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ABSTRACT 

There is an increasing interest in the research of clustering or 

finding communities in complex networks. Graph clustering 

and graph partitioning algorithms have been applied to this 

problem. Several graph clustering methods are come into the 

field but problem lies in the model espoused by the state-of-

the-art graph clustering algorithms for solving real-world 

situation. In this work, an attempt is made to provide an 

advanced cost based graph clustering algorithm based on 

stochastic local search. The proposed algorithm delivers 

significant improvement in robustness and quality of 

clustering in case of real-world complex network problems. 

The approach is to compute the cost (scaled cost) accurately 

when a target node is moved from source to destination 

cluster. The accurate cost is obtained by computing the 

induced effect which is evaluated by considering the 

relevance of nodes related to both source and destination 

clusters other than the target node during clustering. In our 

algorithm, moves are only made if the target node has 

neighbouring nodes in the destination cluster (moves to an 

empty cluster are the only exception to this instruction). 

Another important attachment in our approach is in inclusion 

of the aspiration criteria for the best move (lower-cost 

changes) selection when the best non-tabu move contributes 

much higher cost compared to a tabued move then the tabued 

move is acceptable otherwise the best non-tabu move is 

approved. Extensive experimentation with synthetic and real 

random geometric graph (RGG) benchmark datasets show 

that our algorithm outperforms state-of-the-art graph 

clustering techniques on the basis of cost of clustering, cluster 

size, normalized mutual information (NMI) and modularity 

index of clustering results. 

General Terms 

General Terms: Graph clustering, Data mining et. al. 

Keywords 

RGG, Cost of clustering, Cluster size, Normalized mutual 

information (NMI) and Modularity index of clustering results 

 

1. INTRODUCTION 
 

There is an extensive approach to the analysis of complex 

social and economic phenomena in assembling the 

participating individuals or objects and their interactions into 

a network (nodes and links) and to deduce functional 

characteristics of the entire system from this static web of 

connections [1–5]. In the real world scenario, many complex 

systems exist in the form of networks, such as social networks 

[6], biological networks [7,8], Web networks [9-11], 

collaboration networks [12-14], neural networks [15], food 

webs [16,17], and the citation network of scholarly papers 

[18], which are communally referred to as complex networks. 

One of the major goals in various applications of these 

networks is to measure and understand the characteristic 

properties and behaviour of these networks under various 

processes taking place in the networks.  

 

Over the last decade, several widely studied large-scale 

properties of real-world networks have been revealed, e.g. the 

broad (scale-free) distribution of node degree [19], 

overrepresented small subgraphs [20,21] and various 

signatures of hierarchical or modular organisation [22]. Also, 

various suitable measures have been defined to quantify the 

importance of the individual nodes in the networks. If a vertex 

lies on many shortest paths running between other vertices, it 

plays a central role in information flows Ref. [23] and is 

accountable for the vulnerability of the system.  
 

Random graphs are getting immense popularity in modelling 

complex networks and intense theoretical research on random 

graphs has been taking place [13, 24, 25, 26] since 1959. Ever 

since, scientists have been using different models of random 

graphs to predict and recognize the typical structure of the 

complex systems that permeate real-life. This tactic has 

proved to be useful when systems are huge, with partially 

unknown relationship, and no deterministic technique is there 

to explain the way those relationships arose. Random graphs 

have been used to provide the network model of social links, 

computer networks, the metabolic network of a cell, the 

electricity networks of power lines, business relations between 

companies, and the linking structure of the World Wide Web, 

to name a few [27,28,29,30,31]. Real network’s properties 

like robustness [32, 33], growth [34, 35, 36, 37], and topology 

have attracted much attention. It has been consistently shown 

that many of the networks retain small world properties [38, 

39, 40]. Like random graphs, small world networks are 

characterized by a high degree of localness and short average 

distances between any two sites, much like in lattices. 

However, individually, random graphs and lattice models in 

their pure forms are poor models of many real world 

networks. One could claim that high-dimensional lattices have 

the necessary high clustering and low average path length, 

although this has not been discovered much. A random 

geometric graph (RGG) is denoted as G (n, r) where n is the 

number of nodes. The graph is constructed as inserting n 

points uniformly in terms of distribution at random on the unit 

square (or on the unit disk) and connecting two points if their 

Euclidean distance is at most the radius r (n). Now-a-day this 

class of random graphs has gained importance as a natural 

model for wireless ad-hoc and sensor networks. Exploring 

properties of these random graphs can extract properties of the 
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real-life systems they model and permit for the design of 

efficient algorithms. RGGs have been used sporadically in 

real networks modelling [41] and widely in continuum 

percolation [42, 43], but almost exclusively in two and three 

dimensions. Recently, continuum percolation has been used in 

the study of the stretched exponential decay of the correlation 

function in random walks on fractals and the conjectured 

relation to relaxation in complex systems [44]. However, 

continuous systems in general and RGGs in particular are 

relevant whenever we need a multidimensional system with a 

metric, as for example when modelling the spread of diseases 

[45]. Although the origin of random geometric graphs can be 

traced back to the work of Gilbert in 1961 [27], they were not 

theoretically analyzed until recent years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

To achieve some meaningful information about the network 

models and to visualize the details of the networks with many 

applications in a number of disciplines, clustering is necessary 

and it is more fruitful job than other ones. Graph clustering 

algorithms emphasis on clustering the nodes of a graph [46], 

[47]. It can expect from a graph clustering scenario that it 

contains a collection of sub graphs (nearly completely 

connected) and a small fraction of edges are existed between 

them for interconnection.  

Recently, spectral clustering is getting immense popularity 

because of the convention of eigenvectors applied in various 

machine learning tasks [48]. In the recent past, various other 

graph clustering algorithms came into the field like restricted 

neighbourhood search clustering (RNSC) [49], Markov 

clustering (MCL) [50], super paramagnetic clustering (SPC), 

Genetic Algorithm, Molecular Complex Detection (MCODE), 

Local Clique Merging Algorithm (LCMA), etc. 

RNSC, which is a cost based clustering method and performs 

local search iteratively to obtain optimum clustering in an 

efficient way. RNSC is a stochastic technique which uses 

restricted neighbourhood search concept. It also acts like a 

metaheuristic technique like tabu search, described in [51] and 

also can be used in various search space schematics. Tabu 

search concept was first proposed by Glover in [51] and is 

described in detail in [51]. The idea behind it is to allow cost-

based local search algorithms to enter, then leave local 

minima by preventing the search from retracing its steps and 

settling in a local minimum. RNSC is also known as Variable 

neighbourhood search [52]. The main goal of this algorithm is 

to find the best cost clusterings (lower cost) from the set of 

clusterings of a graph by assigning some cost functions 

(Naive cost function and scaled cost function). The memory 

requirement for RNSC is O (n^2). The complexity of a move 

in the naive cost function is O (n), which is the size of the 

restricted neighbourhood of a move M.  

MCL is an efficient clustering method in weighted graphs, 

based on the prototype of stochastic flow simulation 

technique. In this technique, clusters (a natural grouping of 

densely flow-connected vertices) are obtained by using two 

operators: flow expansion and inflation. MCL technique 

performs well for sparse graphs. The expansion step of MCL 

has complexity O (n^3), assuming some small bound on the 

expansion exponents ei. The inflation has complexity O (n^2). 

In this paper, we present an advanced or accurate cost based 

graph clustering algorithm that improves some objectives 

related to graph clustering by focusing the drawbacks of 

RNSC’s cost evaluation and clustering approach. Basically, 

the accuracy in cost measurement is established by 

mathematical observation of the network structure during 

clustering. Performance evaluation of the proposed technique 

is prepared using synthetic and real random geometric graph 

benchmark dataset. The widespread experiments on these 

datasets demonstrate that the proposed technique is producing 

better clustering effectively in terms of robustness and 

optimality. 

 

2. BACKGROUND 

RNSC [49] is a local search meta-heuristic technique which is 

used to minimize the cost of clustering in the solution space. 

According to Stijn van Dongen, the vertex-wise performance 

criteria for clustering of unweighted graphs as the sum of the 

coverage measure taken on each vertex. In RNSC, a simple 

integer-valued cost function (called the naive cost function) is 

used as a pre-processor to produce initial clustering results on 

a graph and after that to evaluate the low-cost clustering 

result, a  more expressive (but less efficient) real-valued cost 

function (called the scaled cost function) is applied. The 

scaled function tries to optimize the output from naive 

function and reach to the global optimal solution. For a 

clustering C on an un-weighted graph G (V, E) in which |V| = 

n, more expressive scaled coverage measure is in the 

following expression where, N (v) is the open neighbourhood 

of v.  
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The scaled cost function is expressed as in Eq. (2).  
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Cost functions for weighted graphs: If Wu, v   is the weight of 

the edge between vertices u and v. αv is the cost numerator for 

v in a simple unweighted graph and that can be transformed to 

 

Fig 1: RGG with 500 Nodes 
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achieve
v , the cost numerator for v in a weighted graph. 

Define 
v   as follows. 
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With the new cost numerator 
v   defined in Eq. (4), the 

scaled cost function may be written as in Eq. (5). 
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3. Description of Advanced Cost Based 

Graph Clustering algorithm (ACOGCT) 
 

The proposed algorithm is developed by using advantage of 

the intellectual conception of tabu search. The main intension 

is to design a more significant and optimal algorithm for 

providing better clustering results by exploring some 

advanced concepts as aspiration criteria in tabu search. The 

step by step evaluation of our algorithm is deliberated below.  

 

In this section, summary of the steps of the developed 

algorithm is presented to acquire a quick insight into the logic 

involved. 

 

Step 1 

Create an initial clustering solution: This step 

involves assigning nodes to their cluster either on a 

random or on some other basis. 

Step 2 

Generate Move list: Generate a set of all possible 

moves and associate cost with them.  

Step 3 

Update Move list: Update the list of moves based on 

the last move. Last move may have brought changes 

in the cost of nodes in the move’s source or 

destination cluster or both. They might be inclusion 

or exclusion of the moves. 

Step 4 

Move selection: Move may belong from the 

candidate list or be a diversification move. 

Step 5 

Apply the move: Update cluster and nodes about the 

application of the move. Save the best answer at 

local minima. 

Step 6 

Check: If the specified number of moves has not 

been applied, then jump to update move list. 

Step 7 

Return: Print the best answer and Exit. 

 

3.2 Comparative features of RNSC and 

proposed algorithm 

 

The proposed algorithm is the refinement of RNSC with 

respect to few positive aspects. These features are conferred 

with proper explanations. 

 

3.2.1 Key positive features  

 

Few positive features are pointed out here to lay the 

foundation of the algorithm better compare to RNSC.   

 

 Scale cost evaluation is O (n) in RNSC. This can 

easily be done in O (1) time if the information about 

current node, and its cluster contribution are pre-

computed. 

 RNSC might tabu some very good moves based on 

the tabu criteria. Instead, in the proposed algorithm, 

aspiration criteria serve the sole purpose of avoiding 

tabu (based on the relative cost of the best non-tabu 

move). 

 Regeneration of all possible moves to select the best 

move, each time before it is applied in RNSC. 

 Moves are considered only if the target node has 

neighbouring nodes in the destination cluster 

(moves to empty cluster are the only exception to 

this rule). 

 The effect of a move for any cost scheme 

considered in RNSC is not exact in nature. They 

ignore the effect of moving on nodes other than the 

target node. 

 Cost scheme is evaluated in RNSC on an absolute 

basis after each move. Instead, in the proposed 

algorithm, costs are evaluated relative to starting 

clustering state and iteratively. The cost of the 

starting cluster is set equal to zero and effects of 

moves are added upon it. So, the effects of a move 

are added to get the cost of current clustering state 

relative to the initial clustering solution. 

 

3.2.2 Features retained in our proposed algorithm  

The properties that are kept unchanged and taking advantage 

of this retained properties of RNSC is focused here. 

 Short-term memory considerations using Tabu 

criteria are actively used. 

 As in the case of RNSC, diversification moves are 

applied when in the recent past no good solution 

was found. 

 Scale cost scheme forms the basis for evaluating the 

cost of a move. 

 

3.3 Greedily create an initial clustering 

solution  

 
There are different ways to perform the operation to create an 

initial clustering solution. Most common is the random 

clustering method that used in RNSC.  Our algorithm uses a 

greedy initial clustering instead of random clustering. Due to 

this clustering, most of the nodes are placed such a way that 

there are good chances for some of its neighbours residing in 

the same cluster.  
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The initial clustering solution technique is explained here with 

the proper manner: 

I. Select the node with the highest degree with no 

cluster assigned yet. 

II. Add node to a new cluster and its unassigned 

neighbours are also put into the same cluster. 

III. If all nodes haven’t been assigned yet then go 

back to the initial step I. 

 

3.4 Move selection 

The idea behind the selection of a move similar to the 

technique used in RNSC, where type of move is decided 

based on the previous clustering costs or improvements. 

Diversification move is executed when there has been no 

improvement in the best cost of the clustering over the last 

specified interval of time otherwise a normal move (in our 

case tabu move) is applied. Diversification when run shuffles 

the current clustering by the specified amount of 

diversification period and frequency, even if it means a 

significant increase in the current cost. This helps us to get out 

of any local minima where we might have been stuck in and 

explore some new possible clusterings. 

If there is no need for diversification, best move from the 

candidate list is selected if it’s not on the tabu list (i.e. the 

target node wasn’t moved in the near past). 

Our algorithm satisfies the aspiration criteria, whereas RNSC 

does not follow this criterion. Aspiration criteria allow 

selection of a move even if it’s already tabued when the best 

non-tabu move incurs a cost which is much higher than itself. 

The basic idea is that, if the best move is already tabued 

instead of ignoring it, check the feasibility see if this move is 

going to be much better than the best non-tabu move existent. 

This difference between best move cost (which is in tabu) and 

best non-tabu move cost, if less than the aspiration level, then 

select the non-tabu move,  otherwise select the best move. 

 

3.5 Application of a MOVE 

In this algorithm when a move is made then the target node is 

removed from the source cluster and added to the destination 

cluster. During execution of a move, a list of changes that 

contains the whole information about the source and target 

cluster is passed to each node related to those sources and 

destination cluster. Each node now quickly updates based on 

the changes it's going to incur the value for the total edge 

connections and edge weight with the neighbouring nodes in 

the cluster. These values later help in O (1) scale cost 

associated with the node.  

After the updates on nodes and clusters performed tabu-list is 

informed about the changes that have occurred. Tabu list now 

identifies the last target node as tabu with duration depending 

on the previous tabu duration value associated with the target 

node. Greater the previous tabu duration value much greater 

will be the penalty added to the target node, so that the 

occurrence of moves with the node is forbidden. 

 

3.6 Adaptive Scaled Cost Estimation 

Move stored in the candidate list other than consisting of a 

target node to be moved from the source cluster to destination 

cluster and also the recomputed cost is going to incur. The 

scaled cost scheme for weighted graph is described briefly in 

this section. 

The scaled cost scheme:  RNSC’s scaled cost evaluation is 

costly due to the O (n) computation of a denominator value 

( ). In RNSC only the direct cost associated with the move is 

considered i.e. the changes in the cost for target node. It does 

not consider the effect induced on the nodes of the source and 

destination cluster. 

In our algorithm, only the scaled cost evaluation is used. 

Scaled cost evaluated with any node could be computed in O 

(1) time against the O (n) time spent in the case of RNSC. The 

faster computations are due to constant update about the 

changes in the cluster to its node. Each node now quickly 

updates based on the changes it's going to incur the value for 

the total edge connections and edge weight with the 

neighbouring nodes in the cluster. The value of the total 

number of edge connections and total edge weights with the 

neighbouring nodes in the cluster have incurred during the 

node update process and based on that incurred value some 

changes are made for each node.  This argument justifies that 

there is no need of using the naïve cost scheme. A cost change 

caused by the move is due to the sum of changes in the cost 

associated with the nodes of the source and the destination 

cluster. Direct cost is the change in the cost of a target node 

(moving node) itself. Induced cost is the sum of changes in 

cost of nodes belonging to the source or destination cluster 

other than the target node.  

 

3.6.1 Logical view of cost changes with move 

Evaluations 

In the new algorithm, only scale cost scheme from RNSC is 

used for move evaluations. Scale cost evaluations have been 

simplified to simple constant time operations, due to active 

update of information corresponding to nodes about its cluster 

contributions. Further, move evaluations have been broken 

down and simplified for a clearer understanding. 

Let scale cost for node “t” in a cluster “c” is represented by 

Scale cost (t, c). For a graph with n vertices, Scale cost (t, c) 

ignores the constant multiplier of (n-1) /3 during the 

discussion ahead. Scale cost value combines results of 

contributions from interconnection, intra-connection and 

neighbourhood (nodes present in the cluster c or have an edge 

with the node n). 

α (numerator) = Weight due to inter-cluster connections of t+ 

weight due to intra-cluster connections of t. 

β (denominator) = neighbourhood size. 

        Scale Cost= α/β                                                              (6) 

Inter-Cluster contributions are the sum of all the connections 

from “t” to nodes in clusters other than “c”. This adds the cost 

associated with inter-cluster connection, as they should have 

formed an intra-cluster connection. 

Inter Cluster weight = (Total Edge weight of “t” – sum of all 

edge weights (of “t”) within the cluster “c”). 

Intra-cluster contributions evaluate to a difference of 

maximum possible intra-connection value (edges formed with 

all vertices in the cluster) and the actual value.  

Let M be the maximum possible edge weight and Nc be the 

size of the cluster “c”. 



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.4, December 2012 

24 

Intra Cluster weight = (Nc-1) *M – sum of all edge weights 

(of “t”) within the cluster “c”. 

Let total edge weight of t be represented is Wt. The total edge 

weight of connections or edges within the cluster c with one 

of its vertices being “t” and that is represented as Wc, t. 

Number of edges of the node t is represented as Et. 

Number of connections or edges within the cluster c 

with on its vertex being “t” and which is represented as Ec,t 

α= (Wt – Wc,t) + (M*(N-1) – Wc,t)           (7)     

   β= Et + (Nc-1) – Ec,t                      (8)                                                  

Since, α= Wc,t and Ec,t are constantly updated after 

application of each move, cost evaluation for any node in its 

current cluster is evaluated in constant time (will not be true if 

“c” doesn’t contain “t”). 

Move consists of a target node (represented by “T”), source 

cluster (represented by “S”) and the destination cluster 

(represented by “D”). On applying the move target node is 

moved from the source cluster to the destination cluster. Let 

there be a temporary empty cluster E.  

Moving a node from a cluster to cluster brings changes in the 

costs associated with the nodes in the target and destination 

clusters also. This further impacts any move with its source or 

destination cluster equal to the last applied move’s source or 

destination cluster. So for any move there are two costs 

associated. 

(a) Direct Cost : Cost change on the target node “t” 

(b) Induced Cost: Cost change on nodes in source & 

destination cluster other than “t”. 

Let E, be a temporary empty cluster. 

The move is broken down into two simple steps.  

(a) Move T from S to empty cluster E: mark all 

connections of node T as inter-cluster connection. 

(b) Move T from E to destination D: unmakes 

connection to node T to nodes in the destination 

cluster as inter-cluster connection (intra-cluster 

connection). 

Move Effect on cost = change in cost due to step (a) + change 

in cost due to step (b). 

Remove Effect: 

This step involves moving node T from S to E; 

Let S’ represent S after the move. 

Direct-Remove-Effect = Scale cost (T, E) – Scale cost (T, S). 

Induced-Remove-Effect as shown below contains changes in 

cost with other nodes. 

For each node R in S { 

                   Induced-Remove-Effect += (Scale cost (R, S’) – 

Scale cost (R, S));                         

} 

The new scaled cost evaluated from the induced-remove 

effect is measured by following two conditions. The 

conditions are stated as node in the source cluster was directly 

connected to the moved node and node in the source cluster 

wasn’t directly connected to the moved node. 

                 Scaled cost(R, S’) = ( R R

R R

 

 

 

 
)                      (9) 

Where 
R  = - M 2 weight (T,R); if connected 

- M 2 weight (T,R); if not connected

 


 

 and    

R  = 
0; if connected 

-1; if not connected





 

Total Remove Effect = T.R.E = Direct-Remove-Effect + 

Induced-Remove-Effect; 

Add Effect:  

This involves moving node from temporary empty cluster E to 

destination cluster D. 

Let D’, be the new state of D after a move has been applied. 

Direct-Add-Effect = Scale cost (T, D) – Scale cost (T, E). 

Induced cost is the sum of all cost changes on other nodes of 

the destination cluster. 

For each Node R in D { 

                          Induced-Add-Effect += (Scale cost (R, D’) – 

Scale cost (R, D));                       

}  

The new scaled cost, evaluated from the induced-add effect is 

measured by following two conditions. The conditions are 

specified as a node in the destination cluster was connected to 

the node added and a node in destination cluster wasn’t 

directly connected to the moved node. 

             Scaled cost (R, D’) = ( R R

R R

 

 

 

 

)                          (10)                                

Where 
R = M-2 weight (T,R); if connected 

M-2 weight (T,R); if not connected






and   

R =  0;

1;

if connected

if not connected





 

Total Add Effect = T.A.E =Induced-Remove-Effect + 

Induced-Add-Effect. 

The details of adaptive scaled cost estimation and the 

proposed algorithm are stipulated in the figure 2. 
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4. Experimental Results and Discussions 

The evaluation of the performance in terms of robustness and 

quality of our proposed algorithm ACOGCT compared with a 

selection of the state-of-art graph clustering algorithms as 

RNSC and MCL from the literature. The experiments are 

performed on a PC with a 2.53 GHz Intel (R) core (TM) 2 

Duo and 2 GB of RAM. Some synthetic and real benchmark 

random geometric graph (RGG) datasets are chosen to 

conduct the analysis of accuracy measure of graph clustering 

algorithms through computation of few performance metrics. 

We set up an initial configuration for creating the 

environment same for ACOGCT, RNSC and MCL to carry 

forward the experiments. The initial configuration 

forACOGCT, RNSC and MCL is as follows. For ACOGCT, 

the number of moves denoted as move Count=1000; shuffling 

frequency denoted as div Amount =40; diversification length 

denoted as div Interval=10 and tabu-length=250.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For RNSC, the following parameters are set like as d 

(diversification Length) = 10; D (shuffling Frequency) = 40; t 

(tabu-length) = 250 and e (number of experiments) = 1000 

and in case of MCL, the inflation (I) value is 4; reweight 

loops c= 0. 25; pre-inflation value p= 0. 8 and preset resource 

scheme= 5. 

 

4.1 Performance Metrics  

We select few suitable metrics as modularity index, NMI 

value to validate the performance measure of our proposed 

algorithm ACOGCT. Although there are some parametric 

measures as cost of clustering, cluster size of the algorithm to 

check the behaviour but these metrics provide important 

concepts of accuracy measurement. Graph size (number of 

nodes) is a basis, depending on which all the computation are 

executed to achieve the characteristics of the algorithm. 

 

Fig 2: Adaptive Scaled Cost Evaluation 
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4.1.1 Modularity Index 

A topology-based modularity metric, originally proposed by 

Newman and Girvan, 2004 [53], is used in this investigation 

to check the performance. This is a square symmetric matrix 

of clusters where each element dij represents the fraction of 

edges that link nodes between clusters i and j and each dii 

represents the fraction of edges linking nodes within cluster i. 

The modularity measure is given by Eq. (11) as follows. 

 

   

2( ( ) )ii ij

i j

M d d  
                                              (11)

 

4.1.2 NMI Value 

Another metric to estimate the quality of clusters achieved is 

the amount of mutual information shared between clusterings. 

This metric was originally defined by Kvalseth (1987) [54]. 

The NMI value plays an important role in checking the 

optimal nature of clusterings of different methods. It evaluates 

the algorithm’s behaviour in information passing through 

different clustering results. It can predict the optimal or 

accurate clusters during clusterings. Assume, there are set of 

groupings of clusterings as which is denoted by 

^. Let be the number of objects in the cluster  

according to and  be the number of objects in the 

cluster  according to . Let represents the number 

of objects that are in  according to and in cluster  

according to .The symbol is denoted as the 

estimation of NMI (Kvalseth (1987)) as represented in Eq. 

(12). 
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Based on this pairwise measure of mutual information, we can 

now define a measure between a set of r labelings, , and a 

single labelling 
'  as the average normalized mutual 

information (ANMI) expressed by Eq. (13). 
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4.1.3 Cluster size 

Cluster size can determine the quality of clusters produced 

during clustering by any graph clustering algorithm. It is also 

computed as the number of clusters, produced from the 

clustering results.  

 

 

4.2 Evaluation on Synthetic RGG Graphs 

Synthetic RGG benchmark graphs are produced using random 

geometric graph generator to evaluate the behavioural 

analysis on the basis of robustness and quality of the proposed 

algorithm ACOGCT compared to RNSC and MCL. Some 

RGG datasets with increasing graph size are shown in table 1. 

The robustness and quality of the graph clustering algorithms 

are measured in terms of cost of clustering, cluster size, 

modularity index and optimality checking. 

 

 

4.2.1 Cost of Clustering  

 
Table 1 gives the details of cost of clustering results, produced 

by ACOGCT, RNSC and MCL. The evaluation of cost is 

processed on synthetic RGG with increasing graph size. 

 

 

Table 1. Cost of Clustering with increasing Graph Size of 

RGG 

 

Networks  Cost of 

Clustering 

(ACOGCT) 

Cost of 

Clustering 

(RNSC) 

Cost of Clustering 

(MCL) 

Geo500 31714.39 32379.87 82929.31 

Geo700 68151.79 68444.88 162994.2 

Geo900 106632.9 107079.1 

 

269100 

 

Geo1100 158619.4 158786.8 402413 

Geo1500 295056.9 295870.6 748134 

Geo2000 528810.2 533175.1 1332000 

 
 

It is observed from figure 3 that the cost of clustering, 

produced by these graph clustering algorithms is always 

increased with increasing of graph size for all the test cases 

used here for conducting the experiments. ACOGCT is 

showing better results in cost evaluation compared to RNSC 

and MCL. MCL is giving the costliest clustering results 

compared to ACOGCT and RNSC. But RNSC is less costly 

compared to MCL.  

 

It can be established from the observations that ACOGCT is 

generating lower-cost clustering results compared to RNSC 

and MCL.  
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4.2.2 Cluster Size 
 
The cluster size values, resulted after clustering on synthetic 

RGG, are kept in table 2. All the computations are performed 

on synthetic RGG with increasing graph size. 

 

Table 2. Cluster size with increasing Graph Size of RGG 

 

Network Cluster Size 

(ACOGCT) 

Cluster 

Size 

(RNSC) 

Cluster Size 

(MCL) 

Geo500 141 166 375 

Geo700 193 228 563 

Geo900 243 293 714 

Geo1100 303 350 843 

Geo1500 410 478 1100 

Geo2000 557 644 1565 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4 shows that cluster size prediction is nearly reaching the 

highest accuracy in case of ACOGCT compared to RNSC and 

MCL. This implies that the rate of increment in cluster size 

with increasing of graph size is proper for ACOGCT. MCL is 

generating huge number of clusters compared to ACOGCT 

and RNSC. MCL is not giving meaningful clusters. MCL is 

not behaving well in producing clusters. RNSC’s cluster size 

prediction is better compared to MCL. 

It can be concluded that ACOGCT is producing meaningful 

and significant clusters compared to RNSC and MCL. 

4.2.3 Modularity Index 
 
 Table3 represents the modularity index values which are 

computed using the clustering results, produced by ACOGCT, 

RNSC and MCL algorithm. The evaluation of modularity is 

done using synthetic RGG with increasing graph size. 

Modularity Index is an important performance metric to test 

accuracy of clustering results of different graph clustering 

algorithms. The accuracy is measured based on the strength of 

the clusters, produced during clustering. The strength is 

computed based on the dense intra-cluster connectivity and 

sparse inter-cluster connectivity.  

 

 

Fig 3: Cost of Clustering with Increasing Graph Size 

Fig 4: Cluster Size with Increasing Graph Size 
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Fig 5: Modularity with Increasing Graph Size 
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Table 3. Modularity of Clustering with increasing Graph 

Size of RGG 

 

Network Modularity 

Index 

(ACOGCT) 

Modularity 

Index 

(RNSC) 

Modularity 

Index 

(MCL) 

Geo500 20.0722 

 

-4.9518 -3.06336 

Geo700 15.2896 

 

-15.6877 -2.8893 

Geo900 36.17436 

 

-5.808 -4.22473 

Geo1100 44.92552 

 

2.799 -7.9948 

Geo1500 61.30704 

 

4.6029 -13.935 

Geo2000 67.3495 

 

-4.3124 -15.2027 

Figure 5 shows that ACOGCT is behaving more modular or 

producing more strong clusters compared to RNSC and MCL. 

ACOGCT’s modularity curve is gradually increasing with 

increasing of graph size. The modularity is decreasing 

gradually with increasing of graph size in case of MCL. 

RNSC is achieving better modularity compared to MCL. 

ACOGCT gains positive impact on modularity index 

evaluation for all the test cases. It can be stated that ACOGCT 

is producing more accurate clusters compared to RNSC and 

MCL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Evaluation on Real RGG Graphs  

For this evaluation ‘bork2455’, 2002, high confidence yeast 

protein interactions by von Mering et al. and “shen-orr”, 2002, 

network motifs in the transcriptional regulation network of 

Escherichia coli by Shen-Orr et al. are taken and the 

performance of these algorithms is tested on these graphs. The 

clustering results are tabled in the following table 4. The 

computed results show that the cost of clustering produced by 

ACOGCT is lower compared to RNSC and MCL. The 

computed modularity of clustering results of the algorithms is 

produced and ACOGCT and RNSC are gaining positive index 

whereas MCL is at negative index. However, ACOGCT is 

achieving high modularity index compared to RNSC’s index. 

The cluster size prediction of ACOGCT is more significant 

and accurate compared to RNSC and MCL. RNSC is 

producing more number of clusters compared to ACOGCT 

and MCL. The computed cluster size of MCL tells that MCL 

is not exploring the whole network. It is observed from the 

results, shown in table 4 that ACOGCT is more accurate and 

significant in producing lower-cost clusters compared to 

RNSC and MCL.    

 

 

4.4 NMI Value on Real RGG 
 
NMI is playing a vital role to determine the quality of clusters, 

produced by clustering algorithms. The quality is measured in 

terms of optimality and it is basically achieved through the 

information passing between clustering results of a clustering 

algorithm. It is act as an information theoretic measure and 

shows the value of mutual information sharing between two 

clusterings of an algorithm. 

 

It is observed from figure 6 that NMI value is highest in case 

of ACOGCT compared to RNSC and MCL. ACOGCT 

produces high quality clusters compared to RNSC and MCL 

whereas the clusters evaluated from MCL clustering results 

are not meaningful. However, RNSC is producing optimal 

clusters compared to MCL. The figure 6 is plotted using NMI 

value and mixing parameter (mu) of network. The mixing 

parameter (mu) value is set in the range of 0.1 to 0.9. After 

300, 500, 700 runs with using real RGG graph (bork2455 

[55]), NMI value is computed in case of ACOGCT and RNSC 

and for the case of MCL; experiments are conducted by 

changing the inflation value as I= {2.5, 3.5, 4.5}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 6: NMI value on Real RGG Data (bork2455) 
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The NMI value curve shows that the optimality in steadily 

increased with increasing of mu and when mu>=0.6 the NMI 

is increasing gradually and it is very close to 1 in case of 

ACOGCT. RNSC and MCL are not showing that type of 

behaviour. RNSC’s NMI curve is growing linearly with 

increasing of mu. However, NMI value computation of RNSC 

shows that RNSC is better in producing optimal clusters than 

MCL. MCL is behaving opposite of ACOGCT in NMI 

computation. MCL’s NMI curve is decreasing in between 0.1 

and 0.5 of the mu value and afterwards it is linearly going.  It 

can be established from the observations that the mutual 

information sharing between clusterings is more effective and 

significant in case of ACOGCT whereas MCL can’t provide 

good quality clusters due to the less NMI value. MCL is not 

giving accuracy in producing optimal clusters compared to 

RNSC also. It can be concluded that ACOGCT is producing 

meaningful and expressive clusters compared to RNSC and 

MCL. ACOGCT is more optimal compared to RNSC and 

MCL. 

 
 

4.5 Visualization of Clustering of Real RGG 

Bork and Synthetic Graphs 
 
Fig 7 and fig 11 signify the visual representation of real RGG 

(bork2455) and (shen-orr) respectively with huge interactions 

exist between the nodes. Fig 15, fig16 and fig 17 shows the 

visual presentation of synthetic network with 1500, 900 and 

700 nodes respectively. The visualization of clustering results, 

produced by ACOGCT, RNSC and MCL on real RGG 

(bork2455) are shown in the figure 10, figure 9 and figure 8 

respectively. The resulted clustering visualizations, produced 

by ACOGCT, RNSC and MCL on shen-orr real RGG are 

shown in the following figure 12, figure 13 and figure 14.  It 

can be resolved from the visualizations of clustering results 

for both the real RGGs that ACOGCT’s clusters are more 

expressive and meaningful compared to RNSC and MCL. 

RNSC is performing better in producing clusters compared to 

MCL for all the test cases. It can be clearly assumed from the 

entire MCL’s clustering that clusters are not properly visible 

and incorrect. RNSC is producing more optimal clusters 

compared to MCL. But the clusters, resulted from ACOGCT’s 

clustering, are more accurate and proper compared to RNSC 

and MCL. ACOGCT is generating more optimal clusters 

compared to RNSC. ACOGCT is achieving significant 

improvement in producing optimal clusters for real large 

networks. All the visualizations of networks and clusterings 

are modularity controlled as they are shown in the following 

figure 18-23. Modularity is capable of identifying nodes 

which are in the same cluster using the help of some similarity 

measures i.e. basically determined using various properties of 

a complex network. It is perceived from fig 18 and fig 21 that 

clusters are marked appropriately by modularity approach in 

case of ACOGCT. RNSC and MCL are not responding well 

in that situation compared to ACOGCT. RNSC is behaving 

better compared to MCL in identification of clusters. The 

modularity approach is identifying the clusters, produced by 

ACOGCT accurately and the clusters are more expressive and 

significant compared to RNSC and MCL.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Visualization of   RGG bork2455 [55] 

 

Fig 8: Visualization of RNSC’s clustering Results on 

bork2455 [55] 

 

 
Fig 9: Visualization of MCL’s clustering Results 

on bork2455 [55] 
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Fig 11: Visualization of   RGG shen-orr [56] 

 

 

Fig 12: Visualization of ACOGCT’s clustering Results on 

shen-orr [56] 

 

 

 
Fig 13: Visualization of RNSC’s clustering Results 

on shen-orr [56] 

 

 
Fig 14: Visualization of MCL’s clustering Results on shen-orr 

[56] 

 

 

Fig 15: Visualization of synthetic RGG with 1500 

nodes 

 

 
Fig 10: Visualization of ACOGCT’s clustering Results 

on bork2455 [55] 
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Fig 17: Visualization of synthetic RGG with 700 nodes 

 

 

Fig 19: Modularity based clusters identifying in RNSC’s 

clustering on bork2455 [55] 

 

Fig 20: Modularity based clusters identifying in MCL’s 

clustering on bork2455 [55] 

 

Fig 21: Modularity based clusters identifying in ACOGCT’s 

clustering on shen-orr [56] 

 

 

 

Fig 16: Visualization of synthetic RGG with 900 nodes 

 

 

 
 

Fig 18: Modularity based clusters identifying in 

ACOGCT’s clustering on bork2455 [55] 
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5.   CONCLUSIONS 
 
There is an emerging issue in clustering of complex networks 

in the field of science and engineering. In this work, we have 

proposed an advanced and accurate cost based graph 

clustering technique, to investigate high quality clusters in 

large-scale RGG networks starting from a greedy creation of 

initial clustering scenario. The developed algorithm is 

basically a modified form of RNSC and some additional 

features as the aspiration criteria based tabu evaluation, etc. 

have been adopted to achieve more efficiency in graph 

clustering in terms of robustness and optimality. This 

developed algorithm has key benefits over existing graph 

clustering algorithms on the basis of lower cost cluster 

generation. We have shown that our developed algorithm can 

reliably and sensitively extract lower-cost clusters from 

artificially generated RGG networks. The modified algorithm 

gains immense relevance in the real world situation as 

presented in this work. Visualizations of the resulted 

clusterings, produced by our developed algorithm and some 

baseline methods affirm that the developed algorithm is 

generating more expressive and significant clusters compared 

to other baseline methods. Scale cost evaluation is O (n) in 

RNSC. This can easily be done in O (1) time if the 

information about current node, and its cluster contribution 

are pre-computed and these features are incorporated in our 

developed algorithm. The developed algorithm can be further 

extended by a parallel move technique which will give better 

results in the case of run-time. This algorithm can be further 

applied to various applications as wireless ad-hoc and sensor 

networks. 
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