
International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.2, December 2012 

22 

SPC for Software Reliability 

using Inflection S-Shaped Model 

 
R.Satya Prasad, PhD. 

Associate  Professor 
Dept.of Computer Science & Engg., 

Achrya Nagarjuna University 
Guntur 

 

Y.Sangeetha 
Asst.Professor 

Dept.of Information Technology 
V.R.Siddhartha Engg.College 

Vijayawada 
 

 

ABSTRACT 

Traditional statistical analysis methods account for natural va-

riation but require aggregation of measurements over 

time,which can delay decision making.Statistical process con-

trol (SPC) is a branch of statistics that combines      rigorous 

time series analysis methods with graphical     presentation of 

data,often yielding insights into the data more quickly and in a 

way more understandble to lay     decision makers .SPC and its 

primary tool-the control chart-provide researchers and practi-

tioners with a method of better understanding and communica-

ting data from software reliability improvement process efforts 

.This   paper provides an s-shaped software reliability growth  

model based on the Non-Homogenous Poisson Process 

(NHPP).The maximum likelihood approach is used to    esti-

mate the unknown parameters of the model. 

Keywords: Statistical Process Control, software reliability, 

mean value function, probability limits,     control charts, Inflec-

tion s-shaped. 

1 INTRODUCTION 

Software reliability is a key part in software  quality. The study 

of software reliability can be categorized into three parts: mod-

eling,          measurement and improvement. Software        reli-

ability modeling has matured to the point that meaningful re-

sults can be obtained by applying suitable models to the prob-

lem. There are many models that exist, but no single model can       

capture a necessary amount of the software    characteristics. 

Assumptions and abstractions must be made to simplify the 

problem. There is no single model that is universal to all the 

situations. Software reliability cannot be directly measured, so 

other related    factors are measured to estimate software relia-

bility and compare it among products. Development process, 

faults and failures found are all factors related to software relia-

bility. Software reliability improvement is complex process. 

The difficulty of the problem stems from insufficient under-

standing of software reliability and in general, the characteris-

tics of software. Until now there is no good way to conquer the 

complexity problem of software the difficulty of the problem 

stems from insufficient understanding of software reliabil-

ity.The difficulty of the problem stems from insufficient under-

standing of software reliability and in general, the characteris-

tics of software. Until now there is no good way to conquer the 

complexity problem of software. Defect-free software product 

cannot be assured. Realistic constraints of time and budget   

severely limit the effort put into software reliability  improve-

ment.  Software quality and reliability must be made to simplify 

the problem.  There is no single model that is   universal to all 

the   situations. Software reliability cannot be directly meas-

ured, so other related   factors are measured to estimate soft-

ware reliability and compare it among products.                

Software quality and reliability can be achieved by eliminating 

the causes or improving the   software process or its operating 

procedures [2].Applying statistical process control (use of con-

trol charts) to the management of software development efforts, 

to effect software process improvement. Deploying Statistical 

Process   Control is a process in itself, requiring             organi-

zational commitment across functional boundaries. SPC proce-

dures can help you    monitor process behavior [13]. The SPC 

chart          selection is based on data, situation and need 

[4].Control charts are an efficient way of         analyzing   per-

formance data in order to evaluate a process. A control chart is 

a popular statistical tool for monitoring the quality of goods and   

services, and for detecting when the process goes “out of con-

trol” as early as possible. The data from measurements of varia-

tions at points on the process map is monitored using control 

charts. Using control charts is a continuous activity,   ongoing 

over time. Considering above, software reliability measurement 

is a complex process which needs rational reliability models. 

2 NHPP MODEL 
The Non-Homogenous Poisson Process (NHPP) based software 

reliability growth models (SRGMs) are proven to be quite suc-

cessful in practical software reliability engineering [1, 3,12]. 

The main issue in the NHPP model is to determine an appropri-

ate mean value function to denote the expected number of fail-

ures experienced up to a certain time point. Model parameters 

can be estimated by using Maximum Likelihood Estimate 

(MLE). 

Let   0, ttN  be the cumulative    number of software 

failures by time‘t’. m(t) is the mean value function, representing 

the expected number of software failures by time ‘t’.  t  Is 

the failure  intensity function, which is proportional to the re-

sidual fault content. Thus   )1( bteatm   and

  ))((
)(

tmab
dt

tdm
t  . where ‘a’ denotes the ini-

tial number of faults contained in a program and ‘b’  

represents the fault detection rate. In software reliability, the 

initial number of faults and the fault       detection rate are al-

ways unknown. The maximum likelihood technique can be 

used to evaluate the            unknown parameters. In a more 

general NHPP SRGM  t can be           expressed as

        tmtatb
dt

tdm
t 

)(
 . Where  ta  is the 

time-dependent fault content function which includes the initial 



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.2, December 2012 

23 

and introduced faults in the program and  tb  is the               

time-dependent fault detection rate. 

3 MODEL DESCRIPTION: INFLECTION 

S-SHAPED MODEL 
Software reliability growth models have been grouped into two 

classes of models concave and S-shaped. The most important 

thing about both models is that they have the same             as-

ymptotic behavior, i.e., the defect detection rate decreases as 

the number of defects detected (and repaired) increases, and the 

total number of     defects detected asymptotically approaches a   

finite value. The inflection S-shaped model was proposed by 

[5,6]. This model assumes that the fault detection rate increases 

throughout a test period. The model has a parameter, called the   

inflection rate, which indicates the ratio of detectable faults to 

the total number of faults in the target software. True, sustained 

exponential growth cannot exist in the real world. Eventually all 

exponential, amplifying processes will uncover underlying 

stabilizing processes that act as limits to growth. The shift from 

exponential to asymptotic growth is known as sigmoidal, or      

S-shaped, growth. 

Ohba models the dependency of faults by       postulating the 

following assumptions: 

 Some of the faults are not detectable                      be-

fore some other faults are removed. 

 The detection rate is proportional to    the number of 

detectable faults in the        program. 

 Failure rate of each detectable fault is constant and 

identical. 

 All faults can be removed. 

Assuming [7]:  
bte

b
tb




1
 

This model is characterized by the following mean value func-

tion: 

 bt

bt
e

e

a
tm 





 1

1
)(


 

Where ‘b’ is the failure detection rate, and ‘  ’ is the inflec-

tion factor. The failure intensity function is given as: 

 

 21

1
)(

bt

bt

e

abe
t













  

4 PARAMETER ESTIMATION: MLE 

The idea behind maximum likelihood   parameter estimation is 

to determine the          parameters that maximize the probability      

(likelihood) of the sample data. The method of maximum like-

lihood is considered to be more robust (with some exceptions) 

and yields         estimators with good statistical   properties. In 

other words, MLE methods are versatile and   apply to most 

models and to different types of data. Although the methodolo-

gy for maximum likelihood estimation is simple, the                  

implementation is mathematically intense. Using today's com-

puter power, however, mathematical complexity is not a big 

obstacle. Conduct an experiment and obtain N independent 

observations, 
1 2, , , Nt t t . Then the          likelihood function 

[9] is given by the following product:

  



N

i

kikN tfLtttL
1

212121 ),,,;(,,,|,,,  

 Likely hood function by using λ(t) is: L =




n

i

it
1

)(  The logarithmic likelihood function is given 

by: 



N

i

kitfL
1

21 ),,,;(lnln      Log Likeli-

hood function is: Log L = log (


n

i

it
1

)( ) 

Which can be written [10] as  

   1 1

1

.log ( ) ( )
n

i i i i n

i

y y m t m t m t 



    
 

 

The maximum likelihood estimators (MLE) of k ,,, 21 

are obtained by maximizing L or , where is in L. By max-

imizing , which is much easier to work with than L, the max-

imum likelihood estimators (MLE) of k ,,, 21  are the 

simultaneous solutions of k equations such that: 

 
 

0




j
,  j=1,2,…,k 

The parameters ‘a’ and ‘b’ are estimated using iterative Newton 

Raphson Method, which is    given as 
)('

)(
1

n

n
nn

xf

xf
xx   

5 ILLUSTRATING THE MLE METHOD 

    PARAMETER ESTIMATION 

To estimate ‘a’ and ‘b’, for a sample of n units, first obtain the 

likelihood function: assuming 05.0 .

 
 

 












N

i
bt

bt

e

abe
L

1
2

1

1




 

Take the natural logarithm on both sides, The Log Likelihood 

function is given as:  

 Log L  = ])(log[
1




n

i

it   

      



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.2, December 2012 

24 

 =

 

 








n

i
bt

bt

e

abe

1
2

1

1
log[





 

 
 















n

i

bt

btbt

bt

e
e

a

e

abe

1
2

1
1

)
1

1
log(




  

Taking the Partial derivative w.r.t ‘a’ and    equating to ‘0’. (i.e. 

0
log






a

L
)    

 

 a= 
                 

      
  ……………… (5.1) 

   Taking the Partial derivative w.r.t ‘b’ and equating to ‘0’.(i.e. 

0
log

)( 





b

L
bg )  

 g(b)=          
 
     

    
          

      

             
   

    
    

        
  

   −1 −   −11+  −   −1-                   
         1  +2      1      1+      ......................

........(5.2) 

Taking the partial derivative again w.r.t ‘b’ and equating to ‘0’. 

(i.e. 0
log

)('
2

2







b

L
bg )                                              

 g’(b)=          
 
    

                  
   

               
  

   
      

          
  

     
         

            
   - 

                              
 
                                   

                     
         

………………………………………………………….(5.3)                      

The parameter ‘b’ is estimated by iterative    Newton Raphson 

Method using
)('

)(
1

n

n
nn

bg

bg
bb  , which is substituted in 

finding ‘a’. 

6 DISTRIBUTION OF FAILURE COUNT 

DATA 
 

Based on the failure count data given in Table 1 & 2, we com-

pute the software failures process through Mean Value Control 

chart. We used  cumulative Failure count data for software      

reliability monitoring using inflection s-shaped distribution.  

Assuming an acceptable probability of false alarm of 

0.27%, the control limits are      calculated by solving the fol-

lowing equations.  

  99865.01
1

1



 



bt

btU e
e

T


  

  5.01
1

1



 



bt

btC e
e

T
  

  00135.01
1

1



 



bt

btL e
e

T


  

 

 

 

Table 1: Failure count data, DS1 

Failure 

Number  

No. of fail-

ures 

Failure 

Number  

No. of fail-

ures 

Failure 

Number  

No. of fail-

ures 

1 2 8 1 15 1 

2 1 9 7 16 6 

3 1 10 3 17 1 

4 1 11 1 18 3 

5 2 12 2 19 1 

6 2 13 2 20 3 

7 2 14 4 21 1 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.2, December 2012 

25 

Table 2: Failure count data, DS2 

Failure 

Number  

No. of fail-

ures 

Failure 

Number  

No. of fail-

ures 

Failure 

Number  

No. of fail-

ures 

1 6 8 3 15 5 

2 2 9 2 16 2 

3 1 10 3 17 2 

4 1 11 1 18 2 

5 3 12 3 19 1 

6 1 13 2 20 3 

7 2 14 5   

 

‘


a ’ and ‘


b ’ are Maximum Likely hood           Estimates 

(MLEs) of parameters and the values can be        computed 

using iterative method for the given cumulative time between 

failures data shown in Table 1 & 2.  Using ‘a’ and ‘b’ values we 

can compute )(tm .  

 These limits are converted to )( Utm , )( Ctm and 

)( Ltm  form. They are used to find whether the software pro-

cess is in control or not by placing the points in Mean value 

chart shown in figure 1 & 2. A point below the control limit 

)( Ltm
 
indicates an alarming signal. A point above the control 

limit )( Utm indicates better quality. If the points are falling 

within the control limits it indicates the software process is in 

stable  

[8]. 

 

Table 3: Estimated parameters and the corresponding control limits 

Data set A b m(tu) m(tc) m(tl) 

DS1 871.823132 0.002646 869.880070 435.878051 1.176445 

DS2 2664.972820 0.000874 2660.57464 1332.21952 3.59737 

Table 4: DS1-Successive differences of cumulative mean values. 

No 
Cum 

Failures 
m(t) 

Succes-

sive dif-

ferences 

No 
Cum 

Failures 
m(t) 

Successive 

differences 

1 2 4.380758 2.181700 12 25 53.255941 4.179178 

2 3 6.562459 2.1759357 13 27 57.435119 8.165291 

3 4 8.7383948 2.170185 14 31 65.600411 2.0278552 

4 5 10.908580 4.341534 15 32 67.628266 12.150753 

5 7 15.250114 4.305545 16 38 79.779019 1.993030 

6 9 19.555660 4.282821 17 39 81.772050 5.947548 

7 11 23.838481 2.132926 18 42 87.719598 1.972047 

8 12 25.971407 14.822531 19 43 89.691646 5.884931 

9 19 40.793938 6.255731 20 46 95.576578 1.951285 

10 22 47.049670 2.074233 21 47 97.527863  

11 23 49.123903 4.132037     



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.2, December 2012 

26 

Table 5: DS2-Successive differences of cumulative mean values. 

No 
Cum 

Failures 
m(t) 

Successive 

differences No 
Cum 

Failures 
m(t) 

Successive 

differences 

1 6 13.274436 4.412048 19 47 102.304655 6.403911 

2 8 17.683801 2.203407 20 50 108.746510 4.260806 

3 9 19.893430 2.201664 21 52 113.007316 8.501331 

4 10 22.094167 6.594546 22 56 121.508647 2.121115 

5 13 28.684850 2.194704 23 57 123.629762 4.237176 

6 14 30.877907 4.384199 24 59 127.866938 4.230447 

7 16 35.258275 6.563293 25 61 132.097385 4.223727 

8 19 41.830956 4.366872 26 63 136.321112 2.109346 

9 21 46.193941 6.537349 27 64 138.430458 4.213664 

10 24 52.724136 2.175665 28 66 142.644122 4.206968 

11 25 54.897065 6.516660 29 68 146.851090 4.200281 

12 28 61.404470 4.335839 30 70 151.051372 4.193604 

13 30 65.759150 10.809563 31 72 155.244976 6.277907 

14 35 76.552352 10.766780 32 75 161.522883 2.089308 

15 40 87.332847 4.294767 33 76 163.612191 4.173630 

16 42 91.619857 4.287955 34 78 167.785821 2.084325 

17 44 95.899380 4.281153 35 79 169.870145  

18 46 100.171429 2.138029     

 

By placing the differences of cumulative failure 

counts shown in table 4 and 5 on y axis, failure number on x 

axis and the values of control limits being placed on Mean Val-

ue chart, we   obtained figure 1 & 2. The first Mean Value chart 

shows that all the mean value successive         differences are 

within the control limits, which indicates that the process is in 

stable state. Whereas the in the second chart some of the   suc-

cessive differences are out of control limits, which indicates the 

failure process is identified. It is significantly early detection of 

failures using Mean Value Chart [11]. The software quality is 

determined by detecting failures at an early stage. 

 

Figure: 1 Mean Value Chart for DS1 

mean value chart

UCL 869.8800709
CL 435.878051601

LCL 1.176445761

0.100000000

1.000000000

10.000000000

100.000000000

1000.000000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Date/Time/Period

su
cc

es
si

ve
 d

if
fe

re
n

ce
s



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.2, December 2012 

27 

Failure Control Chart

UCL 2660.5746
CL 1332.2195

LCL 3.5974

1.0000

10.0000

100.0000

1000.0000

10000.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Date/Time/Period

d
if

fe
r
e
n

c
e
s
 o

f 
m

e
a
n

 v
a
lu

e
s

 

 

 

 

 

 

                                                                    

 

 

  

 

 

 

 

 

 

Figure: 2 Mean Value Chart for DS2 

7 CONCLUSION 
The successive differences of failure counts are plotted 

through the estimated mean value function against the failure 

serial order. The parameter estimation is carried out by New-

ton Raphson Iterative method for inflection s-shaped model. 

The graph of data set DS1 in figure 1 has shown all the points 

with in control limits .By observing the Mean Value Control 

chart of data set DS2,it is identified that failure situation is 

detected at 2nd point ,which is below m    .It indicates that 

the failure process is detected at an early stage. Hence we 

conclude that our method of   estimation and control chart are 

giving a positive recommendation for their use in finding out 

preferable control process or desirable out of control signal 

.The early detection of software failure will improve the soft-

ware reliability.  

 

8 REFERENCE 
[1]  Geetha Rani, N., Satya Prasad, R., & Kantham, R.R.L., 

(2011).Software Reliability Growth Model Using Inter-

val Domain Data. International Journal of Computer 

Applications, Vol 34[9], Pp.5-8. 

[2]  Kimura, M., Yamada, S., Osaki, S., (1995).Statistical 

Software Reliability prediction and Its Applicability 

Based on Mean Time    Between Failures. Mathematical 

and Computer Modeling, Vol 22, Issues 10-12, Pp. 149-

155. 

[3]  Krishna Mohan G., & Satya Prasad, R., (2011). Interval 

Domain Based Software      Process Control Using 

Weibull Mean Value Function. International Journal of 

Computer Science and Information Technology and      

Security, Vol 1[2], Pp.111-114. 

[4]  Macgregor, J.F., Kourti, T., (1995).Statistical Process 

Control of Multivariate Processs.Control Engineering 

Practice, Vol 3, Issue 3, Pp.403-414, Canada: Elsevier. 

[5]  Ohba, M., (1984). Software Reliability Analysis Model. 

IBM J. Res. Develop, Vol 28, Pp.428-443. 

[6]  Ohba, M., (1984a). Software Reliability Analysis Mod-

els. IBM Journal Research       Development, Vol.21 (4). 

[7]  Ohba, M., & Yamada, S., (1984b). S-Shaped Software 

Reliability Growth Models .Proc.4thInt.Conf.Reliabilit 

and Maintainability, Pp.430-436. 

[8]  Pham. H., (1993). Software Reliability Assessment: Im-

perfect Debugging and Multiple Failure types Software 

Development. EG&GRAAM-10737, Salt Lake: Idaho         

National Engineering Laboratory. 

[9]  Pham. H., (2003). Handbook of Reliability Engineering, 

London: Springer. 

[10]  Pham. H., (2006). System software         reliability, Lon-

don: Springer. 

[12]  Satya Prasad, R., Gotham, V., & Krishna Mohan G., 

(2011). Interval Domain Software Process Control – 

Goelokumoto. International Journal of Research and 

Reviews in Computer Science, Vol 2[4], Pp.1001-1004. 

[13] Xie, M., Goh. T.N., & Ranjan, P., (2002). Some Effec-

tive Control Chart Procedures for Reliability Monitor-

ing.Reliability engineering and System Safety, Vol 77, 

Pp.143-150. 

 

 


