
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

44

Software Reliability Prediction using Neural Networks

V.Ramakrishna

KL University
Guntur, AP

India

MR Narasinga Rao
KL University
Guntur, AP

India

TM Padmaja
KL University
Guntur, AP

India

ABSTRACT

Predicting the Software reliability is a pertinent issue and it is

a major concern of software developers and engineers in

changing environment considerations. Software reliability

models are developed to estimate the probability of failure

free operation of the software for a long time. Many Software

Reliability Growth Models (SRGM) were developed to give

the latent number of faults in the software product. However

none of these models performing to the expectations of the

developers of the software. In this paper, A research is made

using artificial neural network models to monitor the

performance of the software that leads to predict the software

reliability. The MLP model outperforms SVR model, and

based on the results, these models can be considered to be a

reasonable alternative for software quality prediction.

Keywords

SoftwareQuality, Software Reliability, MLP Neural Network,

Support Vector Regression, Back-propagation algorithm.

1. INTRODUCTION

Quality of software is the key concern in industry and

extensively studied through software reliability [1]. Software

reliability is defined as the probability of failure free operation

of the functionality of the software for long time under the

designed environmental conditions and it is measured in terms

of failure of the software. A number of software reliability

models developed for the quantification of software quality

prediction. These models can be grouped into Software

Reliability Growth Models (SRGM’s) and Data-Driven

models.

SRGMs use probability models to describe the failure process

under a set of assumptions to provide mathematical ease and

these assumptions limits the models [2]. Data-Driven models

use time series analysis including autoregressive methods [3,

4, 5, and 6]. These models are developed from past software

failure history data. These models help to identify error prone

programs and make the developers to focus on maintenance

[7, 8].

In this paper an attempt is made to investigate the

performance of two different connectionist paradigms given

below for modeling the prediction of software reliability. We

try to compare the performance of the two individual neural

network models, one is an Multi Layer Perceptron (MLP)

Neural Network with back-propagation algorithm and the

other is a variant of a support vector machine called Support

Vector Regression (SVR) model. These two models were

employed on a software reliability data set which is obtained

from project-5 of Bell-Telephone laboratories.

2 Methodology

This section presents the detailed theoretical descriptions of

the algorithms used for proposing the models for Software

Reliability Prediction.

2.1 Multi Linear Perceptron (MLP) The MLP network

is constructed with back propagation algorithm with

multiple hidden layers. The summary of the operation of

the MLP with back propagation algorithm is given

below[9]. The operation of the typical MLP with back

propagation algorithm is as follows.

The operation of the typical back propagation network occurs

as follows.

1. After presenting input data to the input layer ,

information propagates through the network to the

output layer (forward propagation). During this time

input and output states for each neuron will be set.12

 xj
[s] = f(Ij

[s]) =f(∑ (wij
[s] * xi

[s-1]))

 Where xj
[s] denotes the current input state of the

jth neuron in the current [s] layer. Ij
[s] Denotes the

weighted sum of inputs to the jth neuron in the current

layer[s].f is conventionally the sigmoid function. wij
[s]

denotes the connection weight between the ith neuron in

the current layer [s] and jth neuron in the previous layer

[s-1]

2. Global error is generated based on the summed

difference of required and calculated output values

of each neuron in the output layer. The Normalized

System error E (glob) is given by the equation

 E(glob)= 0.5 *  (rk - ok)
2 and (rk - ok) denotes the

difference of required and calculated output values.

3 Global error is back propagated through the network

to calculate local error values and delta weights for

each neuron. Delta weights are modified according

to the delta rule that strictly controls the continuous

decrease of synaptic strength of those neurons that

are mainly responsible for the global error. In this

manner the regular decrease of global error can be

assured[9].

 Ej
[s] = xj

[s] * (1.0 – xj
[s]) * ∑ (ek

[s+1] * wkj
[s+1])

 Where Ej
[s] is the scaled local error of the jth neuron

in the current layer [s] layer.

 ∆wji
[s] = lcoef * ej

[s] * xi
[s-1]

Where ∆wji
[s] denotes the delta weight of the connection

between the current neuron and the joining neuron. Here,

lcoef denotes the learning coefficient/ learning constant of the

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

45

training parameters.12 Synaptic weights are updated by adding

delta weights to the current weights. Neural network simulate

neurotransmission by changing the strength of inter neural

connections. Positive synaptic weights provide amplified

neural signal and stronger effect to the joining neuron . No

modification in the information flow is modeled by zero

weight. Negative weights mean inhibition. The learning

process of a neural network is similar to the learning function

of the human brain. The learning takes place by providing

data for both inputs and outputs. The calculated output value

is compared to the required value that is also given in the

training set. Depending on the difference between the required

and the calculated output values, the network adjusts the

synaptic weights whose distribution constitutes the basis of

the problem-solving algorithm. The network processes the

elements of the training set in cyclical order until the

difference becomes lower than a given value. In the second

part of the training process, the system is tested. The test set

is fundamentally similar to the training set, but it contains

different data. If testing fails network structure or the learning

parameters are then modified.

2.2 Support Vector Regression

The Support Vector Machines have found applications in the

domain of function approximation and regression [10][11].

Although its initial saplings have been found from optical

character recognition, it was soon applied to object

recognition tasks [12]. Later on, these machines were applied

to regression and time series prediction tasks

[10][13][14][15]. There are many industrial applications using

support vector regression method. It is a constructive learning

procedure based on the statistical learning theory (Vapnik,

1995) [16]. It is an inductive machine learning technique

based on the structural risk minimization principle that aims at

minimizing the true error. These type of machines performs

classification by constructing an N-dimensional hyper plane

that optimally separates the data into two categories. The

prime objective of SVM is to find an optimal separating

hyper-plane that correctly classifies data points as much as

possible.SVM’s also separates the points of two classes as far

as possible by minimizing the risk of misclassifying the

training samples and unseen test samples. In a typical

regression problem, we are given a training set {xi , yi }i=1
N

 Rd X R where xi and yi are the input and output variable

vector of the ith pair. Support vector regression (Scholkopf &

Smola, 2002) is based on a kernel method that performs

nonlinear regression based on the kernel trick. Essentially,

each input xi є Rd is mapped implicitly via a nonlinear feature

map Φ (.) to some kernel-induced feature space F where linear

regression is performed.

In SVR (Smola & Schölkopf, 2004; Vapnik, 1995), the goal is

to get a function f (X) that has at most є deviation from the

actually obtained targets yi for all the training data[16].

Deviation larger than є is not accepted. In the case of linear

functions f taking the form

bxwxf i

n

i

i 
1

)(with w R , b R----(1)

one way to ensure minimum є deviation is to minimize the

norm

i.e.,

i

n

i

T

i www 



1

2

The problem can be written as a Convex optimization

problem

 Minimize

2

w

 Subject to

)2(

1

1

























ii

n

i

i

n

i

iii

ybxw

bxwy

The assumption in (2) is that such a function actually exists

that approximates all pairs (xi,yi) with  precision. In the case

where constraints are not feasible, slack variables ξi , ξi* were

introduced. This case is called soft margin formulation

(Bennett & Mangasarian, 1992) and is described by the

following problem;

Minimize 
2

2

1
w C)(

*

1

i

l

i

i 




Subject to

)3(0,
*

*

1

1


























ii

iii

n

i

i

i

n

i

iii

where

ybxw

bxwy







The constant C > 0 determines the amount up to which

deviations larger than e are tolerated. This is called є-

insensitive loss function  and is described by

)4(
,

,0











otherwise

if





It is observed that in most cases the optimization problem (3)

can be solved more easily in its dual formulation [6]. Hence,

Lagrange multipliers are used to get the dual formulation as

described in Fletcher (1989), which is as follows:[16]

)5()()()

()(*)(
2

1

**

11

*

*

11

1

**

11

2

iii

l

i

ii

n

i

iii

l

i

i

n

i

ii

ii

l

i

iiii

l

i

ii

l

i

i

bxwybxw

yCwL

















Here, L is the Lagrangian and αi, αi*,ηi,,ηi* are lagrange

multipliers. Hence the dual variables in (5) have to satisfy

positivity constraints i.e.,

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

46

 αi,αi*,ηi,,ηi*≥0 (6)

According to the saddle point condition the partial derivatives

of L with respect to primal variables (w,b,ξi ,ξi
*) have to

vanish for optimality. Therefore, we get






b

L
)7(0)(

0

*




i

l

i

i 

)8(0)(
*

1








ii

l

i

i xw
w

L


)9(0



ii

i

C
L




)10(0
**

*





ii

i

C
L




Substituting (7) to (10) into (5), yields the dual optimization

problem;

Maximize -

)11)((

)())((
2

1

*

1

*

11,

**

1,

ii

l

i

i

i

l

i

i

n

ji

jijji

l

ji

i

y

xx

















Subject to

 0)(
*

1




i

l

i

i  and αi , αi*  [0,C]

To make the SV algorithm nonlinear all training patterns xi

are mapped  :  into some feature space  as

described in (Aizerman, Braverman, & Rozonoer, 1964;

Nilsson, 1965) and then using the standard SV regression a

linear hyperplane is constructed in the feature space. Using

the trick of kernel functions (Cortes & Vapnik, 1995)

following QP problem is formulated.

Maximize


























)()(

)())((
2

1

*

1

*

1

**

1,

ii

l

i

ii

l

i

i

jijji

l

ji

i

y

xxK





Subject to],0[,0)(
**

1

Cand iii

l

i

i 




The optimal solution obtained

bxxKxf

andxw

ii

l

i

i

ii

l

i

i













),()()(

)()(

*

1

*

1





Where K(.,.) is a kernel function. ---------(12)

Usually more than one kernel used in the literature to map the

input space into feature space (Cristianini & Shawe-Taylor,

2000). The question is to find a kernel functions that provides

good generalization for a particular problem. One has to try

more than one kernel function for a particular problem in

order to resolve this issue. Because of the approximate

mapping of input space to higher dimensional feature space

using different kernel functions, support vectors extracted are

different and the number of support vectors varies as well for

each kernel. A Gaussian kernel has been used in this research.

3.Results

In this research, Software Reliability Prediction models are

constructed using MLP with back propagation and support

vector regression algorithms. The dataset consists of two

variables namely failure interval length and day of failure.

Failure Interval Length and bias have been taken as inputs and

day of failure has been taken as output for both the networks.

Data consisting of 662 samples were used for training and

data with 123 samples were used for testing purposes. We

compare the performance of both of the networks for

estimating the reliability of the software by considering the

Normalized System Error of both the networks. There will be

an interactive session for MLP network in which the user has

to provide values for number of inputs like selecting learning

or output generation, choosing the file from where the

network gets it’s data, number of inputs, number of outputs,

number of samples to be considered, learning rate, number of

hidden layers, number of units in the hidden layer, momentum

rate, maximum total error, maximum individual error and

finally the number of iterations. After providing all these

values to the network, the network generates an error file

showing the weights of the synaptic connections between

individual layers along with the normalized system error of all

the input samples. All the results have been generated based

on the Normalized System Error of the MLP neural network.

The Normalized System Error values along with the values of

the other network parameter have been given in the table 3.1

below for training the network. In this research, A single

hidden layer is considered for the purpose. Different

Normalized System Error values have been generated for

training the network by changing the number of units in the

hidden layer. Following abbreviations have been considered

for network parameters. NI: Number of Inputs, NOUT:

Number of Outputs, NIS: Number of Input Samples, MR:

Momentum Rate, MTE: Maximum Total Error, MIE:

Maximum Individual Error, NIT: Number of Iterations, NHL:

Number of Hidden layer, NUHL: Number of Units in the

Hidden Layer, NSE: Normalized System Error.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

47

Table3.1: The values of the network parameters during

training

N
I

N
O

U

T

NI
S

M
R

L
R

MTE MI
E

NI
T

N
H

L

N
U

H

L

NSE

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 1 0.001745

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 2 0.001218

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 3 0.000988

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 4 0.000852

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 5 0.000661

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 6 0.001014

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 7 0.000668

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 8 0.000517

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 9 0.000950

2 1 66

2

0.

9

0.

5

0.01 0.0

01

50

0

1 1

0

0.000928

From the table 3.1, it is observed that, as the number of units

in the hidden layer increases from one to five keeping the

other parameters fixed, the Normalized System Error

gradually decreased and there is a slight increase in the NSE

when the number of units is six. when the number of number

units in the hidden layer(NUHL) is eight keeping other

parameters fixed, the Normalized System Error is 0.000517.

This error has been considered as the net error generated by

the network during training. Given below fig. 3.1 is the graph

between numbers of units in the hidden layer versus

Normalized System Error during training.

Fig3.1: The relationship between number of units in

hidden layer and Normalized System Error

Table3.2: The values of the network parameters during

testing

N

I

N

O

U

T

NI

S

M

R

L

R

MT

E

MIE NI

T

N

H

L

N

U

H

L

NSE

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 1 0.01672

0

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 2 0.00567

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 3 0.00788

5

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 4 0.00559

9

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 5 0.00420

8

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 6 0.00389

6

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 7 0.00449

5

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 8 0.00410

9

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 9 0.00541

8

2 1 12

3

0.

9

0.

5

0.01 0.00

1

50

0

1 1

0

0.00394

9

From the table 3.2, it can be known that, when the number of

number units in the hidden layer (NUHL) is six, keeping

other parameters fixed, the Normalized System Error is

0.003896. This error has been considered as the net error

generated by the network during testing. Given below fig 3.2

is the graph between numbers of units in the hidden layer

versus Normalized System Error (NSE) during training.

Fig 3.2: The graph between numbers of units in the hidden

layer versus Normalized System Error (NSE) during

training.

The following table gives the performance of both of the

networks (MLP VS SVR) with respect to their NSE values

during training and testing.

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8 9 10

NUHL Vs NSE

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8 9 10

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

48

Table 3.3: The values of the network parameters during

training and testing(For both of the networks)

Training

NI NOUT NIS NSE for

MLP

NSE for

SVR

2 1 662 0.000517 0.0444

Testing

NI NOUT NIS NSE for

MLP

NSE for

SVR

2 1 123 0.003896 0.0738

Experimental results show that MLP with back propagation

algorithm performs much better than support vector

regression model given the predefined set of variables as input

to the above models. The MLP network outperforms SVR by

98.87% during training and 94.85% in testing phases of the

networks which is clearly evident from the table 3.3.

Discussion and Conclusion:

The multi-layer perceptron neural network has been trained by

back-propagation algorithm to predict the reliability of

software along with the support vector regression model. It is

essential to predict the reliability of software ,as more

software’s that are being developed are error prone. Although,

there are different models have been proposed for predicting

the reliability of the software, the technology of neural

networks will definitely be an added advantage given the

larger the data set. The development of our model is a

practical tool to predict the reliability of software given the

predefined variables as input to the networks. As more data

are generated, Both the systems improve in precision and can

be widely employed in predicting the reliability of software in

different environments. In Summary, we developed two

network models, one is an MLP with back-propagation

algorithm and the other is a Support Vector regression model

to predict the reliability of software using the available

information. The outcomes of both the models are consistent

with the knowledge of the domain expert. Thus in this

proposed research, the results support the reliability of the

software by both of the networks and also gives an importance

of understanding the impact of neural networks for finding the

reliability of software.

References

[1] Liang T., Afzel, N. “On-line prediction of software

reliability using an evolutionary” connectionist

model”, Journal of Systems and Software, vol. 77,pp.

173–180, 2005.

[2] Hu Q., Xie M., and Ng S., Software Reliability

Predictions using Artificial Neural Networks,

Computational Intelligence in Reliability Engineering

(SCI) 40, 197–222, 2007.

[3] Aljahdali, S. “Prediction of Software Reliability Using

Neural Network and Fuzzy logic”, Ph.D. Dissertation

presented to the faculty of College of Graduate Studies.,

Dept. of the Software Engineering and Info. System,

George Mason University, Fairfax, Virginia, U.S.A, May

2003.

[4] Aljahdali, S., Sheta, A., and Rine, D., “Prediction of

Software Reliability: A Comparison between

regression and neural network non-parametric Models”,

Proceeding of the IEEE/ACS Conference, pp.470-471,

2000.

[5] Khoshgoftaar T.M., and Allen, E.B., “Logistic

Regression Modeling of Software Quality”,

International Journal of Reliability, Quality and Safety

Engineering, 6(4), 1999.

[6] Stewart, W., “Collinearity and least squares regression”,

Statistical Science, pp. 68-100, 1987.

[7] Aljahdali, S., Sheta, A., and Habib, M. "Software

Reliability Analysis Using Parametric and Non-

Parametric Methods”, Proceedings of the ISCA 18th

International Conference on Computers and their

Application, March 26-28, 2003, pp. 63-66.

[8] Aljahdali, S., Sheta, A., and Rine, D., “Predicting

Accumulated Faults in Software Using Radial Basis

Function Network”, Proceedings of the ISCA 17th

International Conference on Computers and their

Application, 4-6, April 2002, pp. 26-29.

[9] Narasinga Rao MR, Sridhar GR, Madhu K, Rao AA. A

Clinical Decision Support System using Multilayer

Perceptron Neural Network to Assess Well Being in

Diabetes. J Assoc Physicians India 2009; 57:127–33.

[10] Drucker.H, Burges C.j, Kaufman L, Smola A, Vapnik V,

Support Vector Regression Machines”, in Advances in

Neural Information Processing Systems (1997),

M.C.Mozer, M.I.Jordon, and T, Petsche(eds.),Vol.9,The

MIT press,pp.155-161.

[11] Vapnik V, Golowich S.E, and Smola A, ‘Support vector

method for function approximation, regression

estimation and signal processing’, in Advances in Neural

Information Processing Systems(1997), M.C.Mozer,

M.I.Jordan, and T.petsche(eds.,),Vol.9, The MIT press,

Cambridge, MA,pp.281-287.

[12] Scholkopf,B, Burges, C.,and Vapnik., V., ‘Incorporating

invariances in support vector machines’, in Artificial

Neural Networks—ICANN ’96, C.Vonder Malsburg,

W.von Seelen,J.Vorbuggen, and

B.Sendhoff(eds.,),Vol.1112 of Springer Lecture Notes in

Computer Science, Springer- Verlag, Berlin,1996, pp.47-

52.

[13] Mattera, D, Haykin.S., ‘ Support vector machines for

dynamic reconstruction of a chaotic system’, in

Advances in Kernel Methods- Support Vector Learning,

B.Scholkpf, C.J.C.Burges, and A.J.Smola(eds.,), MIT

Press, Cambridge,MA,1999,pp.211-242.

[14] Muller. K.R, Smola A.J, Ratsch. G, Kohlmorgan.J, and

Vapnik.V., ‘Predicting time series with and support

vector machines’, in Artificial Neural Networks-

ICANN’97, W.Gerstner,A.Germond,

M.Hasler,J.D.Nicoud,(eds.,), Springer Lecture Notes

in Computer Science, Springer -Verlag, Berlin,1997,

pp.999-1004,

[15] Stitson.M, Gammerman,A., Vapnik.V., Vovk.V.,

Watkins, C., and Weston, J., ‘Support vector

regression with anova decomposition kernels’, in

Advances in Kernels Methods-Support Vector

Learning, B.Scholkopf, C.J.C.Burges, and A.J.Smola

(eds.,), MIT Press, Cambridge, MA, 1997,pp.285-292.

[16] M.A.H. Farquad, V.Ravi, S.Bapi Raju, “ Support Vector

Regression based hybrid rule extraction methods for

forecasting”, Expert Systems with Applications 37

(2010) 5577–5589.

