
International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 3, December 2012

A Fast-Multiplying PSO Algorithm for Real-Time
Multiple Object Tracking

Fakheredine Keyrouz
Notre Dame University - Louaize

Zouk Mosbeh, Lebanon

ABSTRACT
The problem of real-time object tracking in live video sequences
is of increasing importance today mainly due to higher security re-
quirements for surveillance applications. In this study we present
a novel particle swarm optimization (PSO) algorithm with addi-
tional new features. The basic idea of PSO is to use one swarm
or one hierarchical swarm of particles to find the best estimate or
the global optimum for the object location in a given search space.
Particles fly around, share information with each other, and opti-
mize their behavior to find the global optimum. Until today, PSO
was used to track one pre-classified pattern of objects. The existing
algorithms apply only one swarm of particles to track predefined
patterns. The algorithm we present in this paper extended the PSO
algorithm to track different objects having non-predefined patterns:
n swarms are used to track n objects, i.e. to find n local maxima in
different parts of the search space. The proposed algorithm intro-
duces two new components to PSO. A self-adapting component,
which is robust against drastic brightness changes of the image
sequence, and a self-splitting component, which decides to track
the scene as one connected object, or as more stand-alone objects.

General Terms:
Swarm Intelligence, Tracking.

Keywords:
Object Tracking, Particle Swarm Optimization, Real-time per-
formance, Self-splitting.ifx

1. INTRODUCTION
Real-time object tracking is having an increased importance
by a number of applications today: elderly people surveillance,
human-computer interaction, medical imaging, as well as secu-
rity and entertainment systems. An emerging necessity to extract
and track people or objects in live videos is strongly demon-
strated in our everyday life.
Today’s tracking algorithms are able to find and follow single or
multiple objects in a precise way under certain predefined condi-
tions. However, if the brightness, intensity, and color conditions
are continuously changing, or if the object’s velocity is not con-
stant and the objects are occluded by other barriers, most track-
ing algorithms fail to achieve a satisfying tracking performance.
One common apporach to the multiple object tracking problem
is the use of multiple trackers, in such a way that each tracker
is tuned to follow one and only one object [6]. Other successful
approaches use training sets and static templates to model the
appearance of objects. While these techniques are usually com-
putationally inexpensive and can be implemented for real-time
tracking applications, their performance degrades considerably

when the object appearance undergoes changes beyond the train-
ing set [1].
Acceptable experimental results for the special situations, where
frequent oclusions and light variations are frequent, have been
proposed in [5] where Hidden Markov Models (HMMs) pro-
vide a solution to the particular problems at hand. Additionally,
a popular approach to object tracking is the Kalman filter [11],
where the data from the last rounds is used to predict the current
position of the tracked object with discrete variables. Techniques
like mean shift [4] and edge detection [2] are normally used as a
pre-processing step to object extraction and tracking.
A Particle Swarm Optimization (PSO) tracking approach has
been suggested in [10]. The basic PSO idea is to use n parti-
cles or birds belonging to one swarm in order to find the best ob-
ject position in a given parameter space. Every particle explores
one part in the search space, and all the particles work concur-
rently. Experimental results showed that existing PSO algorithms
outperform other mathematical models, though with certain lim-
itations, i.e. tracking of multiple completely independent objects
without predefined patterns is not yet achieved [13, 10]. Recent
studies use multiple particle filter trackers to track independent
objects which do not interact with each other. However, when in-
teractions happen between multiple objects, it is difficult to dis-
tinguish and associate the correct image observations to the cor-
responding trackers, especially for those objects that are similar
in appearance. This makes the independent trackers fails more
often than not [12]. The method introduced in [12] formulates
the multiple interaction problem as a general optimization prob-
lem and proposes a new hybrid PSO that incorporates a differ-
ential evolution mutation operation with a Gaussian based PSO.
Using one swarm along with multiple particle filters, this method
successfully handles frequent occlusions and object interactions.
In this study, we introduce a novel self-splitting PSO which is
able to track completely stand-alone objects and their mutual
interactions in real-time. this new PSO-based self-splitting and
self-adapting algorithm is robust against changing light condi-
tions, fast enough for real-time usage, and with the outstand-
ing option to track two or more completely independent objects.
When the objects are occluded by each other, only the swarm
tracks all objects, ie.e only one tracking window will be as-
signed. When the objects start moving apart, the algorithm au-
tomatically splits the tracking window according to the number
of objects in the image.

2. PARTICLE SWARM OPTIMIZATION
The PSO algorithm was first introduced in [8]. The term swarm is
applied to fish, insects, birds, and microorganisms, and describes
a behavior of a school of animals of similar size and body ori-
entation, generally cruising in the same direction. These animals
adjust their physical movement in order to avoid predators, seek

1

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 3, December 2012

food and mates, optimize environmental parameters such as tem-
perature.
The general idea of PSO is inspired by a flying swarm of birds
searching for food: they will cooperatively search the area by
continuously communicating their current positions and proxim-
ity to one another. Every bird knows where the other birds are
and what they have found. The reliability of a recently found
food location is defined by a static evaluation function, the so
called fitness function. In every round of the algorithm, birds
cogitate whether it is appropriate to change their position to-
wards the higher amount of food or to stay at their current po-
sition. After many iterations, nearly all birds are at the peaks or
close to the peaks of the search space where the food exists.
In comparison with other stochastic optimization techniques like
genetic algorithms (GAs) [7], PSO has fewer complicated op-
erations, fewer defining parameters, and can be coded in just a
few lines. Because of these advantages, it has received increas-
ing attention in a variety of applications in recent years. Training
of artificial neural networks, finding optimal solutions for equa-
tions, and localizing mobile robots in video sequences [9, 3] are
few examples. Basically, PSO is usable for every problem defin-
able with an n-dimensional search space, where every position
in this search space has a testable value. In PSO, the particles are
initialized with certain positions of the objects to be tracked. The
influence the particles exercise on each other is based on chang-
ing factors like the position of those particles, the direction they
are flying to and their velocity.
The velocity of each particle is defined by

vx,y,z(t) = ω · vx,y,z(t− 1) + c1 · φ1 · (pbestx,y,z
−px,y,z(t− 1)) + c2 · φ2 · (gbest− px,y,z(t− 1)) (1)

where vx,y,z(t) denotes the velocity in the x, y, and z directions
at time instant t, ω is a weighting factor, c1 and c2 are a-priori
defined weighting factors, φ1, φ2 are random numbers between
0 and 1, p is the position of the particle, pbest is the best position
found by this particle and gbest is the best position found by all
particles.
The position at the current time t for a certain particle, px,y,z(t),
is updated as its previous position px,y,z(t − 1) augmented by
its current velocity vx,y(t). This process is repeated after every
iteration of the PSO algorithm.

px,y,z(t) = px,y,z(t− 1) + vx,y,z(t) (2)

It is important that the search space shows convergent behavior,
otherwise it is nearly impossible for the PSO to attain acceptable
results. The PSO mechanism assumes that in most situations the
peaks have smaller peaks around them. This concept is inspired
by nature: If the highest mountain top is at a certain location, it
is normally surrounded by lower mountain tops around that lo-
cation. Thus, if one particle has found the current global best po-
sition, all the other particles drift towards this best particle. The
velocity and the accurate direction of a drifting particle changes
from one frame to the other, it’s therefore not deterministic.
Figure 1 illustrates a typical search scenario for the global best
position in a three-dimensional space. The term z = f(x, y) de-
notes a randomly generated function with peaks distributed ac-
cording to random variables x and y. In this context, (x, y) could
pinpoint the position of the particle with respect to the object to
be tracked, and f(x, y) denotes the grey value of the object at
this position.The best position (x, y) corresponds to the highest
point in f(x, y). All the N particles assigned with a certain ob-
ject to be tracked are communicating their current position and
trying to find the global best position.

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

PSO algorithm in motion

X axis

Y axis

Z
 a

x
is

z=f(x,y)

Fig. 1. Different time-snaps of one swarm of particles searching
for the global best position in a three dimensional space.

3. PSO-BASED TRACKING FRAMEWORK
3.1 N Completely Independent Swarms
As previously mentioned, the basic idea in PSO is that one
swarm is constantly searching for one certain kind of food. In
this study, we have evolved the original idea by using n inde-
pendent swarms searching for the same or for a different kind
of food, depending on the scenario at hand. If two swarms are
far enough from each other, they would not meet, i.e. they will
keep concentrating their search for their own kind of food. Even
if one bird in the first swarm has found a much bigger amount of
food corresponding to the second swarm, the birds in the second
swarm would not notice that as long as they stay far away from
the first swarm. This first idea is very important for our frame-
work: When swarms are far enough from each other, they cannot
distract each other. Take for example two swarm of birds living
in two different places on earth: if one swarm lives in Califor-
nia and the other lives in Munich and every bird knows only the
positions and velocities of the members of his own swarm, they
will never distract each other.
On the other hand, if swarms are very close to each other, they
will mix together. Consequently, since every swarm is tracking
one particular object, after the swarms mix together, the tracking
behavior becomes totally unpredictable. To counter effect this
tendency, we provide a solution completely inspired by nature.
It takes into account the diversity between different species of
birds living on earth. If the swarms don’t like the same food,
i.e. their corresponding fitness functions are not matching, they
naturally do not mix together. This means that the distribution
of the particles corresponding to every swarm has its peaks and
valleys naturally located at different places in the search space.
Imagine a swarm of ravens and a swarm of starlings: They search
for a different kind of food and will never mix together even if
they come very close to each other.
Thus, when the swarms are far enough from each other, where
”far enough” depends on the size of the objects to be tracked, we
will be successfully tracking multiple objects. If the two swarms
are close to each other, the PSO has to adapt it’s fitness function
to the situation at hand. This reasoning applies to a large number
of swarms as well.

3.2 Implementation
3.2.1 Prerequisites. As a preprocessing step, we need to filter
out the movements in the video frames, without affecting the
overall real-time performance of the PSO algorithm. A sufficient
operation for this task is to subtract the grayscale images at time
instants t and t − 1. Doing this, we obtain a search space with
n peaks corresponding to the objects in motion and showing a
convergent behavior. Away from the moving objects is only a
big ocean of zeros. Since the velocity of the particles is limited,

2

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 3, December 2012

and considering that no drastic camera movements is happening,
one swarm finds absolutely no way to track the wrong object.
To illustrate our idea using an example, consider having one red
and one blue ball. In the initial round assuming that the balls are
not moving, we make usage of an additional criteria like the hue
value to initialize the tracking algorithm with the locations of the
balls. The hue value is very sensitive to light changes, therefore it
will only be used in the initial round or when the objects are very
close to each other. Once both swarms have a starting position
near the object they should track, the PSO algorithm uses only
the grayscale values as long as a predefined minimum distance
between the swarms is not undercut.
In the case where the two balls would have the same color, an
edge detection operation along with a two-dimensional convo-
lution to identify the number of connected components in the
picture could be applied to initialize the PSO algorithm [2].

3.2.2 Self-Adapting Component. If objects are very close to
each other, the grayscale values aren’t enough to separate the
objects, i.e. the swarms. In this case, the ocean of zeros between
the two objects disappears and the particles could start to track
the wrong object. Thus we introduced an adapting mechanism
to decide for the next round whether the grayscale values are
enough or additional information is needed. This adapting com-
ponent checks the position of the global best of every swarm in
the last round. If two or more global bests from different swarms
undercut the predefined minimum distance, the fitness function
must change over time. This is only possible after a complete
search procedure happens, i.e. it’s applicable to the next frame,
otherwise the peaks would change their height in the search pro-
cess and this is a very complex criteria for the PSO, comparable
to drastic changes in the environment itself where the objects to
be tracked are moving.

gbest 1
gbest 2

Swarm 1 Swarm 2

d

x

y

z

Fig. 2. Visualization example of a self-adapting scene.

It is important to notice the difference between search rounds and
PSO epochs. The PSO swarms explore the search space in up to
2000 epochs to find peaks. After this procedure is complete, the
next round with frame x + 1, x + 2 and y + 1, y + 2 can start.
The algorithm requires the global best positions of all swarms
from the last round and adaptively configures the fitness function
for the next round, making it thus possible to react on different
tracking situations.
Figure 2 shows how the self adapting process works: The parti-
cles of each swarm are around their global best. Depending on
the distance between the two global best positions, the fitness
function will be adapted for the next round.

3.2.3 Self-Splitting Component. We have presented a solution
for the case the objects are far away and close to each other, now
we introduce a solution for the more complex case: when one of
the objects hides partly or completely behind the others. Figure
3.2.3 illustrates a self-splitting situation in billiard scene where
two billiard balls move apart from each other.
The self-splitting component checks the global best of every
swarm after one round. In the case of a 2-dimensional search
space, if the distance between two global bests is below m pix-
els, where m depends on the size of the objects, the two tracking
windows will fuse into one window containing both objects. If
the distance between the global best positions increases again,
the search algorithm has to split the search window into two or
more windows, depending on the number of moving objects in
the video frames. The distance between two global bests is cal-
culated using the following equations:

a =| gbestx − gbest2x | (3)
b =| gbesty − gbest2y | (4)

dgb1,gb2 =
√
a2 + b2 (5)

where a denotes the distance between the two global bests in
the x direction, b is the distance in the y direction, gbestx and
gbesty are the components from the global best from swarm 1,
gbest2x and gbest2y are the x and y positions from the global
best from swarm 2 and d is the distance between the global bests
calculated with the Pythagorean theorem.

Fig. 3. Self-splitting situation in a billiard scene.

4. 1-SWARM VERSUS N-SWARM PSO
4.1 PSO With Only One Swarm
The video frames used were captured with a MD-9035 digital
camera having 25 fps and a resolution of 720x576 pixel (PAL).
At first we tried to implement the standard PSO with only one
swarm. We subtracted two frames to get a convergent behavior,
i.e. the tracked object has a continuous flow of gray values. It was
possible to find and track one object, but if the starting points of
the particles were very far away from the object, the PSO algo-
rithm never found the object. We have repeated the same proce-
dure with two objects. Although one of the two objects had much
higher peaks in the two-dimensional search space, the particles
had absolutely no chance to find it if they started too far away.
Hence, we have forced a swarm into a near local maximum when
the global maximum is far away.
Current state of the art PSO techniques use patterns or
masks [10] and only one swarm may be successfully assigned
a specific object describable with a certain pattern. However,
these techniques are not efficient for tracking two or more in-
dependent objects, since the necessary pattern will continuously
change after every time-step depending on the direction, veloc-
ity, and location of the tracked object in the environment. Many
trials to track two independent objects using one swarm have
failed due to the fact that this kind of experiments conflicts with
the theory of PSO, which aims at finding a unique solution or
tracking a single object using many particles.
Other techniques like Hidden Markov Models show acceptable
results for concurrently tracking multiple objects [5]. However,
these models require a well-conditioned problem and intensive

3

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 3, December 2012

training experiments for every new tracking scenario. In addi-
tion, multiple-model Kalman filters and particle filtering tech-
niques used for multiple object tracking necessitate a training
phase and become computationally loaded when the number of
tracking objects increase, or when the movement models are not
linear [11].

4.2 N-Swarm PSO With Self-Adapting Fitness
Function

In the initial round of the algorithm a median filter is used to
reduce the noise of the first two video frames. All objects are
extracted with standard image processing methods, a frame sub-
straction along with a hue value is used in our case. After the
initial round is executed every particle in the swarm is assigned
a group of pixels corresponding to the object to be tracked. The
size of this group of pixels depends on the size of the object, and
on the distance between the tracked objects. The closer the ob-
jects are to each other the smaller is the number of pixels in the
group. Therefore the number of pixels assigned to a certain par-
ticle changes from one round to the other. In our case, a total
of 20 particles were sufficient for every swarm. The maximum
number of training epochs per round was set to 2000. In every
epoch every particle runs through (1) and (2) to get a new veloc-
ity and a new position. A total of 500 rounds were enough for a
successful training.
Other PSO parameters were initialized as follows. The value for
the parameter c1, also called independent component, was set to
2 and c2, so called social component, was set to 2 as well. The
weighting factor ω was initially set to a value of 0.9 and was
decreased every round according to the following equation:

ω(i) = ((iw2 − iw1)/(iwe − 1)) · (i− 1) + iw1 (6)

where ω(i) is the weighting factor at training round i, iw2 and
iw1 are the starting and final values for the weighting factor,
and iwe is the number of rounds when the weight factor reaches
its final value. The particle velocity was limited to 20 pixels per
round. More about the PSO parameters can be found in [3].
It is not necessary to analyze every video frame, for most prac-
tical situations 12 fps should be enough. If the objects move
around with extremely high velocity, the velocity of the parti-
cles has to be adjusted or a higher frame rate becomes neces-
sary. When one object is partly occluded by another object, this
will not affect the particle’s tracking behavior since the shape of
an object is not considered for tracking. The more complex case
where one object is not visible anymore is dependent on the time
the object is out of the picture: if the absence of the object is very
short, the swarm finds the object again when it appears in the
video sequence. This is a very complex issue with other tracking
technologies like HMM or Kalman Filters.
In the case where both objects are far from each other, the fitness
function takes the following form:

fx,y = framex,y (7)

where framex,y denotes the grayscale frame at coordinates x
and y in the search space. When the objects start approaching
each other, and the hue value of the pixels in the search space is
consistent with the object to be tracked, the fitness function takes
another form:

fx,y = α · framex,y (8)

where α is a positive rational weighting factor greater than 1. In
our case the value of α increases when hue value of the tracked
object approaches the searched hue value. Thus if the point in
the search space has the searched color or a color close to it,
the fitness value will increase dramatically for this space. If two
objects are very close to each other, the algorithm uses the color
to separate the objects. A stand alone usage of the hue value is
not recommended, as it is very sensitive to light changes. The

combination of the grayscale and hue values makes sure that the
wanted object is distinguishable from other objects.

4.3 Comparison of Results
To examine our new algorithm, we have assigned every tracked
object a tracking window. We then measured how accurate does

50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

70

80

90

100

Distance Between Both Tracked Objects (in Pixel)

T
ra

ck
in

g
 A

cc
u
ra

cy
 (

%
)

n−swarms PSO (constant illumination)

HMM (constant illumination)

n−swarms PSO (changing illumination)

HMM (changing illumination)

Fig. 4. Tracking accuracy of the n-swarm PSO algorithm as
compared to HMMs under constant and changing light conditions.

the tracking window fit and follow the object. After every round
of the algorithm, we compared the tracked object with the actual
object. If the object is completely inside the window, an assess-
ment value of 10 is achieved. When the assessment value is 8.6,
only 86 percent of the object are found inside the boundaries of
the tracking window. The lowest assessment value is 0 and corre-
sponds to the case where the object is totally outside the tracking
window. We tested our n-swarm PSO algorithm with two billiard
balls randomly moving on a table.
In the first part of the experiment, the light conditions of the
video recording did not change. The size of each ball in the video
sequence was 40x40 pixels, thus if the distance between the 2
global best positions of the swarms is lower than 50 pixels, the
tracking assessment is hard because one object hides behind the
other. In such a case, we assessed only the visible part of the
object. Hence, the tracking accuracy is lower when the distance
between the two objects is less than 50 pixels. This is illustrated
in the left part of the ”+”-marked line in figure 4.
In the second part of the experiment, the light conditions were
drastically changing from a video frame to the other. The n-
swarm PSO algorithm was tested again under these conditions.
While the general performance dropped down as seen in the ”x”-
marked line of figure 4, it’s an ameliorated performance com-
pared to the HMM method applied and trained for the same
scenario and under the same conditions. It’s worth mentioning
here that in addition to the degraded performance of HMMs, they
have required intensive training in an offline phase prior to the
live experiment. On the other hand, existing PSO-based methods
are not directly comparable with our technique because they are
tuned to track only one object or a predefined pattern of objects.
In a further experiment, the n-swarm PSO algorithm was tested
in three different scenarios. The first one consists of a billiard
scene with two randomly moving balls. The second scenario is a
scene where the two balls are forced to move up and down with
different velocities like marionettes, and where the light condi-
tions are constantly changing. The third scenario is a scene with
two persons walking and only their heads were tracked. Table 1
illustrates the percentage of correct localization of the n-swarm

4

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 3, December 2012

1 2 3

4 5 6

Fig. 5. Tracking of multiple subjects: The self-splitting PSO automatically generates new swarms to new or separating subjects in real-time.

Fig. 6. Tracking of multiple billiard balls: The self-splitting PSO instantaneously assigns new swarms to those scattering balls just after
break-in.

algorithm for every scenario. Compared to the HMM results for
tracking parts of people’s body in [5], our algorithm showed
similar results for the head tracking experiment. Nevertheless,
our algorithm was remarkably outperforming for the case where
the light conditions and the velocity of the objects drastically
changed.
Finally, we set our self-splitting n-swarm PSO to track several
walking persons in a hallway, where occlusions and interactions
occurs as illustrated in figure 5. It is seen that the tracker can
robustly and accurately track the randomly moving subjects over
all frames. One can observe how self-splitting is occuring when
the two persons walking close to each other in frame 4 separate
in frame 5. Furthermore, the tracker was applied to track the
high-speed movement of different billiard balls on a pool table
after break-in. The results are illustrated in figure 6. Even under
high speed impact conditions, the n-swarm PSO algorithm was
able to instentaneously create new swarms on-the-fly for each of
those balls which separated from the assembly of the others balls
immediatly after the break-in.

Table 1. Percentages of Correct Localization (%).
Sequence Object 1 Object 2 HMM [5]
Billiard (constant illu-
mination)

97.3 93.7 92.2

Marionette Balls
(changing illumination)

94.1 92.8 86.7

People walking (chang-
ing illumination)

95.6 98.2 87.3

5. CONCLUSION
In this paper we introduced a new tracking algorithm based on
particle swarm optimization. The algorithm outperforms state of
the art techniques by making it possible to track n completely in-
dependent objects using PSO. In comparison with other tracking
techniques like HMMs and Kalman filtering, the n-swarm PSO
algorithm is more robust to changing light and velocity condi-
tions, has fewer computational operations, fewer defining pa-
rameters, and can be coded in just a few lines, providing thus
an easy real-time implementation on a DSP platform. Applica-
tions of the algorithm are projected to be in the fields of concur-

5

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 3, December 2012

rent object recognition and tracking, medical imaging, as well as
machine learning.
Based on our approach to multiple object tracking, many venues
for future work are to be considered. A valuable step in this direc-
tion is to find a generalized form of an adaptive fitness function
suitable for every dimensions and every color of the objects to
be tracked in real-time.

6. REFERENCES

[1] B. Babenko, M. Yang, and B. Belongie. Robust object track-
ing with online multiple instance learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
33(8):1619–1632, 2011.

[2] J. Canny. A computational approach for edge detection.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 8(6):679–698, 1986.

[3] A. Carlisle and G. Dozier. An off-the-shelf PSO. Proc.
Workshop on Particle Swarm Optimization, Indianapolis,
2001.

[4] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24(5):603–619,
2002.

[5] D. Forsyth D. Ramanan and A. Zisserman. Tracking peo-
ple by learning their appearance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(1):65–81,
2007.

[6] X. Zhang et al. Multiple object tracking via species-based
particle swarm optimization. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 20(11):1590–
1602, 2010.

[7] D. Goldberg. Genetic algorithms in search, optimiza-
tion and machine learning. Reading, MA: Addison-Wesley,
1989.

[8] J. Kennedy and R. C. Eberhart. Particle swarm optimiza-
tion. Proc. IEEE International Conference Neural Net-
works, 4:1942–1948, 1995.

[9] J. Pugh and A. Martinoli. Inspiring and modeling mulit-
robot search with particle swarm optimization. In Proc.
IEEE Swarm Intelligence Symposium (SIS 2007), pages
332–339, 2007.

[10] M. Scheutz. Real-time hierarchical swarms for rapid adap-
tive multi-level pattern detection and tracking. In Proc.
IEEE Swarm Intelligence Symposium (SIS 2007), pages
234–241, 2007.

[11] G. Welch and G. Bishop. An introduction to Kalman filter.
ACM SIGGRAPH 2001 Course #8., year =.

[12] Z. Zhang, H. Seah, and J. Sun. A hybrid particle swarm op-
timization with cooperative method for multi-object track-
ing. Proc. IEEE world Congress on Evolutionary Compu-
tation (CEC), 4:1–6, June 2012.

[13] Y. Zheng and Y. Meng. The PSO-based adaptive window for
people tracking. In Proc. IEEE Swarm Intelligence Sympo-
sium (SIS 2007), pages 23–29, 2007.

6

	INTRODUCTION
	Particle Swarm Optimization
	PSO-BASED TRACKING FRAMEWORK
	N Completely Independent Swarms
	Implementation
	Prerequisites
	Self-Adapting Component
	Self-Splitting Component

	1-SWARM VERSUS N-SWARM PSO
	PSO With Only One Swarm
	N-Swarm PSO With Self-Adapting Fitness Function
	Comparison of Results

	CONCLUSION
	REFERENCES

