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ABSTRACT 
In this paper, we introduce delay differential equation (DDE) 

models of the hematopoietic system designed for the study of 

the effects of Granulocyte-Colony Stimulating Factor (G-

CSF) administration. G-CSF is used clinically for treating 

subjects presenting low numbers of white blood cells, a 

condition referred to as Neutropenia that can result from 

different causes. The aim of this paper is to study alternative 

treatment that would minimize the use of G-CSF drug using a 

mathematical modeling.  We propose is a parameter 

estimation model that considers G-CSF administration for 

Cyclical Neutropenia (CN), a dynamical disorder 

characterized by oscillations in the circulating neutrophil 

count. The model develops the dynamics of circulating blood 

cells before and after the G-CSF treatment. The model 

develops the equilibrium solution for the DDE and a sufficient 

condition for the global stability. The model focuses on the 

effects of two compartments forms of G-CSF for the 

treatment of CN (Fast Fourier Transform simulations). For 

each model, we use a combination of mathematical analysis 

and numerical simulations (linear chain trick) to study 

alternative G-CSF treatment that would be efficient while 

reducing the amount of drug. This reduces the quantity of G-

CSF required for potential maintenance. This model gives us 

good result in treatment. The changes would be analytical and 

reduce the risk side as well as the cost of treatment in G-CSF. 

Key words: CN, G-CSF, FFT Simulation, DDE, Global 

Stability. 

 

1. INTRODUCTION 
We are also interested in studying the effects of G-CSF 

reduction, but for neutropenia. Granulocyte-colony 

stimulating factor (G-CSF) stimulates neutrophils production 

and is used analytically for treating neutropenia (low 

neutrophil levels). We used a mathematical modeling 

approach and analytical to study alternative G-CSF treatment 

regimens for cyclical neutropenia. We found that G-CSF can 

either increase the amplitude of the oscillations. These results 

suggest that administration of G-CSF can affect the dynamical 

behavior of the granulopoiesis system (Figure 1 and 2 gives 

general information). Indeed, G-CSF is widely used in 

oncological practice for treating neutropenia and preventing 

infections that often follow G-CSF treatment. To better study 

this situation, we develop a delay differential equation model 

for the regulation of neutrophil production. We use explicit 

functions for modeling the effects of G-CSF on the 

amplification factor, the post mitotic transit time and the 

apoptosis rates. Using a combination of analysis and 

numerical simulations, we use this model to study the effects 

of delaying G-CSF treatment following for two recombinant 

forms of G-CSF (Tissue G-CSF and Circulating G-CSF). We 

also examine the consequences of varying the duration of G-

CSF drug reduction and study some dynamical properties of 

the system. 

 
Fig 1: G-CSF drug Neupogen & EPO (Image: Google 

Images) 

 
Fig 2: G-CSF Transcription model for cell differentiation 

(Image: Google Images) 

 

It is very important to note that the estimates of '

rP  all satisfy 

the global stability condition of 
' rP D  as given in eqn. (21). 

This supports the notion that the origin of the dynamic 

instability characterizing CN is not in the peripheral control of 

neutrophil production, and lends further weight to the central 

hypothesis of this paper. Namely, CN is due to a dynamic 

instability at the stem cell level. Though the preliminary 

estimates of '

rP  in [1-4] are not too different from the final 
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value, there is quite a difference between the other 

preliminary parameter estimates and the actual values that 

were arrived at in the fit. The origin of this discrepancy is 

primarily due to the fact that the actual value of   as given 

ranges from about 2 to 5, values well below the previously 

estimated values of 8-16. Though we have no data that would 

allow us to estimate the value of   in normal dogs, if they 

have hematopoietic systems similar to humans and the mouse, 

the low values of   calculated here would suggest that the 

ANC (Absolute Neutophil Count) has much less  available in 

their neutrophil control system to respond to increased 

demands for neutrophils. This decreased elasticity in the ANC 

translates to between two and three fewer potential divisions 

within the neutrophil production system [5-10]. 

 

This suggests that in the Neutrophil there is not only an 

alteration within the stem cell compartment giving rise to the 

oscillatory dynamics, but that there is also a significant 

depression of the efflux from the stem cell population into the 

recognizable neutrophil line. Taken together with the low 

values of  , we tentatively conclude that cyclical neutropenia 

is a hematopoietic defect in which there is abnormal cell loss 

within the stem cell compartment that is also expressed in the 

progeny committed to the production of neutrophils. This 

same point has been emphasized analytically who showed that 

normal CN and induced CN had the same number of G-CSF 

receptors on neutrophil precursors, and that the binding 

constant of G-CSF with the receptor was unaltered between 

the two. They further found that we required a seven fold 

higher concentration of G-CSF to achieve half maximal 

colony growth compared to normal CN, and concluded that 

the defect in cyclical neutropenia is due to a defect in the 

signal transduction pathway distal to G-CSF receptor binding 

[2, 4, 5, 10-12]. Within the context of the model that we have 

presented and analyzed, we provisionally interpret this 

analytical finding to imply that the values of G-CSF injection 

tabulated are of the order of seven parameters the values that 

will be found in ANC. 

2. BACKGROUND ON 

MATHEMATICAL THEOREM 
Suppose that Pr is a continuous and decreasing function. 

Assume that xs is the unique root of the equation f 2(s) = s in 

the interval [0, ) . Let : ( ,0] [0, )     be a bounded 

function and x (t) be the solution of    r

dx
Dx P x

dt
 

satisfying the initial condition ( ) ( )x t t
 

for ( ,0] t . 

Then x(t) converges to xs as t . 

Proof: First, observe that any solution '( )x t  is a bounded and 

nonnegative function. Since 0 ( ) (0) r rP x P  a solution 

'( )x t  satisfies the inequalities 

( ) '( ) ( ) (0), 0.     rDx t x t Dx t P t  

As x(0) 0 from the first inequality it follows that x(t) 0 

and the second inequality implies that x(t) is a bounded 

function. Now we check that if 

                                               

               0 liminf ( ) limsup ( )
 

    
t t

A x t x t B             (1) 

then                         

             
1 1

( ) liminf ( ) limsup ( ) ( )
 

   r r
t t

P B x t x t P A
D D

   (2) 

Fix 0  . Then there exists t0> 0 such that 

                       0( ) ,     A x t B t t                            (3) 

0

0

( ) ( ) ( ) ( ) ( ) ,

 



      
m

t t

m

M t t

x t x t u g u du x t u g u du t t M  

                                            

                    
0

0

( ) ( ) ( ) ( ) , 

 



   
m

t t

M t t

x t B g u du g u du           (4) 

where  sup ( ) :  x t t R  . Since g is a density there exists 

t1>t0+Mm such that

0

( ) 





t t

g s ds for
1t t  . Consequently, 

1( ) ,    x t B t t  

Since Pr is a decreasing function we have 

1( ) ( ),    r rP x t P B t t  

This leads to the following differential inequality: 

1'( ) ( ) ( ),rx t Dx t P B t t        

Let y(t) be the solution of the equation 

                          
'( ) ( ) ( )ry t Dy t P B                        (5) 

with the initial condition x(t1) = y(t1). Then x(t) y(t) for 

t t1. Since the constant solution 
0

( )rP B
y

D

  
 of eqn. 

(5) is asymptotically stable we have 0lim ( )
t

y t y


 . The 

inequality x(t) y(t) implies that 

                           

( )
liminf ( ) r

t

P B
x t

D

 



 
                     (6) 

Let 0  . Then from eqn. (6) we get 

( )
liminf ( ) r

t

P B
x t

D
  

In a similar way, we obtain 

( )
limsup ( ) r

t

P A
x t

D
  

Since the solution '( )x t  is a bounded function there exist 

constant A and B such that 0 , ( ) ,sA x B A x t B t R      . 

From eqns. (1) and (2) it follows that: 

                                       

                 2 2( ) liminf ( ) limsup ( ) ( )n n

t t
f A x t x t f B

 
         (7) 

for n = 1, 2,…. Since f is a decreasing function, the function   

f 2 is increasing [6 - 9]. The assumption that xs is the unique 

fixed point of the function f 2 in the interval [0, )  implies 

that 
2 2( ) , ( ) ,s s sx f x x x f x x x x      

Hence, 2 2lim ( ) ,lim ( )n n

s s
t t

f A x f B x
 

   and we finally obtain 

that 

lim ( ) s
t

x t x


  

This completes the proof. 

2.1 MODEL DEVELOPMENT 
Let the density of white blood cells in the circulation be x(t) 

(units of cells mm-3 blood), D the random disappearance rate 

of circulating white blood cells (days-1), and Pr the production 

rate (cells mm-3 day-1) of white blood cell precursors in the 

bone marrow [13 – 19]. We assumed that the rate of change of 

the circulating white blood cell density is made up of a 

balance between the loss of white blood cells (-Dx) and their 

production (
rP x ), so 

                                   
r

dx
Dx P x

dt
   ,                             (8) 
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where in ( )x t  is x(t-M) weighted by a distribution of 

maturation delays. ( )x t is given explicitly by 

              

( ) ( ) ( ) ( ) ( )
m

m

t M

M

x t x t u g u du x u g t u du





            (9) 

Mm is the minimal maturation delay and g(M) is the density of 

the distribution of maturation delays as specified below. Since 

g(M) is a density, 

                                     
0

( ) 1g u du



                                    (10) 

To completely specify the semi-dynamical system described 

by eqns. (8) and (9) we must additionally give an initial 

function 

                              
( ') ( '), ' ( ,0)x t t t  

                      
(11) 

,( ) ( )0, mM Mg M g M

            

         

1
( )

0, ,

( ) ,
(

( )

1
(

)
) m

m

m
a M Mm

m m

M M

a
M M e M M

g M

g M
m


 



 
 




     

(12) 

with a, m > 0, was able to give an excellent fit to the existing 

data on neutrophil maturation times. The parameters m, a, and 

Mm in the density of the gamma distribution can be related to 

certain easily determined statistical quantities. Thus, the 

average of the up shifted density is given by 

                          

2

0

1
( )

m
M Mg M dM

a




 
                      

(13) 

so the average maturation delay is 

                         
2

1
m m

m
M M M M

a


   

                   

(14) 

and the variance  is 

                                

2

2

1m

a





                                      

(15) 

Using eqns. (13) and (15) the gamma distribution parameters 

m and a are 
2

2 2

2 2
, 1

M M
a m

 
  

 
To write out the explicit form for the output flux ( , )rP x t  , the 

following considerations are important. It is assumed that the 

maximal amplification (Am) of cells entering the recognizable 

neutrophil precursor pool is modified by apoptosis at a rate   

that is under the control of the number of circulating 

neutrophils Mx  so ( )x  . The maximal amplification is 

thereby modified to become exp( ( ) )mA x M , and if the input 

flux into the recognizable compartment of neutrophil 

precursors is Pi (t) then the efflux corresponding to the cells 

with transit time M is 

                                
( )( , ) x M

r i mP x M PA e  .                     (16) 

To take into account the distribution of transit times we must 

integrate over the entire range of available transit times to 

give the final form for 

    

1

( )
( ) ( , ) ( )

( )

m

m

m

x M

r r i m

M

a
P x P x M g M dM PA e

a x








 

   
 

 (17) 

In keeping with the known inverse relation between apoptosis 

and the levels of circulating G-CSF and the inverse relation 

between circulating G-CSF levels and the peripheral 

neutrophil count, we have taken a form for   given by 

                                     

( ) m

x
x

x
 





                           

(18) 

So Pr will be a monotone decreasing function of x  . Thus, the 

control of neutrophil production has the characteristics of a 

negative feedback system with distributed delay. The 

constants 
m  (the maximum rate of apoptosis) and   (the 

value of x  at which apoptosis reaches half maximal values) 

in eqn. (18) will be estimated [20]. 

3. TESTING MATHEMATICAL 

ANALYSIS 
The equilibrium solution for the functional differential 

equations (8) and (9) occurs when 

                                 

0 ( )r

dx
Dx P x

dt
  

                      

(19) 

so the steady state xs is defined implicitly by the solution of 

the equation 

                                     s r s rsDx P x P 
                           

(20) 

Given the monotone decreasing nature of the negative 

feedback production rate ( )rP x  inferred from the biology, 

there can be but a single unique value for the steady-state 

white blood cell density xs. The value of 
rs sP Dx  is 

equivalent to the Granulocyte Turnover Rate (GTR). 

Let 
( )

( ) rP x
f x

D
 . Then xs is the unique root of the equation f 

(s) = s in the interval [0, ) . Let 2f f f . Then xs is also a 

root of the equation f 2(s) = s. Now we give a sufficient 

condition for the global asymptotic stability. 

If '

rP D , then ' 1f   and xs is the unique root of 

f 2(s) = s. However, if the function Pr is of the form (17) then 

both analytic and numerical results indicates that xs is the 

unique root of f 2(s) = s if and only if '

rP D  . Thus, a 

sufficient condition for the global stability of xs is 

                                           

'

rsP D
                               

(21) 

To develop the theoretical background for 

preliminary parameter estimates, we consider the response of 

this system to a periodic cellular influx coming from the 

hematopoietic stem cell compartment when we are near to a 

steady state [3, 13]. Throughout this analysis, an important 

parameter that will appear is the slope of the production 

function Pr evaluated at the steady state, denoted by '

rP  . 

Because of our arguments concerning the negative feedback 

nature of the peripheral control mechanisms acting on 

neutrophil production, we know that this slope must be non-

positive. To examine the response to a periodic input, we 

assume that the production of neutrophils can be written in the 

form 

                               
( , ) ( )r iP x t PA x

                               
(22) 

where ( )A x  is the amplification within the neutrophil 

precursor compartment, and 

                 
( ) (1 ( ) ), [0,1]iwt

i isP t P I w e   
                     

(23) 

is the assumed oscillating hematopoietic stem cell influx with 

mean value Pis , amplitude Re( ( ))isP I w , and period 
2

w


 . 

The term 

            

( ) ( )

m

iwM iwM

M

a
I w e g M dM e

iw a



  
   

 


             

(24) 
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accounts for the distribution of maturation times. With these 

assumptions, we can write out eqn. (8) for small deviations of 

x from xs. In the first approximation this gives 

                  

  

' '( ) ( ) ( ( ) )iwt

rs s rs rs s rs

dx
Dx P x x P I w e P x x P

dt
       

  

(25) 

                                            rs r sP P x
                             

(26) 

                                 

' ( )
,r

rs s

P x
P x x

x


 


                          

(27) 

Utilizing eqn. (20) and defining the deviation from 

equilibrium as z(t) = x(t) - xs, we can rewrite Eqn. (25) in the 

form 

                   

' '( ) ( )iwt

rs rs rs

dz
Dz P I w e P P

dt
   

                

(28) 

Table 1. The results of fitting the 7 parameter model   

w  P a0 a1 a2 a3 a4 a5 a6 

0.465 13.5 1.06 0.99 0.09 0.008 0.0001 0.00004 0 

0.470 13.4 1.80 1.47 0.70 0.08 0.006 0.0005 0 

0.464 13.5 2.44 2.15 1.54 0.9 0.08 0.004 0 

0.500 12.6 2.89 2.69 0.58 0.03 0.007 0.0002 0 

0.426 14.7 4.49 2.94 2.12 1.23 0.98 0.08 0 

0.438 14.3 5.79 5.05 3.60 2.56 1.43 0.87 0.1 

0.418 15.0 6.26 6.04 5.95 4.2 3.7 2.01 0.9 

 

 

Fig 3: FFT simulations for the results of fitting the  

ANC model  

 

 

To use the existence of the first, second, and sometimes third-

harmonic components evident in the FFT simulation and 

reflected in the fits of eqn. (28), we assume that the deviation 

z of the circulating neutrophil numbers from their steady-state 

value can be expanded in the series representation 

                                     
0

( ) ( ) ik wt

k

k

z t c w e





                      

(29) 

Substituting eqn. (29) into eqn. (28) and equating the 

coefficients of the terms exp( )ikwt   for k= 0, 1, …,6 yields 
'

0( )rsc D P  as expected, so c0 = 0, 

                          

1 '

( )
( )

( )

rs

rs

P I w
c w

D iw P I w




 
                       

(30) 

                          

' 2

2 1 '

[ ( )]
( ) ( )

2 (2 )

rs

rs

P I w
c w c w

D iw P I w




 
           

(31)  

In the general case, the relation is

                                  

           

'

1
'

0

( ) ( )
( ) ( )

( ) ( )

rs
k k

ik wt

k rs

k

P I w I kw
c w c w

D c w e P I kw


 





 

           

(32) 

From the above considerations, in the neighborhood of the 

steady state we can write 

           
0

( ) Re[ ( )] Re ( ) ik wt

s s k

k

x t x z t x c w e




 
     

 


          

(33) 

We took all of the ANC of the seven parameters and did a 

FFT (Fast Fourier Transform) fit to the equation 

    

6 6

0 0

1 1

( ) cos( ) Re( )kik wt p

k k k

k k

x t a a kwt p a a e 

 

     
 

(34) 

The values of the constants w , a0, a1,…, a6 resulting from 

these determinations are given in Table1. The value of a0 

gives the average value of the circulating neutrophil number 

over several cycles in a given CN (see Figure 3). If we write 

the coefficients ( )kc w  in polar form 

                               

arg( ( ))
( ) ( ) kki c w

k kc w c w e
                   

(35) 

then we can identify a0 = xs and 

                                 
( ) , 0,1,...,6.k ka c w k 

                  
(36) 

 

3.1 PARAMETER ESTIMATION 
The easiest parameter to estimate is D. Labeled neutrophils 

disappear from the circulation with a half-life t1/2 of about 7 hr 

in both normal CN and induced CN with a range of 6.7-7.6 hr. 

The decay coefficient a of eqn. (8) is related to the t1/2 by 

                                        
1/ 2

2In
D

t


                                  

(37) 

so D  [2.18, 2.48] (days-1). We will take D = 2.3 days-1 

corresponding to t1/2 = 7 hr-1. To obtain estimates of  and 
'

rsP  , use eqns. (30) and (31) in eqn. (36) to give 

                              

1 '

( )

( )

rs

rs

P I w
a

D iw P I w




 
                       

(38) 

                 

' 2

2 ' '

( ) [ ( )]

( ) 2 (2 )

rs rs

rs rs

P I w P I w
a

D iw P I w D iw P I w

 
 

   
    

(39) 

All of the quantities in these two equations are known from 

previous estimates except for  , '

rsP , and the result of solving 

for these two unknowns are tabulated in Table 2. Similarly we 

get the other parameters. Two points are noteworthy. First, in 

every case our analysis indicates that the amplitude of the 

oscillatory input is close to one indicating that, if the model is 
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correct, the influx from the stem cell compartment always 

cycles with a minimum close to zero. Secondly, in every case 

the values '

rsP  consistent with the data are well above the 

Hopf bifurcation calculated [14, 15]. This indicates that the 

neutrophil control loop modeled in this paper would have a 

locally stable steady state in the absence of any periodic stem 

cell inputs. This is consistent with the notion that the 

peripheral control of neutrophil production is not the origin of 

CN, a conclusion reached and elsewhere based on 

mathematical modeling. This further supports the idea that the 

hematopoietic stem cell population may be the source of the 

oscillations seen in cyclical neutropenia. Finally, two further 

relations can be derived from the steady state relation (20) that 

will be of use in estimating the parameters 
m  and  . 

Namely, at the steady state we have more explicitly 

                 

1

s m

m

M

s rs is s is s

s

a
Dx P P A P A e

a







  
    

 
        

(40) 

where ( )s sx  . Recognize that eqn. (40) can be rewritten in 

the form 

                               

1

s m

m

Mm s

s

A a
e

A a

 


 
    

 
                

(41) 

where As is the steady-state amplification. In humans and CN, 

it is estimated that   is of the order of 8-16, so with these 

values we can determine 
s since all of the other parameters 

are known and tabulated in Table 2. Additionally, at the 

steady state we have 

                            

' ' 1
rs s rs m

s

m
P P M

a




 
   

 
                   

(42) 

Given an estimate of the GTR, Prs = xs, eqn. (40) gives an 

estimate of the maximum steady state GTRmax = Pis Am 

since
s  , a, m and Mm are all known. Thus, given an estimate 

f 
s  , eqn. (42) gives a direct estimate of  's and '

rP  has 

been estimated. To see how this can be used to determine 

values of the parameters 
m  and   in eqn. (18), note that 
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(44) 

The results of our preliminary parameter estimations for the 

production rate are contained in Table 2 for  = 8 and 16 (see 

Figure 4). 

 

Table 2. Estimates of the parameter  

 =8 days   =16 days 

   

0.95       

0.85 0.93  0.93   0.75 0.95 1.09 

'

rsP  -

0.20  

-

0.91  

-1.09  -0.48   -1.2   -1.0   -1.2 

s  0.65  0.65  0.65  0.65  0.65  0.65  0.65  

's  0.02  0.06  0.057  0.021  0.035  0.023  0.025  

m  0.68  0.56  0.56  0.56  0.56  0.56  0.56  

  0.04  0.28  0.51  0.72  1.73  2.88  3.37  

 

 

 

Fig 4: FFT simulation for gamma (8-16 days) 

 

 
 

4. SIMULATION RESULTS 
We are now in a position to see if the full nonlinear simulation 

of our model is capable of reproducing the behavior seen in 

the CN. The full model as developed above can be written in 

the form 

               

1

( )( )
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m

x M
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Dx P t A e

dt a x
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(45) 

by combining eqns.(8) and (17), with an assumed periodic 

input of the form 

              
( ) (1 Re[ ( ) ]), [0,1]iwt

i isP t P I w e   
                 

(46) 

and x  defined by eqn. (9), and ( )x  an ( )I w  given by eqns. 

(18) and (24), respectively. Combining eqns. (45) and (46) we 

have 
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is m

dx a
Dx P A e I w e

dt a x
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(47) 

The parameter D is known from the previous section, while a, 

Mm, and m are given in eqn. (40), and remembering that xs = 

a0 from the previous section, we can write 

                            

1

0
s m

m

M s
is m

a
P A Da e

a

 


 
  
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(48) 

so given an estimate of 
s  we have an estimate of the 

coefficient Pis Am. Further, given an estimate the minimum 

values of '

rP
 

= -1.80 along with 
s  = 0.25 we can 

immediately estimate 
m = 2.9299 and   = 67.1047 (see 

Table 3). We have simulated the solution behavior of the full 

model FFT simulation and fit a polynomial. Selecting values 

of '

rP  and
s  , we found that we were able to get the closest 

fit of the seven data sets using the final parameter values of 

Table 3, and the results of our numerical simulations (see 

Figure 5 – 7). In every case, in order to mimic the approach of 

the ANC numbers to zero at the nadir of each oscillation it 

was necessary to take  =1.  
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Table 3. Simulation results for the parameters  

'

rP  s  's  
m      

is mP A  

data fit Eqn. (42) and (44)  (41) and (48) 

-0.10 0.2 0.01 0.2 0.07 1.9 4.9 

-0.05 0.2 0.03 0.2 0.05 1.9 8.4 

-2.00 0.5 0.10 1 2.5 4.9 29 

-0.50 0.1 0.02 0.2 5.0 1.3 9.8 

-1.50 0.4 0.04 0.7 3.9 3.6 38 

-1.70 0.2 0.03 1.8 37 2.2 31 

-1.80 0.2 0.03 2.9 67 2.2 34 

 

Fig 5: Polynomial fit for relation between production rate 

and death rate in two parameters 

 

 

Fig 6: Polynomial fit for relation between maximum 

apoptosis rate and apoptosis half maximal values 

 

 

Fig 7: FFT simulation model for parameter estimation 

 

 
4.1 NUMERICAL RESULTS 
We have solved equations numerically using a Runge – Kutta 

fourth order method (12 iterations) and some parameters 

values are standard. In the derivation of the model, the loss 

terms in the equations for c and I do not apply until, 

respectively (before these times, the loss terms depend on the 

initial conditions). In solving the problem numerically, it is 

simplest to accommodate this by taking the loss terms to be 

zero for these early times, which prevents the possibility of c 

and I becoming reduce the G-CSF level.  

 

At the standard parameter values of the full solution of  

2 (C )C e -[ (C) + (K)]Cc c

c c

dC

dt

 

     , 

tends to a stable steady state  

C= 0.49999999999999,   = 1,   = 1752, 

area = 4.4714145457024, K = 41.39276663963,  

 c
= 0.23272415762423, 

 c
 = 0.044785714290213. 

Similarly we get the other parameters solutions. 

To represent the effect of a disease such as neutropenia, we 

choose to examine lower values of the parameters c (cure rate) 

and I (infective rate), and higher values of k (carrying 

capacity). Analytically with different values of these and other 

parameters reveals that the model has a confusing variety of 

behaviors, and many of the features in the simulation of 

Figure 8 can be found in the numerical solutions with 

differentiate solution. It is noteworthy in the solutions that 

neutrophil oscillations tend to be irregular for an initial 

transient period of some 30 days. This is such a long period 

that it is reasonable to suppose that external physiological 

influences will cause the dynamics to remain in a transient 

state. This will not be revealed in the eventual oscillatory 

solutions we obtain, since no injection of long time secular 

influences is included. This figure shows the behavior we 

have described. The neutrophil population tracks the long 

period oscillation of the stem cells, and a higher frequency 

oscillation is excited at the peak of the oscillations. 

0 1 2 3

0

30

60

a
p

o
to

s
is

 h
a

lf
 m

a
x

im
a

l 
v

a
lu

e
s

maximum rate of apotosis

 apotosis half maximal values

 maximum rate of apotosis

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0

2

4

6

period

d
e

a
t
h

 r
a

t
e

0

1000

2000
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

data fit 

d
e

g
r
e

e

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-200

-100

0

100

200

period

d
is

a
p

p
e

r
a

n
c

e
 r

a
t
e -100

0

100

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

rate of production

d
e

g
r
e

e

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

10
-1

10
0

10
1

period
A

m
p

li
fi

c
a

ti
o

n
 r

a
te

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-15

-10

-5

0

5

10

15

20

period (days)

G
-C

S
F

 r
e

d
u

c
ti

o
n



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.7, December 2012 

15 

Fig 8: Numerical results of four parameters in FFT 

simulation 
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4.2 G-CSF DRUG LEVEL REDUCTION 
G-CSF is a hematopoietic growth factor that stimulates the 

bone marrow to increase the production of neutrophils. Thus, 

this is the treatment of choice for neutropenia. It is produced 

naturally in the body, but recombinant forms of G-CSF 

(Neupogen, lenograstim and Neulasta) are used as drugs to 

accelerate recovery from neutropenia (see Table 4). In this 

study, we will only consider the reduction of drug. Another 

drug is the same molecule as G-CSF drug but to which a 20 

kDa polyethylene glycol moiety has been added. This addition 

changes its pharmacokinetic properties and virtually 

eliminates renal clearance.  

Other than a difference in their clearance rate, both molecules 

have the same effects: they boost the number of neutrophils 

by decreasing the apoptosis rates in neutrophil precursors and 

thus increasing the effective amplification factor, and 

accelerating the transit time through the post mitotic pool. We 

only consider the use of G-CSF following myelosuppressive 

drug on patients suffering from nonmyeloid types of cancer, 

e.g. we are assuming that a model of regulation of neutrophil 

production can be taken to represent a hematological normal 

individual. Neupogen’s clinical guidance for cancer patients 

receiving myelosuppressive drug recommends a starting dose 

of 5 μg/kg/day, subcutaneously. Doses may be increased in 

increments of 5 μg/kg for each drug cycle, according to the 

duration and severity of the ANC base (see Figure 9). 

Neupogen should be administered no earlier than 24 hours 

after the administration of cytotoxic drug and it should be 

administered daily for up to 2 weeks, until the ANC has 

reached normal levels following the expected induced 

neutrophil. The recommended dosage of Neulasta is a single 

subcutaneous injection of 6 mg administered once per drug 

cycle. Neulasta should not be administered in the period 

between 14 days before and 24 hours after administration of 

cytotoxic drug.  

Table 4. G-CSF drug level reduced in minimum 

C-CSF (x) Max Min ANC (y) Injection=y/x 

0.11 2.401 0.753 1.078 9.8 

0.1 2.393 0.578 1.031 10.31 

0.05 2.342 0.645 0.7515 15.03 

0.02 2.300 0.698 0.5234 26.17 

0.005 2.260 0.736 0.34555 69.11 

0.001 2.237 0.753 0.26014 260.14 

0.0001 2.223 0.759 0.2221 2220.9 

0.00002 2.220 0.760 0.21476 10738 

 
Fig 9: G-CSF drug level reduced in minimum 

 

5. RESULTS 
There are 4 apoptosis rates to consider (Apoptosis rates  i

). 

Three of them (  s
,  '

s
, m

and ) vary in response to G-CSF 

and circulating G-CSF, whereas we assume that the death rate 

from the circulating neutrophils  s  remains unchanged G-

CSF treatment. We take  s = 0.65 (death rate is increased 

compare to previous studies),  '

s
=0.02, m

=0.68,  =0.04, 

and       '

rsP = -0.20 (rate of production is reduced). Next, we 

look at the three other apoptosis rates for cancer subjects, 

under CN and G-CSF treatment. To simulate non myeloid 

cancer with the model, we use the same values as for healthy 

individuals. We take  s = 0.20 days−1. We estimated  '

s
 to 

vary between 0.01 and 0.31 days−1. We take  '

s
=0.0120 

days−1. Finally, we assume that the death rate for the 

proliferative and non-proliferative precursors are the same 

( m =0.2136,  =0.071). In the normal dog, the steady state 

neutrophil production rate (GTR) is about 16.5x108 cells kg-1 

day. If indeed, 8 <  < 16 normally, then we should expect 

that the maximal normal GTR values are given by 132x108 < 

PisAm < 264 x108 cells kg-1 day. The maximal grey collie GTR 
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values of PisAm = 4.95 tabulated in Table 3 are much less than 

one quarter of the minimum of this range [21-23].  

6. CONCLUSION 
The simulations shown in [19], using parameters appropriate 

for the distributions of maturation times, are in good 

agreement with the result and with the spectral behavior 

shown in [11]. Further, since the model gives a reasonable 

representation of the secondary peak on the descending FFT of 

the neutrophil counts we conclude that this phenomenon is 

simply due to the nonlinear filtering of a periodic stem cell 

input by the peripheral neutrophil control system mediated by 

G-CSF. If this is correct, then we would expect that normally 

m
 is between about 0.2 and 2.9 day-1. Neupogen’s clinical 

guidance for CN patients getting myelosuppressive drug 

recommends a starting dose of 5 μg/kg/day, subcutaneously. 

G-CSF injection may be decreased in increments of 5 μg/kg 

for each drug cycle, according to the duration and severity of 

the ANC base. Neupogen should be managed no earlier than 

12 hours after the administration of cytotoxic drug and it 

should be directed daily for up to 1 week, until the ANC has 

reached normal levels of the expected induced neutrophil 

counting. The suggested dosage of Neulasta is a single 

hypodermic injection of 6 to 8 mg administered once per drug 

cycle. Neulasta should not be administered in the period 

between 12 days before and 24 hours after administration of 

cytotoxic drug. 
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