operators are autonomous, 

decentralized and dynamic in order to deal with the changes in 

the execution environment. This method improves the cost of 

local processing by adapting the use of CPU, I/O and memory 

to changes in the execution environment (e.g. estimation 

error, delays of data arrivals rates). However, the proposed 

methods focus mainly on the resources (CPU, I / O and 

memory) and do not consider network resource. In this 

method, the volume of data transferred determined at 

compile-time remain the same regardless of the estimation 

errors observed during execution. 

 

2.2 Actions correcting the sub-optimality 

of execution plans  
The actions used for correcting the sub-optimal execution 

plans can be classified in four types : (i) replacement,(ii) 

Methods 
Decision 

making 

Actions correcting the 

sub-optimality of 

execution plans 

Causes leading to 

the sub-optimality 

of execution plans 

Modification time 

of the sub-

optimality of 

execution plans 

[3] centralized re-scheduling all intra-operator 

[34] centralized re-scheduling all intra-operator 

[12] centralized re-scheduling estimation errors inter-operator 

[24] centralized re-optimization estimation errors inter-operator 

[5] centralized re-optimization 

delays 

memory 

unavailable 

inter-operator 

[1,2] centralized re-optimization delays inter-operator 

[21,22] 
centralized/ 

decentralized 

re-optimization 

dynamic operator 
all 

inter-operator/ 

intra-operator 

[20] decentralized Dynamic operator 
Delays 

user preferences 
intra-operator 

[19,27] decentralized re-optimization all intra-operator 

[9] decentralized re-optimization all inter-operator 

[23] decentralized re-optimization estimation errors inter-operator 
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scheduling, (iii): re-optimization, and (iv) uses of dynamic 

operators.  A solution to correct the sub-optimal execution 

plans consists of changing the operations sequences of the 

execution plan at runtime [31] proposes strategies of dynamic 

re-scheduling of the operators inter-sites (e.g. joint, union) in 

order to react to the inaccuracies of estimation. The operators 

inter-sites can be executed as soon as two sub-queries 

executed on different sites produced their results. These 

strategies are based on the real execution times of the sub-

queries instead of their estimated costs. They use the partial 

results available at runtime to define the scheduling of the 

executions between the operator inter-sites. In this method, 

processing of the queries is done in two steps [12]: (i) 

Compilation: during this stage, a global query is decomposed 

into local sub-queries. The sub-queries are sent in parallel to 

the sources in order to be executed. (ii) Dynamic scheduling: 

this step defines a dynamic scheduling between the operations 

consuming of the results of sub-queries sent on sites. As soon 

as a sub-query produces its result, a threshold is associated 

with the result. This threshold is used to determine whether 

the result must be consumed immediately to execute a join 

with another available result, or the consumption of this result 

will be delayed while waiting for another one which is 

unavailable in this moment. The threshold associated with a 

result is calculated according to the costs and of the selectivity 

factors of all join connected to this result. Thus, the 

executions of the joins costs are higher than the thresholds 

associated with their operands which are delayed, and the join 

of lower and most selective cost is executed.  

 

The alternative approach, with the operators re-scheduling, is 

the re-optimization [1, 4, 5, 21]of the execution plans. This 

approach can produce for the remainder of the query a sub-

plan completely different from that generated during 

compilation. It can also introduce new operators or change 

scheduling between the operators. Several methods were 

proposed in the context of this approach. Each one of them 

was addressed to a specific environment and was designed to 

deal with the sub-optimality caused by one or more events 

(e.g. errors in estimation). For example, the technique of 

query scrambling [1,2] proposes solutions to deal with the 

data arrival rates. Another method [24] proposes solutions to 

react to the estimation errors.  

 

2.3 Causes leading to the sub-optimality of 

execution plans 
Each dynamic optimization method is able in adapting the 

execution plans in order to react to one or several causes. 

Methods have been proposed to react to each of the following 

causes:  

 

(i) Estimation errors: in several cases, the statistics 

describing the data are unavailable or inaccurate. A 

solution to solve this problem is to collect statistics at 

runtime. The methods which are based on this principle 

re-optimize the remainder of the execution plan as soon 

as these statistics become available.  

(ii) Memory available: the memory allocated to the 

operators of an execution plan can become available 

because of the simultaneous and concurrent executions 

of several queries or any other external event. For that, 

several methods try to adapt to the memory 

unavailability at runtime.  

(iii) Delays in data arrival rates: in a large scale 

environment, the access to the data implies a great 

number of distant data sources, intermediate sites and 

links of communication which are vulnerable to the 

congestion. The congestion can generate unexpected 

delays in data arrivals. Thus, methods propose some 

solutions to adapt to this event.  

(iv) Users Preferences: the users have preferences to 

receive certain partial results as soon as possible. Thus, 

the users can classify the tuples of results according to 

their degree of importance. In this case, methods adapt 

their behaviors in order to accelerate the production of 

the most important tuples of result.  

 

2.4 Modification time of the sub-optimality 

of execution plans 
The modification level of the executions plans can also be 

differing from a method to another. Methods propose to 

modify the execution plans either between executions of two 

operators, or after materialization of the temporary relations. 

What we will call modification on the inter-operator level in 

the remainder of the paper. Others propose to modify the 

execution plans during the execution of a physical operator. 

What we will call modification on the intra-operator level in 

the remainder of the paper. Sometimes two levels of 

modifications are combined in only one method. 

 

To modify the sub-optimal execution plans on the intra-

operator level, two approaches were proposed: the first is 

based on the routing of tuples named Eddy [3], and the second 

is based on the dynamic partitioning of data [22]. Eddy [3] is a 

mechanism of query processing which changes continuously 

the execution schedule of operators in order to adapt to the 

changes of the execution environment. Eddy can be 

considered as a router of tuples positioned between a number 

of data sources and a set of operators. Each operator 

participate in an Eddy must have one or two input queues to 

receive the tuples sent by Eddy and an output queue to return 

the results tuples to Eddy. The tuples received by an Eddy are 

redirected towards the operators in different orders. Thus, the 

scheduling of the operators is encapsulated by the dynamic 

routing of tuples. The method proposed by [22] corrects the 

sub-optimality of execution plans relied on the dynamic data 

partitioning. The execution plan of a query is constantly 

supervised, at runtime, and it can be replaced by a new plan in 

the case where we consider that the current plan is sub-

optimal. The tuples processed by each used plan represent a 

data partitioning which is dynamically given. When an 

execution plan is replaced, a new data partitioning is 

produced. The dynamic optimization methods described in [3, 

22] carry out the modification of the sub-optimal execution 

plans during the execution of an operator (intra-operator). 

Other approaches propose to modify the sub-optimal 

execution plans after the materialization of a temporary 

relation or after the termination of the execution of an 

operator. These modifications vary from operators re-

scheduling of execution plan, re-optimization of the remainder 

of the plan until replacement of the execution plan.  

 

3. EXECUTION MODEL BASED 

MOBILE AGENTS FOR 

DECENTRALIZED DYNAMIC QUERY 

OPTIMIZATION 
In this section, we describe an execution model based on 

mobile agents for decentralized dynamic queries optimization. 

During the query optimization, the optimizer of mediator 

generates an execution plan including : (i) the number of 

mobile agents participating in the evaluation of execution 
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plan, (ii) the operator will be executed by each agent, and (iii)  

the execution site of each agent. In the rest of this section, we 

present the mobile join algorithms [20]. Then, we propose an 

execution model based on mobile agents for queries including 

cooperation policy allowing the agents to run efficiently the 

execution plans. Finally, we describe a migration policy of 

mobiles agents based on two cost models: the mediator cost 

model and the embedded cost model in a mobile agent. 

3.1 Mobile join algorithms 
In a distributed environment an interesting aspect in the query 

optimization is the selection of execution sites of the 

operators. The unary operators (e.g. selection, projection) are 

placed on the sites of their operands. However, for the binary 

operators (e.g. join, union), the optimizer chooses a site in 

order to execute these operators. Another interesting aspect is 

the execution of joining two operands residing on different 

sites. In literature, there are two approaches to execute the 

joining of two operands residing on different sites: (i) the 

direct join, and (ii) the join based semi-join [7]. 

In order to deal with the unexpected changes in large scale 

distributed environment, we propose to use the mobile agent 

[16, 25] for extension of join algorithms which is called 

mobile join for two reasons: (i) they are executed by mobile 

agents, and (ii) they can change their execution site locations. 

This extension allows the join to change their execution site. 

The decision and change control of the execution site are 

made in a decentralized and autonomous manner. It is no 

longer the optimizer chooses the join execution site, but the 

join itself chooses its execution site. Indeed, the mobile agent 

executing a join adapts to changes in characteristics of the 

execution environment (e.g. network bandwidth, available 

memory, estimations errors). To simplify the rest of this 

article we present briefly the simple mobile hash join 

algorithm.  In the simple hash join algorithm, during the 

building of the hash table, the characteristics of R1 (e.g. size, 

values distribution of every attribute) can be calculated 

precisely. So, from the precise statistics of R1, the statistics of 

R2 estimated at the optimization, the statistics revised of T 

from R1 and R2, the unavailability of R2 and the state of the 

system, it is possible to make a decision on the localization of 

the probe step and eventually move this step to another site. 

3.2 Mobile query 
In this sub-section, we propose an execution model based on 

mobile agents for queries in distributed mediations systems. 

In this model, each operator execution plan is executed 

through a mobile agent. During the generation of execution 

plan, the agents are associated with the operators of the 

execution plan and also the initial execution site locations are 

determined. These agents can be placed either on the 

mediators or the wrappers. Agents placed on mediators can 

migrate at run-time from site to another. Instead, the agents 

placed on wrappers are static and they finish their executions 

on the wrappers selected during the optimization step. The 

association between operators and mobile agents is illustrated 

in Figure 1. 

 

Join 

R1 

Result 

Join 

Join 

R2 R3 R4 

Generation of 

execution plans 
Mobile 

join 

Mobile 

join 
Mobile 

join 

Result 

Scan of 

R1 

Scan of 

R2 

Scan of 

R3 

Scan of 

R4 

Fig. 1 : mobile agents associated with an execution plan 

3.2.1 Cooperation policy 
We recall that a mobile agent executing a mobile join can 

change its execution site in order to improve its response time. 

Thus, this agent can migrate its current execution site to the 

new chosen one. This migration from one site to another is 

taken autonomously and decentralized.  The decision to 

migrate for an agent cannot be made without taking into 

account the decisions of the other communicating agents. 

Indeed, a global optimum cannot be reached by a sum of local 

optimum. For example (Figure 2), let us consider two joins J1: 

T = Join(R1, R2) and J2: res=Join(T, R3) processing 

respectively on the sites S1 and S2. Now, if J1 decides to 

migrate on S2 in order to minimize the communications 

between S1 and S2. Also J2 decides to migrate on S1 for the 

same reasons. We will have, thus, a lack of cooperation 

between J1 and J2. Another example of cooperation concerns 

the propagation of the estimation corrections. Indeed, the join 

operator J1, establishing of an error on R1 after building the 

hash table, can propagate the error correction to J2. This 

propagation will lead, eventually, J2 to migrate on another 

site. In the rest of the paper, we will name the various 

communicating agents with a join J noted AJ, in the following 

way: 

− AR1 and AR2 are the agents producing R1 and R2, 

− AT is the agent consuming the join result. 

 

 

 

     

            

 

 

 

 

J1 

J2 

 

 

     

           

 

 

 

 

            

J1 

J2 

 Migration of AJ1 

 for reducing the  

 communications  

 with AJ2 

 Migration of AJ2 

 for reducing the  

 communications  

 with AJ1 

Site 1 Site 2 

 Fig. 2 : Example of not cooperation between two agents 

We have seen above, the need to make a cooperation policies 

between agents involved in the evaluation of a query. The 

agent needs to make a decision about his migration are three 

fold: (i) the execution site about other agents communicating 

with him, (ii) the estimate data volume, and (iii) the resources 

availability (e.g. CPU, network bandwidth). In this sub-

section, we focus on cooperation between agents from the 

same query. Thus we focus on the knowledge of the execution 

sites of agents, on the estimation of the data volume and on 

the data unavailability. 

In order to design an efficient cooperation methods [27] and 

to study the impact of the number of exchanged messages 

between the agents. The proposed cooperation policy [27] 
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consists in the cooperation of the agents to know the 

execution sites of the agents which communicate between 

them. For an agent AJ processing a hash join (R1, R2), the 

decision to migrate is made after the Build step and before the 

Probe step. Thus, after its decision, the only communicating 

agents with it will be AR2 and AT. To minimize the 

communications between the agents during its decision phase, 

this one is taken hierarchically. The agent AJ will make its 

decision to migrate after AT made its decision. Thus, when AJ 

makes its decision, it knows the site of AT and the site of AR2 

since AR2 cannot migrate as long as AJ did not make its 

decision. The advantage of this method is that it also avoids 

the duplication of the data messages. Indeed, AJ knows the 

AT execution site. Thus AJ can sent its data directly to AT 

without passing by an intermediary. We do not need to set up 

strategies such as the forwarding pointer or the use of a 

central server which duplicate part of the data messages. 

Another factor strongly influencing the response is the 

precision of the data volume estimations. In addition to the 

communication of the execution sites of the agents, we 

propagate the correction of the estimation errors. After the 

hash table building, the R1 characteristics are known more 

precisely. If AR2 is able to improve the R2 estimation and to 

communicate this result to AJ, the estimation of the data 

volume processed by AJ could be only more precise. 

Moreover, AJ can communicate to AT the new estimated 

characteristics of T. Hence, the decisions made by AJ and AT 

will be better. The propagation of estimation corrections is 

processed in the opposite direction of the site communication. 

3.2.2 Migration policy 
Let us remind that a mobile agent can move from a mediator 

to another. The migration site is chosen by the mobile agent 

according to several metrics. This metrics are computed by 

the mediator where the mobile agent builds its hash table. The 

problem here is that this mediator does not have all necessary 

information to compute the metrics of this mobile agent (e.g. 

operands profile, the production costs of operands). In order 

to assure the autonomy of the mobile agent, this one needs to 

provide for the mediator whe : (i) the profile of the second 

operand (R2), (ii) The sites where it can move, and (iii) the 

parameters involved in the formula estimating the production 

costs of the second operand (R2). These components are 

necessary to compute the metrics of the agent and they 

constitute the agent cost model.  In this section we describe 

the various parts of the cost model intervening in the 

estimation of the cost of the execution plans. We distinguish 

between two cost models involved in the estimation of 

executions plans costs: the part residing in the mediator which 

is called mediator [28] cost model and the part embedded in 

the agent which is called the agent cost model [19] 

4. PERFORMANCE EVALUATION 
This section compares the results obtained with the execution 

model based on mobile agents and with a classical execution. 

We study the behavior of proposed model and the classical 

according to the tree structure of the execution plan generated 

by an optimizer. In the following sub-sections, we describe 

the experimentation environment, the query experimentation 

and the experiments. 

4.1 Experimentation environment 
We realized our experiments in distributed environment. It is 

constituted of five workstations (HP) interconnected by 

Internet. The all workstations are located in Lebanon at 

different cities.  These workstations will be called respectively 

Tripoli, Beirut, Saida, Baalbeck, and Zahle. To handle our 

experiments, we installed on every workstation a platform of 

mobile agents [13] including the mobile hash join algorithm, 

the cooperation policy and the migration policy. In this one, 

every mobile agent runs on a Virtual Machine Java (JDK 

1.6.2).  The response times are measured by real executions. 

These are carried out between sites interconnected via a 

network. Our experiments are handled in multi-user 

environments, where several users can start up applications. In 

these environments, it is difficult to reproduce an experiment 

in identical conditions. Indeed, the workload of an execution 

site varies from moments to another (available memory, 

number of running processes, etc.) and the amount of the data 

transferred through the network also varies. 

The costs associated with the execution of these algorithms 

are deduced by calibration. The migration cost of an agent 

given in the table Tab.2 includes the serialization cost, the 

transfer cost and the de-serialization cost.  Of course, when 

the agent migrates with its data, it must be added the 

serialization cost, the transfer and the de-serialization of the 

data which is proportional to its size. 

 Table 2: environment parameters  

 

4.2 Experimentation query 
To compare quantitatively the various methods, we consider 

that four relations R1, R2, R3 and R4 are respectively on the 

sites: Tripoli, Beirut, Saida and Baalbeck. The relation size 

estimated by the optimizer are respectively 15 000, 30 000, 30 

000 and 37 500 tuples. The join selectivity factor Ri ∞ Rj is 

1.5/Max (||Ri||, ||Rj||) where ||Ri|| indicates the Ri number of 

tuples [6, 8]. The query Q = R1 ∞ R2 ∞ R3 ∞ R4 is expressed 

on a Zahle site. This query is constituted of tree joins called 

J1, J2 and J3. Every join is executed by a mobile agent. The 

migration space of the cost model embedded in each agent is 

Networks parameters 

                                                                                                                                                   Banwidth (KB/s)              Time to send a page(ms) 

[Tripoli, Beirut, Saida, Baalbeck, Zahle  Tripoli, Beirut, Saida, Baalbeck, Zahle]            [104.3-112.7]     [727.89-749.52] 

 

Mobile agent parameters 

                                                                                                                                                      Agent migration(ms) 

[Tripoli, Beirut, Saida, Baalbeck, Zahle  Tripoli, Beirut, Saida, Baalbeck, Zahle]                                                   [28457- 29713] 

 

Workstations parameters 

                                   Time to write a page (ms)     Time to read a page (ms) 

[Tripoli, Beirut, Saida, Baalbeck, Zahle]                               [0.71-0.79]                                      [0.58-0.65] 
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constituted of the all sites Tripoli, Beirut, Saida, Baalbeck, 

and Zahle. 

4.3 Experimentation results 
In this sub-section, we describe the results of the experiments 

handled for the execution model based on mobile agents that 

we will call mobile execution and the traditional method that 

we will call classical execution applied to a left deep tree, 

right deep tree and bushy tree. Here, we present and discuses 

the behavior of the proposed model according to the variation 

between the parameters estimated at compile-time (the 

estimated number of tuples of R1 noted ||R1es||) and that 

computed by agent at runtime (the computed number of tuples 

of R1 noted ||R1comp). 

4.3.1 Results applied to left deep tree 
In the optimal execution plan left deep tree of the query q, the 

joins J1 : T1= R1 ∞ R2, J2 : T2= T1 ∞ R3 and J3 : Res = T2∞ 

R4 are respectively on the site Tripoli, Beirut and Zahle.  

 

Fig. 3 :Left deep tree performance by decreasing ||R1|| 

Figure 3 shows the response time of mobile execution and the 

classical execution by decreasing the R1 number of tuples. 

We observe that the response times of mobile execution are 

slightly higher than classical execution (about 4%) when the 

error on ||R1|| is between 0% and 30%. This difference is 

mainly due to the mobility overhead. This overhead takes into 

account the agent serialization, the agent migration and the 

agent start-up on its new site. From -30%, mobile execution 

obtain better performance (between 10% and 70%) by 

modifying the execution plan generated by the optimizer. We 

obtain the best performance by moving joins 2 and 3 before 

their execution. 

 

Fig. 4 :Left deep tree performance by increasing ||R1|| 

The curves of Figure 4 shows the response time of each 

method by increasing the R1 number of tuples. We note that 

the performance of mobile execution is even worse than those 

of classical execution (between 3% and 4%) when the error on 

||R1|| is between 0% and 30%. On the other hand, when the 

error is higher than 30%, mobile execution obtains better 

performance (between 3% and 9%) by moving j2 on Zahle 

and by moving the Probe of the j1 on Zahle. 

4.3.2 Results applied to right deep tree 
In the optimal execution plan left deep tree of the query q, the 

joins J1 : T1= R1 ∞ R2, J2 : T2= R3 ∞ T1 and J3 : Res = R4 

∞ T2 are respectively on the site Tripoli, Saida and Baalbeck.  

 

Fig. 5 : Right deep tree performance by decreasing ||R1|| 

Figure 4 shows the response time of mobile execution and the 

classical execution by decreasing the R1 number of tuples. 

We observe that the response times of mobile execution have 

a slightly higher response time between 0% and -20%. From -

30%, they improve the performance compared to standard 

(between 10% and 75%). same behavior. Indeed, on this tree, 

mobile execution cannot anticipate the migration of a join 

since all the Build steps of the joins are started at the same 

time. 

 

Fig. 6 : Right deep tree performance by increasing ||R1|| 

The curves of Figure 6 shows the response time of each 

method by increasing the R1 number of tuples. We notice that 

between 0% and 20% , mobile execution have a response time 

slightly higher than standard approximately 4%. From 30 % 

mobile executions have a better response time by moving all 

the join on Zahle  after the Build step 

4.3.3 Results applied to bushy deep tree 
In the optimal execution plan left deep tree of the query q, the 

joins J1 : T1= R1 ∞ R2, J2 : T2= R3 ∞ R4 and J3 : Res = T1∞ 

T2 are respectively on the site Tripoli, Beirut and Zahle.  
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Fig. 7: Bushy deep tree performance by decreasing ||R1|| 

The curves of Figure 7 show response time of each method by 

decreasing the number of tuples of R1. We observe that 

between 0% and -30%, mobile execution have a higher 

response time (approximately 4%) compared to classical 

execution. In this bushy deep tree, an estimation error on ||R1|| 

has impact only on J1 and J3. Moreover J2 (i.e. R3 ∞ R4 ) is 

the most significant join of this plan. In this case, the 

migration of the J1 and J3 following an error on R1 have little 

impact on the performance of the bushy execution. Thus, the 

performance improvements of mobile execution are relatively 

weak. 

 

Fig. 8: Bushy deep tree performance by increasing ||R1|| 

We observe the same behavior between mobile execution and 

the classical execution when the number of tuples of R1 

increases (Figure 8). From 90% of error on R1, the J1 

migration starts to have really an impact over the response 

time because the join J1 is close the data volume processed by 

the join J2. 

5. Conclusions and perspectives 
In a large-scale mediation system, centralized dynamic 

optimization methods cannot be valid due to the centralization 

of the control and the modifications of execution plans. In this 

paper, we proposed an execution model based on mobile 

agents and cost model approaches for large scale distributed 

query optimization. Also, we show mobile agents who can 

react dynamically to the estimation errors of the cost models 

and to the data unavailability. In this context, to guarantee the 

autonomy of an agent we propose a cooperation and migration 

policies for the mobile agents executing a relational operator. 

The proposed cooperation policy consists in the cooperation 

of the agents to know the execution sites of the agents which 

communicate between them and the propagation of correction 

estimations errors.  The migration policy of an agent is based 

on embedded cost model in the agent which must be as small 

as possible in order to minimize the agent migration cost on a 

large scale network.  

 

In the next future we will develop a decision policy  

considering, in an incremental way, the data availability, the 

workload of the sites, memory allocation on the sites, as well 

as the network bandwidth heterogeneity. This new policy will 

have to minimize to the maximum the number of messages 

exchanged between mobiles agents. Also, we plan to define 

methods which determine the migration space of the agents 

participating in execution of a query. These methods must 

take into account the migration spaces of the other agents 

participating in the execution of a query and the tree structure 

of execution plan of the query. Finally we will extend our 

performance evaluation in order to study the behaviors of the 

agents on the level of the complex queries.  
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