
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

27

Correction of Verbs in English Corpus by using the

Concept of AI

M M S Rauthan

Professor
Dept. of Computer Science

HNBGU

Sumit Khulbe
Asst. Professor

Dept. of Computer Science
KU, Nainital

H S Dhami
Professor

Dept. of Mathematics
KU, Nainital

ABSTRACT

The present paper aims at automated correction of verb from

huge English corpus and addition of verbs at run time through

single sentence. The approach deals with salient issues in the

applications that use the artificial intelligence with respect to

three key properties. The basic differences between the

approaches and the computational aspects have been

discussed. In support of this discussion, and approaches we

evaluate Natural Language Processing (NLP) systems and

these are addressed with the help of hierarchical inheritance.

Keywords

Artificial Intelligence, NLP, Hierarchical inheritance.

1. INTRODUCTION
A number of studies have been conducted in the area of errors

in sentences and it has been revealed that verb form errors

contributed to the highest percentage of errors made by

students. Other type of errors are concerned with closed

classes of words such as articles, prepositions, modals or

auxiliaries and open classes of words, such as nouns and

verbs, as seen in the works of Lee and Seneff (2006), Felice

and Pulman (2008), Gamon et al. (2009), Rozovskaya and

Roth (2011). Donald et al. (2006) have examined the retrieval

of regular and irregular past tense verbs. Boolos et al. (2007)

have dealt with a function which takes premises, analyses the

syntax of coding and returns a result through parsing. Abdul

Rashid et al. (2004) have found verb errors in their Chinese

subjects’. Quirk et al. (1978) explain the verbal action of a

sentence in the form of possibility. Rashid et al. (2004) have

explained that some verbs are associated with grammatical

(database) units. The role of AI in reading the mind of any

user through Interlingua can be seen in the work of Bonnie J.

Dorr, (1993). Izumi et al., (2003) have modified errors related

to verb categories in the Japanese Learners of English corpus.

Research on automatic verb correction has been conducted on

a number of different parts-of-speech as seen in the works of

K. Knight et al. (1994) and M. Chodorow et al. (2007). Errors

in verb forms have been covered as part of larger systems by

G. Heidorn et al. (2000). An approach combining a hand-

crafted contextfree grammar and stochastic probabilities is

pursued in Lee and Seneff, (2006), but it is designed for a

restricted domain only. A maximum entropy model, using

lexical and POS features, is trained in E.Izumi et al., (2003) to

recognize a variety of errors. Noun and verb errors in a

minimal phrase of English corpus through Artificial

Intelligence have been given by Patrick Khader et al. (2003).

Acquisition and errors of nouns and verbs phrases in English

can be seen in the work of Ria De Bleser et al. (2003).

In this paper we have made an attempt to use the concept of

Natural language processing (NLP) in the context how

machine recognizes the sentence and transforms it. We have

taken an initiative from the work of Sergei Nirenburg et al.

(2000) and of Bonnie J. Dorr et al. (1999) who have designed

the concept and have surveyed the current paradigms in NLP.

We have also used the Inference rule for conclusion, based on

the form of premises interpreted as a function. For this

concept, we have taken jumbled networks for different

sentences which have been matched with machine through

database. We can find the references of related works in the

research papers of Hsien-tang Wu (2011). We have modified

the dependency parser of McDonald et al. (2005) in two ways

to adjust it for the parsing of NLP outputs. Our approach can

be regarded as conversion process of the more common way

of using an NLP system to automatically post-edit the output

of a translation system. Related references can be seen in the

works of Simard et al (2007), Lagarda et al (2009).

In this paper we are also presenting a methodology for

overcoming incomplete information. The parsing system we

are using involves three main components: a part-of-speech

tagger developed by Marques et al. (2000), a pre-processing

module and a chart-parser proposed by Rocio et al. (2000) .

2. INCLUSION OF THE TEXT INTO

THE FRAMEWORK
The concept of Hierarchical Inheritance of grammar rules like

S → NP + VP has been used in this work. This rule appears

in all grammars and simply means that a noun phrases (NP)

followed by a verb phrase (VP) is a well-formed sentence (S).

The existing system comprising logic for generating the

documents images, character data specifying one of a plurality

of possible character values for corresponding segments of the

document images. The system also has an interactive display

means for generating sequential display, one or more types of

composite image, each composite image comprising segments

of the document image or images arranged according to the

character data and a correction mechanism responsive to a

user input operation to enable the operator to correct the

character data associated with displayed keys.

The performance of the machine has been characterized as a

mapping of one kind of information to another and the focus

is on the functionality and the content of knowledge, the

abstract characterization of task features and the identification

of what task is occurring. First, a text query shall be sent

directly to the search database (Software) (augmented by

query markup, if it is available). In the next phase, the

extractor shall pull text as well as markup out of retrieved

data. With the use of semantic markup, extracted text may be

filtered or translated in various ways before being used and

with the help of Inference rule we draw the sentence/above

rule on the lines depicted in fig 1:- Our approach of designing

AI space is to retrieve from three stages. We first identify the

http://en.wikipedia.org/wiki/Syntax_(logic)
http://www.sciencedirect.com/science/article/pii/S0911604402000155
http://en.wikipedia.org/wiki/Logical_form
http://en.wikipedia.org/wiki/Premise

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

28

user usability goals of the tools. The second stage involves

designing new applets or improving existing ones to achieve

these goals. The final stage of development is of evaluating

the tools. The user goals have been identified as: (P1) to

increase student understanding of the target domain(P2) to

support different learning abilities, learning styles and levels

of knowledge(P3) to motivate and generate interest in the

subject matter(P4) to promote active engagement with the

tools and (P5) to support various scenarios of learning,

including in-class demonstrations, assignments.

3. TOOLS USED IN TESTING
 We will demonstrate how a correction or identification based

approach can be taken for tagging unknown verbs by

automatically learning cues to predict the most likely tag for

sentence where verb is not seen in the user defined corpus. If

the most likely tag for unknown words can be assigned with

high accuracy then the contextual rules can be used to

improve accuracy. We have reached an unexpected

conclusion (C) and have a systematical hypothesis (H) and

conclude our result as (C), that is, when we examine very

simple level intelligence we find that explicit representations

of the sentence simply get in the way. It turns out to be better

to use the verb as its own sentence entered by user. Here (H)

represents the wrong unit of abstraction in building the largest

or complied parts of intelligent systems through inheritance.

In this paper we used the concept of Hierarchal technique to

control the framework of project as depict in fig 2:-

4. STRUCTURING OF SENTENCES IN

FRAMEWORK
Active Verbs That Describe Work as seen in Table 1:-

The Software is designed using various forms for:-

1. Pre-Processing,

2. File Extraction,

3. Segmentation,

4. Feature Extraction,

5. Character Comparison,

6. Multithreading with the help of hierarchical inheritance.

5. CHECKING THE ERROR AND

CORRECTION
In this research paper we have utilized the concept of Boolean

algebra for truth values. Its reference can also be found in the

article of Brown et al. 2003. Boolean algebra is commutative

in the sense

 x V y = y V x for disjunction and x A y = y A x for

conjunction.

In our research work we have attempted xuser input, and

ysystem output. According to this rule if user inputs wrong

verb in a terminal software then database corrects this with

commutative rule and if data base system does not find any

verb entered by a user then terminal software has a facility

with the concept of AI that user inputs the verb at run time

according with disjunction, In the sentences of patent gazettes,

important words or key words are repeatedly used with

anaphoric pronouns. This fact plays as an important clue to

find an anaphora or to guess the ambiguous letter in our

system.

We have use recursive functions to correct the database errors

and have formulated them with respect to the following three

rules and apply them to understand in machine translation:

a V (b V c) = (a V b) V c ------------------------------------

associative

a V b= b V a ---

commutative

ay = a zy z ---

augmentation

6. DESCRIPTION OF THE PROGRAM
We have applied the Java methods to implement them in

inheritance. The subject has been extracted by using the

deductive reasoning that it is placed in the start of the

Sentence and generally before the Helping Verb and Object at

the last. The logic for its extraction can be given as under-

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

import org.junit.Test;

public class SuffixTree { public void sampleUsage() {

 AbstractSuffixTree tree = new SimpleSuffixTree(

 "going ram market to is");

 System.out.println("Longest repeating substring "

 + tree.best.printResult() + " repetitions=" +

tree.best.visits

 + " length=" + tree.best.stringDepth);

 }}abstract class AbstractSuffixTree {

 SuffixTreeNode best;

 String text = null;

 SuffixTreeNode root = null;

 int inputAlphabetSize = -1;

 AbstractSuffixTree(String text) {

 if (text.length() > 0 && text.charAt(text.length() - 1) ==

'$') {

 this.text = text;

 } else {

 this.text = text + "$"; }}}

class SimpleSuffixTree extends AbstractSuffixTree {

 public SimpleSuffixTree(String text) {

 super(text); constructTree(); }

 private void constructTree() {

 super.root = new SuffixTreeNode(this);

 best = root;

 char[] s = super.text.toCharArray();

 for (int i = 0; i < s.length; i++) {

 List<String> suffixList = new ArrayList<String>();

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

29

 for (int k = i; k < s.length; k++) {

 suffixList.add(s[k] + "");

 } super.root.addSuffix(suffixList, i + 1); }}}

class CompactSuffixTree extends AbstractSuffixTree {

 public CompactSuffixTree(SimpleSuffixTree

simpleSuffixTree) {

 super(simpleSuffixTree.text);

 super.root = compactNodes(simpleSuffixTree.root, 0);

 super.best = simpleSuffixTree.best;

 } private SuffixTreeNode compactNodes(SuffixTreeNode

node, int nodeDepth) {

 node.nodeDepth = nodeDepth;

 for (SuffixTreeNode child : node.children) {

 while (child.children.size() == 1) {

 SuffixTreeNode grandchild =

child.children.iterator().next();

 child.incomingEdge.label += ", "

 + grandchild.incomingEdge.label;

 child.stringDepth +=

grandchild.incomingEdge.label.length();

 child.children = grandchild.children;

 // for (SuffixTreeNode grandchild : child.children)

 grandchild.parent = node; }

 child = compactNodes(child, nodeDepth + 1); }

return node; }}

class SuffixTreeNode {

 AbstractSuffixTree tree;

 SuffixTreeEdge incomingEdge = null;

 int nodeDepth = -1;

 int label = -1;

 Collection<SuffixTreeNode> children = null;

 SuffixTreeNode parent = null;

 int stringDepth;

 int id = 0;

 public static int c;

 public int visits = 1;

 public SuffixTreeNode(AbstractSuffixTree tree,

SuffixTreeNode parent,

 String incomingLabel, int depth, int label, int id) {

 children = new ArrayList<SuffixTreeNode>();

 incomingEdge = new SuffixTreeEdge(incomingLabel,

label);

 nodeDepth = depth; this.label = label; this.parent

= parent;

 stringDepth = parent.stringDepth +

incomingLabel.length();

 this.id = id; this.tree = tree;

 }

public SuffixTreeNode(AbstractSuffixTree tree) {

 children = new ArrayList<SuffixTreeNode>();

 nodeDepth = 0;

 label = 0;

 this.tree = tree; }

 public void addSuffix(List<String> suffix, int pathIndex) {

 SuffixTreeNode insertAt = this;

 insertAt = search(this, suffix);

 insert(insertAt, suffix, pathIndex); }

 private SuffixTreeNode search(SuffixTreeNode startNode,

List<String> suffix) if (suffix.isEmpty()) {

 throw new IllegalArgumentException(

 "Empty suffix. Probably no valid simple suffix

tree exists for the input.");

 }

 Collection<SuffixTreeNode> children =

startNode.children;

 for (SuffixTreeNode child : children) {

 if (child.incomingEdge.label.equals(suffix.get(0))) {

 suffix.remove(0);

 child.visits++;

 if (child.visits > 1

 && child.stringDepth > tree.best.stringDepth)

{

 tree.best = child; }

 if (suffix.isEmpty()) { return child;

}

 return search(child, suffix); } }

 return startNode; }

 private void insert(SuffixTreeNode insertAt, List<String>

suffix,

 int pathIndex) {

 for (String x : suffix) {

 SuffixTreeNode child = new SuffixTreeNode(tree,

insertAt, x,

 insertAt.nodeDepth + 1, pathIndex, id);

 insertAt.children.add(child);

 insertAt = child; } }

 public String toString() {

 StringBuilder result = new StringBuilder();

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

30

 String incomingLabel = this.isRoot() ? "" :

this.incomingEdge.label; for (int i = 1; i <=

this.nodeDepth; i++)

 result.append("\t"); if (this.isRoot()) {

 c = 1;

 this.id = 1;

 } else {

 this.id = c;

 result.append(this.parent.id + " -> ");

 result.append(this.id + "[label=\"" + incomingLabel +

"\"]" + "("

 + visits + "," + (stringDepth) + ")" + ";\n"); }

 for (SuffixTreeNode child : children) {

 c++;

 child.id = c;

 result.append(child.toString()); }

 return result.toString();

 } public String printResult() {

 if (parent == null) {

 return ""; } else {

 return this.parent.printResult() +

this.incomingEdge.label; } }

 public boolean isRoot() {

 return this.parent == null;

 } public boolean isLeaf() { return children.size() ==

0; }}

class SuffixTreeEdge { String label = null;

 @SuppressWarnings("unused")

 private int branchIndex = -1; public

SuffixTreeEdge(String label, int branchIndex) {

 this.label = label; this.branchIndex = branchIndex;

}}

with this half way done coding we can easily transform any

pattern recognition system with the help of AI to transform it

with respect to MT.

7. BACKGROUND OF THE COMPUTER

PROGRAM

The concept of generating program source code by means of a

dialogue involves combining strategies with system and user

initiative. The strategy with system initiative safely navigates

the user, whereas the strategy with user initiative enables a

quick and effective creation of the desired constructions of the

source code and collaboration with the system using obtained

knowledge to increase the effectiveness of the dialogue. The

Grammar website used frequently during the preparation of

this research paper is http://www.cs.vu.nl/grammars/

The present invention sets forth a method and an

arrangement for different word correction processing and can

automate the process of adapting domain specific information

retrieval understanding. It solves the problem of simple

natural language understanding and allows users to interact

with machines using natural language. This work shall be of

immense importance to the students of English Grammar who

sometime feel harassed while cramming rules of verb

correction in English and moreover are not certain about the

exercises in extraction of word in a database. This program

shall enable them to check their transformations, correction

and extraction at the click of the mouse. This software has the

advantage of being user friendly and occupies limited space

and also it’s a GUI based.

http://www.cs.vu.nl/grammars/

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

31

8. FIGURES/CAPTIONS

 Fig 1:-

(H)

 (C)

Fig 2:-

Main Framework

Node of end user

Sensor of Node

Action of Test used

Hierarchal Controlled System, Controlled Process or Environment of Testing

Top Level Schema

Top Level Schema

http://en.wikipedia.org/w/index.php?title=File:ParseTree.svg&page=1

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

32

yield illustrate illuminate reveal Employ mean suggest

clarify indicate represent prove Insist propose imply

assert postulate consider infer State extrapolate estimate

define classify invoke analyze Compare hypothesize synthesize

summarize disagree generalize narrate Evaluate simplify measure

note predict introduce report challenge delineate depict

construe interpret provide acknowledge distinguish inform specify

restrict determine detail sum up designate point out set forth

deduce derive characterize guide Maintain believe speculate

present organize investigate assess determine calculate support

devise construct evaluate attribute Obtain argue reiterate

Table 1:-

The snap shot of the message box before entering the sentence shall look like this-

The snap shot of the message box after entering the sentence shall look like this-

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

33

9. CONCLUSION
The artificial intelligence is an important technique that can

resolve complex situation problems such as intrusion

detection. The intrusion can be resolved by various other

means such as bug tracers but these techniques also increases

the cost factor. The technique developed by us is easy to

incorporate and is also economical in terms of practical

deployment. The results stated by us show that the system

shows an overall improvement by 15 percent approx. whereas

the number of intruders is decreased to great extent. In future,

the work can be carried out by interfacing the technique with

the software defined radio where it will further decrease the

number of intrusion attacks. This may probably help the

subjects reduce their grammatical errors, and hence, increase

their confidence and linguistic competence in their writing

tasks.On the basis of this research paper, we can include the

different verbs at run time and user can get frequent answer as

per his choice. We have identified semantic errors in running

software because database cannot resolve much more errors at

run time. We have demonstrated that our system is able to

improve the quality of the state of NLP systems.

10. REFERENCES

[1] Abdul RM, Goh LL, Wan RE (2004). English errors and

Chinese learners. Sunway College Journal 1, 83–

97(2004).

http://www.sunway.edu.my/others/vol1/rashid.pdf

[2] Bhatia, Aban T (1974). An error analysis of students’

compositions.IRAL. Vol. 12/4.

[3] Boolos, George; Burgess, John; Jeffrey, Richard C.

(2007). Computability and logic. Cambridge: Cambridge

University Press. pp. 364. ISBN 0-521-87752-0.

[4] Bonnie J. Dorr (1993), Interlingua machine translation a

parameterized approach Original Research Article

Artificial Intelligence, Volume 63, Issues 1–2, pp. 429-

492.

[5] Bonnie J. Dorr, Pamela W. Jordan, John W. Benoit,

(1999), A surveys in machine translation, Advances in

Computers, Volume 49, 1999, pp. 1-68.

[6] Brown, Frank Markham (2003), Boolean Reasoning: The

Logic of Boolean Equations, 1st edition, Kluwer

Academic Publishers, Norwell, MA. 2nd edition, Dover

Publications, Mineola, NY.

[7] Donald G. MacKay 2006, “On the retrieval and lexical

structure of verbs” Journal of Verbal learning and Verbal

behavior, Volume 15, Issue 2 pp. 169-182.

[8] Izumi, K. Uchimoto, T. Saiga, T. Supnithi, and H.

Isahara. 2003. Automatic Error Detection in the Japanese

Learner’s English Spoken Data. In Companion Volume

to Proc. ACL. Sapporo, Japan.

[9] Elliot A B (1983). Errors in English. Singapore

University Press: Singapore. Ellis, Rod. Becoming

Grammatical, Website 1999-2003 by Lateral

Communications.

[10] Tonaci, M. Russo, M.T. Pazienza, P. Velardi (1989), A

system for text analysis and lexical knowledge

acquisition Data & Knowledge Engineering, Volume 4,

Issue 1, pp. 1-20

[11] G. Heidorn. 2000. Intelligent Writing Assistance.

Handbook of Natural Language Processing. RobertDale,

Hermann Moisi and Harold Somers (ed.). Marcel

Dekker, Inc.

[12] Greenbaum Randolph Sidney and Quirk,(1978) A

University Grammar of English. Hong Kong: Longman.

[13] Hsien-tang Wu; Wen-ta Hsiao; Chih-tsang Lin; Tao-

ming Cheng (2011)Dept. of Constr. Eng., Chaoyang

Univ. of Technol., Taichung, Taiwan, “Application of

http://www.sunway.edu.my/others/vol1/rashid.pdf
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-521-87752-0
http://www.sciencedirect.com/science/article/pii/0004370293900235
http://www.sciencedirect.com/science/article/pii/0004370293900235
http://www.sciencedirect.com/science/article/pii/0169023X89900025
http://www.sciencedirect.com/science/article/pii/0169023X89900025
http://www.sciencedirect.com/science/article/pii/0169023X89900025

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.7, December 2012

34

genetic algorithim to the development of artificial

intelligence module system”, Intelligent Control and

Information Processing (ICICIP), 978-1-4577-0813-8.

[14] Izumi.E, K. Uchimoto, T. Saiga, T. Supnithi, and H.

Isahara. 2003. Automatic Error Detection in the Japanese

Learner’s English Spoken Data. In Companion Volume

to Proc. ACL. Sapporo, Japan.

[15] J. Lee and S. Seneff. 2006. Automatic Grammar

Correction for Second-Language Learners. In Proc.

Interspeech. Pittsburgh, PA.

[16] K. Knight and I. Chander. 1994. Automated Post editing

of Documents. In Proc.AAAI. Seattle, WA.

[17] Lagarda Antonio L., Vicent Alabau, Francisco

Casacuberta, Roberto Silva, and Enrique Diaz-de Liano.

(2009). Statistical post-editing of a rule-based machine

translation system. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North

American Chapter of the Association for Computational

Linguistics, Companion Volume: Short Papers, pp. 217–

220. Association for Computational Linguistics.

[18] M. Chodorow, J. R. Tetreault, and N.-R. Han. 2007.

Detection of Grammatical Errors Involving Prepositions.

In Proc. ACL-SIGSEM Workshop on Prepositions.

Prague, Czech Republic.

[19] McDonald Ryan, Fernando Pereira, Kiril Ribarov, and

Jan Hajic. (2005). Non-projective dependency parsing

using spanning tree algorithms. In HLT ’05: Proceedings

of the conference on Human Language Technology and

Empirical Methods in Natural Language Processing,

pages 523–530, Vancouver, British Columbia, Canada.

[20] Pilleux K D (2003). Subject-verb concord: Not just a

second language acquisition issue.

http://oak.cats.ohiou.edu/1kw382698/671%20Final2.

[21] Patrick Khader, André Scherag, Judith Streb, Frank

Rösler (2003), Differences between noun

and verb processing in a minimal phrase context: a

semantic priming study using event- related brain

potentials , Volume 17, Issue 2, pp. 293-313.

[22] Ria De Bleser, Christina Kauschke (2003), Acquisition

and errors of nouns and verbs, Volume 16, Issues 2–

3, March–May 2003, pp. 213-229.

[23] Rachele De Felice and Stephen G. Pulman. 2008. A

Classifier-Based Approach to Preposition and Determiner

Error Correction in L2 English. In Proc. of Coling, pages

169–176, Manchester, UK, August.

[24] Sergei Nirenburg, Yorick Wilks (2000) ,Advances in

Computers, Volume 52, pp. 159-188.

[25] Simard Michel, Cyril Goutte, and Pierre Isabelle. (2007).

Statistical phrase-based post-editing. In Human

Language Technologies 2007: The Conference of the

North American Chapter of the Association for

Computational Linguistics; Proceedings of the Main

Conference, pages 508–515, Rochester, New York,

April. Association for Computational Linguistics.

[26] Tan, Aig Bee(2005). The use of drill exercises in helping

students reduce subject-verb agreement errors in

academic writing: A case study in IPBA Jurnal.

IPBA/Jilid 3: Bilangan 2.

http://www.sciencedirect.com/science/article/pii/S0926641003001307
http://www.sciencedirect.com/science/article/pii/S0926641003001307
http://www.sciencedirect.com/science/article/pii/S0926641003001307
http://www.sciencedirect.com/science/article/pii/S0926641003001307
http://www.sciencedirect.com/science/article/pii/S0911604402000155
http://www.sciencedirect.com/science/article/pii/S0911604402000155

