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ABSTRACT 

Predicting the Software reliability is a pertinent issue and it  is 

a major concern of software developers and engineers in 

changing environment considerations. Software reliability 

models are developed to estimate the probability of failure 

free operation of the software for a long time. Many Software 

Reliability Growth Models (SRGM) were developed to give 

the latent number of faults in the software product. However 

none of these models performing to the expectations of the 

developers of the software. In this paper, A research is made 

using artificial neural network models to monitor the 

performance of the software that leads to predict the software 

reliability. The MLP model outperforms SVR model, and 

based on the results, these models can be considered to be a 

reasonable alternative for software quality prediction. 

Keywords 

SoftwareQuality, Software Reliability, MLP Neural Network, 

Support Vector Regression,   Back-propagation algorithm.  

1. INTRODUCTION 

Quality of software is the key concern in industry and 

extensively studied through software reliability [1]. Software 

reliability is defined as the probability of failure free operation 

of the functionality of the software for long time under the 

designed environmental conditions and it is measured in terms 

of failure of the software. A number of software reliability 

models developed for the quantification of software quality 

prediction. These models can be grouped into Software 

Reliability Growth Models (SRGM’s) and Data-Driven 

models. 

SRGMs use probability models to describe the failure process 

under a set of assumptions to provide mathematical ease and 

these assumptions limits the models [2]. Data-Driven models 

use time series analysis including autoregressive methods [3, 

4, 5, and 6]. These models are developed from past software 

failure history data. These models help to identify error prone 

programs and make the developers to focus on maintenance 

[7, 8]. 

In this paper an attempt is made to investigate the 

performance of two different connectionist paradigms given 

below for modeling the prediction of software reliability. We 

try to compare the performance of the two individual neural 

network models, one is an Multi Layer Perceptron (MLP) 

Neural Network with back-propagation algorithm and the 

other is a variant of a support vector machine called Support 

Vector Regression (SVR) model. These two models were 

employed on a software reliability data set which is obtained 

from project-5 of Bell-Telephone laboratories.  

2 Methodology 

This section presents the detailed theoretical descriptions of 

the algorithms used for proposing the models for Software 

Reliability Prediction. 

2.1 Multi Linear Perceptron (MLP) The MLP network 

is constructed with back propagation algorithm with 

multiple hidden layers. The summary of the operation of 

the MLP with back propagation algorithm is given 

below[9]. The operation of the typical MLP with back 

propagation algorithm is as follows. 

The operation of the typical back propagation network occurs 

as follows.  

1. After presenting input data to the input layer , 

information propagates through the network to the 

output layer (forward propagation). During this time 

input and output states for each neuron will be set.12  

                  xj
[s] = f(Ij

[s]) =f( ∑ (wij
[s] * xi

[s-1])) 

             Where xj
[s]  denotes the current input state of the 

jth neuron in the current [s] layer. Ij
[s] Denotes the 

weighted sum of inputs to the jth neuron in the current 

layer[s].f is conventionally the sigmoid function. wij
[s]  

denotes the connection weight between the ith neuron in 

the current layer [s] and jth neuron in the previous layer 

[s-1] 

2. Global error is generated based on the summed 

difference of required and calculated output values 

of each neuron in the output layer. The Normalized 

System error E (glob) is given by the equation 

 E(glob)= 0.5 *  ( rk - ok )
2 and (rk - ok ) denotes the 

difference of required and calculated output values. 

3 Global error is back propagated through the network 

to calculate local error values and delta weights for 

each neuron. Delta weights are modified according 

to the delta rule that strictly controls the continuous 

decrease of synaptic strength of those neurons that 

are mainly responsible for the global error. In this 

manner the regular decrease of global error can be 

assured[9]. 

       Ej
[s] = xj

[s] * ( 1.0 – xj
[s]) * ∑ ( ek

[s+1] * wkj
[s+1] ) 

        Where Ej
[s] is the scaled local error of the jth neuron 

in the current layer [s] layer. 

             ∆wji
[s] = lcoef * ej

[s] * xi
[s-1]   

Where ∆wji
[s] denotes the delta weight of the connection 

between the current neuron and the joining neuron. Here, 

lcoef denotes the learning coefficient/ learning constant of the 
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training parameters.12 Synaptic weights are updated by adding 

delta weights to the current weights. Neural network simulate 

neurotransmission by changing the strength of inter neural 

connections. Positive synaptic weights provide amplified 

neural signal and stronger effect to the joining neuron . No 

modification in the information flow is modeled by zero 

weight. Negative weights mean inhibition. The learning 

process of a neural network is similar to the learning function 

of the human brain. The learning takes place by providing 

data for both inputs and outputs. The calculated output value 

is compared to the required value that is also given in the 

training set. Depending on the difference between the required 

and the calculated output values, the network adjusts the 

synaptic weights whose distribution constitutes the basis of 

the problem-solving algorithm. The network processes the 

elements of the training set in cyclical order until the 

difference becomes lower than a given value. In the second 

part of the training process,   the system is tested. The test set 

is fundamentally similar to the training set, but it contains 

different data. If testing fails network structure or the learning 

parameters are then modified. 

2.2 Support Vector Regression 

The Support Vector Machines have found applications in the 

domain of function approximation and regression [10][11]. 

Although its initial saplings have been found from optical 

character recognition, it was soon applied to object 

recognition tasks [12]. Later on, these machines were applied 

to regression and time series prediction tasks 

[10][13][14][15]. There are many industrial applications using 

support vector regression method. It is a constructive learning 

procedure based on the statistical learning theory (Vapnik, 

1995) [16]. It is an inductive machine learning technique 

based on the structural risk minimization principle that aims at 

minimizing the true error. These type of machines performs 

classification by constructing an N-dimensional hyper plane 

that optimally separates the data into two categories. The 

prime objective of SVM is to find an optimal separating 

hyper-plane that correctly classifies data points as much as 

possible.SVM’s also separates the points of two classes as far 

as possible  by minimizing the risk of misclassifying the 

training samples and unseen test  samples. In a typical 

regression problem, we are given a training set {xi , yi }i=1
N  

  Rd X R where xi and yi are the input and output variable 

vector of the ith pair. Support vector regression (Scholkopf & 

Smola, 2002) is based on a kernel method that performs 

nonlinear regression based on the kernel trick. Essentially, 

each input xi є Rd is mapped implicitly via a nonlinear feature 

map Φ (.) to some kernel-induced feature space F where linear 

regression is performed. 

In SVR (Smola & Schölkopf, 2004; Vapnik, 1995), the goal is 

to get a function f (X) that has at most є deviation from the 

actually obtained targets yi for all the training data[16]. 

Deviation larger than є is not accepted.  In the case of linear 

functions f taking the form  

bxwxf i

n

i

i 
1

)(  with w    R , b   R----(1) 

one way to ensure minimum є deviation is to minimize the 

norm  

i.e.,             

i

n

i

T

i www 



1

2
 

The problem can be written as a Convex optimization 
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The assumption in (2) is that such a function actually exists 

that approximates all pairs (xi,yi) with   precision. In the case 

where constraints are not feasible, slack variables ξi , ξi* were 

introduced. This case is called soft margin formulation 

(Bennett & Mangasarian, 1992) and is described by the 

following problem; 
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The constant C > 0 determines the amount up to which 

deviations larger than e are tolerated. This is called є-

insensitive loss function   and is described by  
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It is observed that in most cases the optimization problem (3) 

can be solved more easily in its dual formulation [6]. Hence, 

Lagrange multipliers are used to get the dual formulation as 

described in Fletcher (1989), which is as follows:[16] 
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Here, L is the Lagrangian and αi, αi*,ηi,,ηi* are lagrange 

multipliers. Hence the dual variables in (5) have to satisfy 

positivity constraints i.e.,  
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                 αi,αi*,ηi,,ηi*≥0   (6)                                                                                                                                        

According to the saddle point condition the partial derivatives 

of L with respect to primal variables (w,b,ξi ,ξi
*) have to 

vanish for optimality. Therefore, we get  
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Substituting (7) to (10) into (5), yields the dual optimization 

problem; 
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To make the SV algorithm nonlinear all training patterns xi 

are mapped  :   into some feature space   as 

described in (Aizerman, Braverman, & Rozonoer, 1964; 

Nilsson, 1965) and then using the standard SV regression a 

linear hyperplane is constructed in the feature space. Using 

the trick of kernel functions (Cortes & Vapnik, 1995) 

following QP problem is formulated. 
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Where  K(.,.) is a kernel function. ---------(12)                                                      

Usually more than one kernel used in the literature to map the 

input space into feature space (Cristianini & Shawe-Taylor, 

2000). The question is to find a kernel functions that provides 

good generalization for a particular problem. One has to try 

more than one kernel function for a particular problem in 

order to resolve this issue. Because of the approximate 

mapping of input space to higher dimensional feature space 

using different kernel functions, support vectors extracted are 

different and the number of support vectors varies as well for 

each kernel. A Gaussian kernel has been used in this research. 

3.Results 

In this research, Software Reliability Prediction models are 

constructed using MLP with back propagation and  support 

vector regression algorithms. The dataset consists of two 

variables namely failure interval length and day of failure. 

Failure Interval Length and bias have been taken as inputs and 

day of failure has been taken as output for both the networks. 

Data consisting of 662 samples were used for training and 

data with 123 samples were used for testing purposes. We 

compare the performance of both of the networks for 

estimating the reliability of the software by considering the 

Normalized System Error of both the networks. There will be 

an interactive session for MLP network in which the user has 

to provide values for number of inputs like selecting learning 

or output generation, choosing the file from where the 

network gets it’s data, number of inputs, number of outputs, 

number of samples to be considered, learning rate, number of 

hidden layers, number of units in the hidden layer, momentum 

rate, maximum total error, maximum individual error and 

finally the number of iterations. After providing all these 

values to the network, the network generates an error file 

showing the weights of the synaptic connections between 

individual layers along with the normalized system error of all 

the input samples. All the results have been generated based 

on the Normalized System Error of the MLP neural network. 

The Normalized System Error values along with the values of 

the other network parameter have been given in the table 3.1 

below for training the network. In this research, A single 

hidden layer is considered for the purpose. Different 

Normalized System Error values have been generated for 

training the network by changing the number of units in the 

hidden layer. Following abbreviations have been considered 

for network parameters. NI: Number of Inputs, NOUT: 

Number of Outputs, NIS: Number of Input Samples, MR: 

Momentum Rate, MTE: Maximum Total Error, MIE: 

Maximum Individual Error, NIT: Number of Iterations, NHL: 

Number of Hidden layer, NUHL: Number of Units in the 

Hidden Layer, NSE: Normalized System Error. 
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Table3.1: The values of the network parameters during 

training 

N
I 

N
O

U

T 

NI
S 

M
R 

L
R 

MTE MI
E 

NI
T 

N
H

L 

N
U

H

L 

NSE 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 1 0.001745 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 2 0.001218 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 3 0.000988 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 4 0.000852 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 5 0.000661 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 6 0.001014 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 7 0.000668 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 8 0.000517 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 9 0.000950 

2 1 66

2 

0.

9 

0.

5 

0.01 0.0

01 

50

0 

1 1

0 

0.000928 

 

From the table 3.1, it is observed that, as the number of units 

in the hidden layer increases from one to five keeping the 

other parameters fixed, the Normalized System Error 

gradually decreased and there is a slight increase in the NSE 

when the number of units is six. when the number of number 

units in the hidden layer(NUHL)  is eight keeping other 

parameters fixed, the Normalized System Error  is 0.000517. 

This error has been considered as the net error generated by 

the network during training. Given below fig. 3.1 is the graph 

between numbers of units in the hidden layer versus 

Normalized System Error during training. 

 

Fig3.1: The relationship between number of units in 

hidden layer and Normalized System Error 

Table3.2: The values of the network parameters during 

testing 

N

I 

N

O

U

T 

NI

S 

M

R 

L

R 

MT

E 

MIE NI

T 

N

H

L 

N

U 

H

L 

NSE 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 1 0.01672

0 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 2 0.00567 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 3 0.00788

5 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 4 0.00559

9 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 5 0.00420

8 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 6 0.00389

6 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 7 0.00449

5 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 8 0.00410

9 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 9 0.00541

8 

2 1 12

3 

0.

9 

0.

5 

0.01 0.00

1 

50

0 

1 1

0 

0.00394

9 

 

From the table 3.2, it can be known that, when the number of 

number units in the hidden layer (NUHL)  is six, keeping 

other parameters fixed, the Normalized System Error  is 

0.003896. This error has been considered as the net error 

generated by the network during testing. Given below fig 3.2 

is the graph between numbers of units in the hidden layer 

versus Normalized System Error (NSE) during training.  

 

Fig 3.2: The graph between numbers of units in the hidden 

layer versus Normalized System Error (NSE) during 

training. 

The following table gives the performance of both of the 

networks (MLP VS SVR) with respect to their NSE values 

during training and testing. 
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Table 3.3: The values of the network parameters during 

training and testing( For both of the networks) 

Training 

NI NOUT NIS NSE for 

MLP 

NSE for 

SVR 

2 1 662 0.000517 0.0444 

Testing 

NI NOUT NIS NSE for 

MLP 

NSE for 

SVR 

2 1 123 0.003896 0.0738 

Experimental results show that MLP with back propagation 

algorithm performs much better than support vector 

regression model given the predefined set of variables as input 

to the above models. The MLP network outperforms SVR by 

98.87% during training and 94.85% in testing phases of the 

networks which is clearly evident from the table 3.3. 

Discussion and Conclusion: 

The multi-layer perceptron neural network has been trained by 

back-propagation algorithm to predict the reliability of 

software along with the support vector regression model. It is 

essential to predict the reliability of software ,as more 

software’s that are being developed are error prone. Although, 

there are different models have been proposed for predicting 

the reliability of the software, the technology of neural 

networks will definitely be an added advantage given the 

larger the data set. The development of our model is a 

practical tool to predict the reliability of software given the 

predefined variables as input to the networks. As more data 

are generated, Both the systems improve in precision and can 

be widely employed in predicting the reliability of software in 

different environments. In Summary, we developed two 

network models, one is an MLP with back-propagation 

algorithm and the other is a Support Vector regression model 

to predict the reliability of software using the available 

information. The outcomes of both the models are consistent 

with the knowledge of the domain expert. Thus in this 

proposed research, the results support the reliability of the 

software by both of the networks and also gives an importance 

of understanding the impact of neural networks for finding the 

reliability of software. 
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