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ABSTRACT 

Increasingly, for many application areas, it is becoming 

important to include elements of nonlinearity and non-

Gaussianity in order to model accurately the underlying 

dynamics of a physical system. The problem of identifying 

nonlinear system models arise in various applications in 

control and signal processing. In this context, one of the most 

successful and popular stastical identification approaches is 

Particle Filtering, otherwise known as Sequential Monte Carlo 

(SMC) methods. As compared to Extended Kalman Filter and 

Gaussian Sum Filter, this approach is computationally reliable 

for identification of highly nonlinear systems in terms of 

accuracy, and, at the same time chance of failure in difficult 

circumstances decreases. The numerical integration 

techniques, on the other hand, are only feasible in low-

dimensional state-spaces. In this paper the particle filtering 

approach has been attempted for non-linear system 

identification. The particles and their associated importance 

weights in particle filtering approach evolve randomly in time 

according to a simulation-based rule. This is equivalent to a 

dynamic grid approximation of the target distributions, where 

the regions of higher probability are allocated proportionally 

more grid positions. Using these particles Monte Carlo 

estimates of the quantities of interest may be obtained, with 

the accuracy of these estimates being independent of the 

dimension of the state space. The envisioned method is easier 

to implement than classical numerical methods and allows 

complex nonlinear and non-Gaussian estimation problems to 

be solved efficiently in an online manner. The experimental 

results on comparison with Kalman filtering show the efficacy 

of the proposed method through illustrative examples.   

Index Terms: Non-linear System, Kalman Filter, 

Bayesian Filter, Sequential Estimation, Particle Filter 

1. INTRODUCTION 

Problems in Engineering require estimation of the state of a 

system that changes over time using a sequence of noisy 

measurements made on the system. The state-space approach 

to time-series modeling focuses attention on the state vector 

of a system. The state vector contains all relevant information 

required to describe the system under investigation. For 

example, in tracking problems, this information could be 

related to the kinematic characteristics of the target. The 

measurement vector represents (noisy) observations that are 

related to the state vector [1]. The measurement vector is 

generally (but not necessarily) of lower dimension than the 

state vector. The state space approach is convenient for 

handling multivariate data and nonlinear/non-Gaussian 

processes, and it provides a significant advantage over 

traditional time-series techniques for these problems [2]. In 

the Bayesian approach to dynamic state estimation, one 

attempts to construct the posterior probability density function 

(pdf) of the state based on all available information, including 

the set of received measurements. Since this pdf embodies all 

available statistical information, it may be said to be the 

complete solution to the estimation problem. In principle, an 

optimal (with respect to any criterion) estimate of the state 

may be obtained from the pdf. A measure of the accuracy of 

the estimate may also be obtained [3]. For many problems, an 

estimate is required every time that a measurement is 

received. Since the nineties, sequential Monte Carlo (SMC) 

approaches have become a powerful methodology to cope 

with non-linear and non-Gaussian problems [4]. 

In this paper, the model is generated as a non-linear model 

and is tested using Kalman Filter approach. The particle Filter 

approach follows it for identification. Such a filter consists of 

essentially two stages: prediction and update. The prediction 

stage uses the system model to predict the state pdf forward 

from one measurement time to the next. Since the state is 

usually subject to unknown disturbances (modeled as random 

noise), prediction generally translates, deforms, and spreads 

the state pdf. Classical methods to obtain approximations to 

the desired distributions include analytical approximations, 

such as the Extended Kalman Filter and the Gaussian Sum 

Filter and deterministic numerical integration techniques. 
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Another approximation strategy is that of sequential Monte 

Carlo integration, also commonly known as particle methods. 

The paper is organized as follows. Section II gives a brief 

description of theoretical foundations related to our approach. 

Section III describes the Bayesian Filtering. Section IV 

contains the prior approach to particle filtering approach as 

well as the illustrative model for Particle Filter. Section V 

shows the result along with the comparison result with 

Kalman Filtering approach. Section VI concludes the paper 

along with the directions for future research. 

2. THEORETICAL FOUNDATIONS 

General problem statement:  

The particle filter is a sequential Monte Carlo algorithm, i.e. a 

sampling method for approximating a distribution that makes 

use of its temporal structure. A “particle representation “of 

distributions is used. In particular, we will be concerned with 

the distribution P(xt|z0:t) where xt is the unobserved state at 

time t, and z0: t is the sequence of observations from time 0 to 

time t. 

Filtering is the problem of sequentially estimating the states 

(parameters or hidden variables) of a nonlinear system as a set 

of observations become available online. 

 

 

Figure. 1. General problem statement 

State space formulation of a system: 

General discrete time nonlinear and non-Gaussian dynamic 

system is given by following equation: 

                                                                                                       

                                                                                (1) 

Where 

Xk  = state,    

Yk = noisy observation,      

uk = known input 

vk-1 = process noise,        

nk = measurement noise 

Assumptions for the state space formulation: 

 State follow a first order markov process 

 Observations independent given the states  

3. NONLINEAR BAYESIAN FILTERING 

Bayes rule is a very powerful tool for doing inference under 

conditions of uncertainty. For example, in robotics, perhaps 

the most frequent use of Bayes rule is to translate sensor 

readings into a map of the environment. Since the sensor 

readings are noisy, it is desirable to use Bayes rule to 

accumulate enough noisy measurements to localize obstacles 

in the world.   

For  a  robot,  it  is  undesirable  to  wait  until  it  has  

gathered  a  bunch  of  sensor readings  before  it  applies  

Bayes  rule  to  give  it  a  clue  about  the  environment. Since 

robots are usually made to move, it is a good idea to use the 

information as it comes in to incrementally improve our 

understanding of the environment. To achieve this objective 

sequential estimation is generally used. 

Sequential Estimation: 

Sequential estimation is the process of incrementally 

improving our understanding as data is gathered. The  Bayes  

filter  is  a  powerful  tool  for  performing  sequential  

estimation.  

Suppose a physical process is described by a random variable, 

but there is no information is available about the behavior of 

the random variable.  The first piece of information is the 

mean of this random variable. If pdf for this random variable 

is p(x), then mean can be expressed as  

( )xp x dx         (2) 

 If the pdf is not available, the estimate can be the mean   by 

collecting samples of the process.  Suppose   n  samples are  

represented  by  the  set { x1,x2,…..,xn },Then sample mean is 

given by 

1
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        (3) 

The problem with this is that all n samples should be collected 

before using the information. The trick is to come up with a 

difference equation that allows us to incrementally improve 

the estimate as data becomes available. Naturally, if only one 

sample is present, then   the mean can be expressed as    

                           m1 = x1.          
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mk can be further  expressed  as follows 
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This is the sequential estimate of the mean of a random 

variable. 

Another form of sequential estimation is to sequentially 

estimate posterior distributions as actions are taken and as 

observations are made.  If   xK  denote the  state  at  time  k, aK 

denote  the  action  taken  at  time  k,  and zK   denote  the 

observation  made  at  time  k,  then      models can be used  to 

show  how  actions  produce consequences and how states are 

observed to improve  estimates. 

4. PARTICLE FILTER DESIGN 

The sequential importance sampling (SIS) algorithm is a 

Monte Carlo (MC) method that forms the basis for most 

sequential MC filters developed over the past decades; see [4], 

[5]. This sequential MC (SMC) approach is known variously 

as bootstrap filtering [3], the condensation algorithm [6], 

particle filtering [7], interacting particle approximations [8], 

[9], and survival of the fittest [10]. It is a technique for 

implementing a recursive Bayesian filter by MC simulations. 

The key idea is to represent the required posterior density 

function by a set of random samples with associated weights 

and to compute estimates based on these samples and weights. 

As the number of samples becomes very large, this MC 

characterization becomes an equivalent representation to the 

usual functional description of the posterior pdf, and the SIS 

filter approaches the optimal Bayesian estimate.  

Particle Filters originally developed for tracking application 

systems exclusively. It has the advantage over classical 

methods like spectral subtractions or Wiener filtering is that 

the particle filter allows the noise to be non-stationary. 

Particle filter is a technique for implementing recursive 

Bayesian filter by Monte Carlo sampling. The idea is to 

represent the posterior density by a set of random particles 

with associated weights. Compute estimates based on these 

samples and weights. 

The steps for design of particle filter based model are as 

follows: 

1. Representation of system. 

2. Prediction of behavior of the system.  

3. Measurement of prior sample of the signal. 

4. Resampling of estimated particle. 

The representations of the above steps are shown 

diagrammatically as follows: 

 

 

Figure. 2. Particle Filter design 

 Choice of proposal distribution:  

Support of proposal distribution must include support of true 

posterior distribution, i.e. heavy tailed distributions are 

preferable. It must include most recent observations. 

Generally most of the proposal distribution does not 

incorporate new observations. On the contrary, our approach 

incorporates new observations into the proposal by combining 

prior with the new observation using normalized Gaussian 

fusion strategy. 

 

Figure. 3. New observation fusion with the prior 

 Nonlinear & non-Gaussian model 

illustration: 

Model – 1: 

The unknown system is characterized as a basic non-linear 

model in this work. It is represented as the difference equation 

and is given as 

X = 0.5*x+25*x/(1+x^2)+8*cos(1.2*(k-1))+  sqrt(q)*v(n) 

Y = x^2 / 20 + sqrt(r) * v(n) 

Where 

                 x = 0.1; initial state 

                 q = 1; 

                  r = 1; 

                  v(n)=random noise 
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                  k varies from 1 to L 

 

Model – 2: 

Another model is developed and also tested for the accuracy 

result for such non-linearity change. By varying the non-

linearity we can also examine the identification for both of the 

filter.  The equation of the system is given by:             

X=0.5*x+12*x/(1+x^2)+6*cos(1.2*(k-1))+ sqrt(q)*v(n)  

Y = x^3 / 50 + sqrt(r)*v(n) 

Where,  

                 x = 0.1; initial state 

                 q = 1; 

                  r = 1; 

                  v(n)=random noise 

                  k varies from 1 to L 

5. EXPERIMENTAL RESULTS 

 The result for the estimated model along with the Kalman 

Filter for different noise conditions are shown as follows: 

 

Fig. 4.  Result of Model 1. Kalman Filter (Left) and 

Particle Filter (Right) # instance 1 

 

Fig. 5.  Result of Model 1. Kalman Filter (Left) and 

Particle Filter (Right) for different values of random noise 

# instance 2 

 

 

 

Fig. 6.  Result of Model 1. Kalman Filter (Left) and 

Particle Filter (Right) for different values of random noise 

# instance 3 
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Fig. 7.  Result of Model 2. Kalman Filter (Left) and 

Particle Filter (Right) # instance 1 

 

 

 

 

Fig. 8.  Result of Model 2. Kalman Filter (Left) and 

Particle Filter (Right) # instance 2 

 

 

 

Fig. 9.  Result of Model 2. Kalman Filter (Left) and 

Particle Filter (Right) # instance 3 

 

TABLE 1. COMPARISION USING RMS ERROR 

Instance Root mean 

square 

error_Kalman 

Filtering 

Root mean 

square 

error_Particle  

Filtering 

Model 1  

#instance  1 

16.4 2.1 

Model 1  

#instance  2 

18.2 2.4 

Model 1  

#instance  3 

11.5 1.9 

Model 2  

#instance  1 

17.8 1.8 

Model 2 

#instance  2 

10.1 2.0 

Model 2  

#instance  3 

11.8 2.7 

 

Discussion: Table 1 indicates the RMS error for both of 

the approaches for different instances on different noise 

conditions. From the RMS error, it is clear that Particle 

filtering method achieves lower error for all of the instances 

of both of the considered nonlinear and nongaussian models. 

The identification accuracy can also be visualised on 

examining the figs. 4-9. 
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Hence, Identification using particle filter is advantageous than 

Kalman filter because tracking of nonlinear system by particle 

filter lies in nearly 95% confidence region. 

Error for particle filter is less as compared to Kalman Filter. 

Particle filters provide more accurate estimation about the 

unknown system provided simulated sample size is 

sufficiently large in comparison to extended or unscented 

Kalman filter. 

Particle filtering is applicable to general nonlinear, non-

Gaussian estimation problems where standard Gaussian     

approximations fail.  

6. CONCLUSION AND FUTURE SCOPE 

We proposed a novel stastical approach for nonlinear and 

nongaussian system identification using improved particle 

filtering with normalised Gaussian mixing of new 

observations with the priors. Experimental results show that 

our approach outperforms the Kalman filtering approach for 

system identification. In future, we will focus on 

implementation of particle filtering approach for nonlinear 

system identification under missing observations using 

evolutionary genetic filter. Another direction of future 

research is to implement particle filter for voice activity 

detection for real world applications. 
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