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ABSTRACT 

This paper introduces a new technique for reducing glitches in 

logic circuits implemented on Field Programmable Gate 

Arrays (FPGAs). The technique is based on the principles of 

path balancing. The main objective was to achieve glitch 

minimization which, in turn would reduce dynamic power 

during routing on FPGAs. The glitch aware routing was 

adopted for simulations tests. The input paths to look-up table 

(LUT) are balanced by aligning signals so that all input 

signals arrive simultaneously at LUT. To perform simulation 

tests and validation of new design, two different benchmark 

logic circuits of adder and multiplier were considered for 

implementation on FPGAs. Simulated results’ analyses of 

selected benchmark circuits showed that there was a reduction 

in dynamic power consumption by FPGAs by about 11.5% 

and 7.5% for LUT input size of 16 bits, for adder and 

multiplier circuits respectively. The improvements in power 

consumptions are based on the computations for glitch aware 

router with path balancing compared to that of glitch unaware 

routers.  
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1. INTRODUCTION 
The programmable logic blocks in an FPGA serves two 

purposes, first it provides computation facility and second it 

acts as memory for storage of digital information. The basic 

building block is a programmable combinational logic. It 

consists of flip-flops, latches and fast-carry-logic.  Many 

FPGAs also contain a heterogeneous mixture of different 

blocks. These are used for specific functions, such as memory 

blocks, multipliers and multiplexers. The FPGAs can be 

programmed for making logic connections between logic 

blocks and input-output (IO) blocks. Pass transistors and 

multiplexers are used to connect logic gates. Many routing 

algorithms are used to place and route operations. IOs occupy 

nearly 40% of FPGA area and its design requires diversity in 

supply and reference voltages. IOs also affect power 

consumption as these form capacitances and act as gateways 

for supply voltages and clock frequencies.  

The power consumption in FPGAs can be broadly categorised 

into two classes according to the sources of consumption. 

These are dynamic and static power consumptions. According 

to the literature available, dynamic power alone is about 67 % 

of total power consumption in FPGAs [1]. It, therefore, is 

quite explicit that reducing dynamic power in FPGAs would 

effectively reduce total power consumption. Dynamic power 

consumption takes place only during signal transitions at input 

and output of a logical gate. There are two types of signal 

transitions. First, the functional transitions that are required to 

perform logical operations and the second transitions are due 

to spurious signals or glitches. The glitches are short time 

faults in a system or circuit, which normally occur due to 

unbalanced inputs paths to LUT in an FPGA. The glitches 

normally do not affect the functional accuracy of a 

synchronous circuit but these do cause additional power 

consumption in FPGA. Within dynamic power consumption, 

glitches add about is 40% of power consumption in FPGAs 

[2]. It, therefore, is very important to reduce glitches, if 

dynamic power consumption is to be reduced for the designs 

to be implemented on FPGA.  

The concept of glitch aware power reduction algorithm was 

introduced for the first time by Quang Dinh et al [2]. The 

detailed analysis and results presented by [2] indicates that the 

algorithm is very effective for reducing dynamic power 

consumption in FPGAs. This paper is further extension of the 

same work [2] for validating the algorithm by implementing it 

for different logical benchmarking circuits of adders and 

multipliers. For the design of logic system synthesis, don’t-

cares are an important concept and they are frequently used 

for the logic circuits optimization. A don’t-care condition may 

be defined as an input state of a logic function for which the 

logical output may be either logic ‘0’ or ‘1’. It does not affect 

the functional correctness of the circuit. Don’t-cares can occur 

due to externally applied signals or sometimes even within 

circuit itself due to neighbouring logic. For example a fan-in 

does not contain a certain input combination. Yet another 

example may be cited as a condition of a function whose 

output does not affect the circuit’s outputs under specific 

conditions.  

A new technique to reduce dynamic power consumptions in 

FPGAs using glitch reroute [2] is implemented and analysed 

for simulated results for carry save adder and booth multiplier 

circuits. This technique consists of delaying faster signals 

deliberately so that these signals reach LUT at same time. 

This is called balancing inputs paths to LUT. The goal here is 

to reduce glitches which in turn would reduce dynamic power 

consumption in FPGAs. Importantly it has no impact on the 

other part of design flow of the same logical circuit. The 

technique is applied only after accomplishment of placement 

and routing functions. As a consequence, the algorithm does 

not take into account the performance and area usage of the 

logic circuit implementation on FPGAs. The experimental set 

up for simulation tests maintains the results of the existing 

compilation while only making changes to the glitches within 

LUT. 

Section 2 introduces power consumption analysis of FPGAs 

and section 3 is focused on descriptions of proposed 

implementation of technique. Section 4 includes detailed 

simulation result analyses and discussions on findings of 

implementation. Section 5 concludes the paper with results 
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and a brief future direction for a research on the techniques of 

power reduction in FPGA implementation. 

 

2. POWER CONSUMPTON IN FPGA 
The Field Programmable Gate Array (FPGA) has been used 

consistently for simulation of several circuits and systems 

designs for research and educational purposes. FPGAs are 

very flexible for design modification and have reusability 

feature as any design can be erased and reconfigured at ease. 

The increasing costs, short design time and changing 

requirements suit most for programmable logic blocks. In 

order to explain fundamental structures of FPGA, it consists 

of logic blocks, I/O pads and interconnections, all of these are 

programmable. This makes FPGA as most versatile 

configurable logic circuit block. Even very advanced 

industrial solutions are being implemented by using Hardware 

Description Languages (HDLs) such as Verilog and VHDL in 

conjunction with FPGAs hardware implementation. The basic 

programmable logic element is a k-input LUT for FPGA 

architecture.  A k-input lookup table (k-LUT) can implement 

any Boolean functions of and up to k input variables. 

Power reduction is quite desirable for implementation of very 

large logic circuits and systems. FPGAs are no exception and 

more so due to the fact that FPGAs consume more power 

compared to Application Specific Integrated Circuits (ASICs) 

design. This is a disadvantage as being not much suitable for 

wireless and handheld DSP appliances. This indicates that 

there is a need for reduction of power consumption in FPGAs. 

Significant dynamic power consumption can be calculated by 

using the following equation. 

Dynamic Power Consumption = ½V2
dd f Σi Ci Si      (1) 

Where Vdd is supply voltage, f is clock frequency, i = 1, ..., n 

is total number of gates in a logic block, Ci is load capacitance 

for ith gate and Si is switching activity for ith gate. This paper 

is aiming to reduce switching activity for a gate so that it 

consumes less dynamic power. The delays do occur in the 

routing network. This may be due to late arrival of signals at 

LUT inputs due to synchronization problems. This leads to 

waiting of some of the early arriving signals so that an 

alignment of the signals may be achieved. This finally leads to 

the glitches and consequently a large amount of power 

consumption occurs. 

To demonstrate the effects of glitching, consider the signal 

activity of an n-bit ripple carry adder. If next set of input 

arrive at the adder input port, all n-bit sums are computed 

simultaneously but the carry bits must ripple from the least 

significant bit up to the most significant bit. The most 

significant bit of the adder could switch n times due to ripple 

factor. The sum is computed at the final transition.  The other 

intermediary switching is analogous to glitch. For example, 

the carry-out of 32nd bit of a 32-bit ripple carry adder is 

switched 32 times and sum-out also switches 32 times before 

a final computation is made. The higher significant bits have 

larger switching rate. Figure 1 illustrates two types of logic 

circuits, glitch-prone and glitch-free circuits. 

There are number of algorithms proposed to optimize the 

FPGA performance and speed of execution of underlying 

functions of algorithms. Versatile place and route software is 

quite often used for optimization of routing operations in 

FPGA [3]. The problem of glitches in FPGA was tried by 

mapping that balances LUT levels for different paths [4]. Yet 

another research aimed at reducing glitches by inserting 

programmable delay units into configurable logic blocks of 

FPGAs [5]. The delay units make sure that all signals arrives 

at the same time at LUT. Some of the recent research on this 

topic suggests that there have been efforts to reduce glitches 

targeted to FPGAs. The delay due to various interconnections 

is more responsible for glitches compared to logic functional 

delay. 

Many researchers have used versatile place and route (VPR) 

toolset for FPGA placement and routing with Pathfinder [5], 

[6].  CAD based designs have shown good results for 

minimization of glitches which reduces dynamic power up to 

10% and more significantly these do not change architecture 

of the design [7]. A solution based on critical path with least 

delay used Lagrangian relaxation method [8]. In as far as 

algorithms are concerned, FPGA routing based on the 

congestion was proposed in the Pathfinder research [9]. 

Firstly, a small sub group of critical paths is identified and 

then the group is optimized by repeated trials of remaking 

group by including some more paths and simultaneously 

excluding other paths. There may be some of the paths 

overlapping and hence least delay path method may not be 

very efficient. More recent work for glitch minimization 

includes new tools that can be used to investigate the power 

consumption in FPGA circuits and architectures. [10], [11]. 

These methods are normally hybrid in the nature that the 

combination of techniques such as GlitchMap, GlitchLess etc. 

with efficient place and route algorithms often produce a 

better solution. This research had demonstrated through 

simulation tests that interconnects are usually the major power 

consumption sources in FPGA and thereby total interconnect 

power is dominant. Leakage power can also be considerable at 

nano-scales as the transistors are more likely to be suffering 

from leakage current at this scales. Area optimization in 

FPGA had also been studied in details and proposed details 

are supporting the fact that dynamic power can be, to some 

extent, minimized. These techniques are helpful in two ways 

as these tend to minimization of the dynamic power 

consumption and same time area on the chip [12], [13]. In one 

of the research, the shortest path technique is combined with 

other constraints [14] such as complexity, hazards and fault 

prone nodes of a graph. Here, the idea is that physically short 

path may not be always good enough to optimize dynamic 

power consumption in FPGAs. There are studies suggesting 

that the relation between Boolean operations and algebraic 

operations depends upon probabilities of each input being 

logical 0 or 1 [15]. The fault detection may be strongly 

depended upon these probabilities and thus determined power 

consumption should be a function of accuracy of fault 

detection.  The switching activity and capacitance effects are 

Figure 1. Topology of logic circuits (a) Glitch prone 

and (b) Glitch free 
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depicted in figure 2. These variations show that as levels of 

the logic circuit, through which signals travel, increase, the 

capacitive effects and switching activities both increase. The 

rate of capacitance increase is faster and thus delays also 

increase accordingly. 

 

3. LOGIC DESIGN IMPLEMENTATION  
The general algorithm overview used for implementing carry 

select adder and booth multiplier is illustrated by figure 3. 

Firstly a VPR router is initialized and then balancing is done 

for chosen subsets of the paths with the goal of minimization 

of delay and cost function in terms of length. Selected pairs 

are reordered and then divided again in order to form new 

pairs. Next step consist of using path finding algorithms to 

reroute the paths with least delays and lengths of the paths in 

order to reduce overall delay [16], [17].  

The inputs are selected based on the principle that a longer 

path would always result in power overheads due to more 

capacitance involved and a number of buffers that appear in 

the path of a signal as it travels through circuit levels. 

Balancing is only performed on the relevant and effective 

inputs as all inputs may not need balancing or may not 

actually cause glitches.  The balancing is performed by using 

heuristic approach with constraints of switching activities and 

capacitance as illustrated in figure 2. 

LUT inputs are required to be ordered for the likelihood of 

probable glitch occurrences. For ordering Boolean difference 

signal probability and binary decision diagrams are also 

cosidered as constraints. This research work focused on 

multiple existing algorithms for computing ordering 

arrangements. The experimental setup preferred small 

increase in delays rather than large delays for simulations 

tests. Then, finally the path ranking is determined for each 

path. Figure 3 illustrates the general arrangement of the 

experimental execution steps for glitch re-router algorithm for 

conducting simulation tests for two chosen circuits of carry 

select adder and booth multiplier chosen for experimental 

tests. The flow chart sequence shows step by step method to 

determine the path order, input signal balance and the ranks of 

the input signals. Firstly a small set of paths of finite length is 

chosen. Paths with smallest delays are identified and then 

combine all such paths. Again increase the delay and repeat 

the steps until a final threshold level is reached during 

iterations. The target paths are chosen by selecting nodes 

closest in vicinity and ensuring that no overlaps occur when 

edges are connected. 

 

 

For example, in a given data module, the experimental setup 

included 16 delay paths with different widths. The different 

widths of signals ensure that each of the 16 signals arrive at 

different times at LUT while travelling through chosen paths. 

On reaching to LUT, the signals get switched from 0 to 1 or 1 

to 0. The mismatched arrival of signals at LUT leads to 

unnecessary power dissipation in the circuit. It can be avoided 

if design is planned and implemented properly on FPGAs. 

The power so wasted can be minimized if some logic block in 

FPGAs can route the incoming signal on balanced paths at the 

time of signal reaching to router module. The router switches 

the received data on to a balanced path based on its time 

delay. Balancing path module balances the switched data. The 

balancing paths match time delay between data paths and 

LUT. The synchronization block within LUT receives data 

from balancing path and performs synchronization on 16 bit 

to check the received data for accuracy. In the next step it 

separates a 16 bit data block and sends it to LUT Block. LUT 

stores the synchronized data which can be used for any 

combinational and sequential operations to be performed by 

the logic circuit in the future operations. The simple method 

explained here is very effective and easy to implement for 

validations and simulation tests. Though the method is not 

new and many researchers have applied for optimization, this 

Figure 3. Flowchart for glitch minimization in logic design 

of carry select adder and booth multiplier circuits. 
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paper describes elaborately for two new benchmarking 

circuits for simulations test. 

4. SIMULATION RESULTS 
The experimental setup was based on a computer system with 

a 2.20 GHz Intel (R) Core (TM)2 Duo CPU with a system 

type of 32-bit operating system from Microsoft Inc. The 

benchmarking circuits for carry select adder used are shown 

in figure 4 and figure 5 with glitch unaware and glitch aware 

implementation respectively. The comparison of algorithm, 

GlitchReroute, with glitch unaware versatile place and route’s 

router and glitch aware router is illustrated in figure 4 and 

figure 5. The LUT input size was selected with k = 16. Main 

implementation platform was EP3C16F484C6 Cyclone III 

device family from Altera Inc. as shown in figure 4 in box. 

The software platform used was Quartus-II for running 

simulation tests. Quartus version 10.1 Build 153 11/29/2010 

SJ Web Edition, which is a registered trademark of Altera 

Corporation. The toolbox, PowerPlayAnalyzer, a part of 

Altera’s Quartus II software was used for estimating power 

consumption on FPGA implementation of carry select adder. 

The Quartus II was run for simulation in order to synthesize, 

place, and route the circuit of adders as mentioned above. 

These files are used for both glitch unaware versatile place 

and route’s router and glitch aware versatile place and route’s 

router for proposed circuit. 

Figure 4. Glitch unaware-view of RTL schematic block diagram of carry select adder as a benchmarking circuit  
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Glitchreroute was performed on Quartus II to simulate the 

circuits and generate a Netlist viewer specifically for RTL 

schematics. Figure 4 also shows the routing module. Next step 

was to run PowerPlayAnalyzer to estimate the power 

consumption on board FPGA. For this a LUT of input size 

k=16 was used. The PowerPlayAnalyzer reports showed 

power estimation for carry select adder. Table 1 enlists the 

dynamic power consumption which was computed by using 

PowerPlayAnalyzer simulation test on carry select adder 

circuit. GlitchReroute is able to reduce dynamic power 

consumption by 11.5% compared to glitch unaware versatile 

place route’s router. The total power consumed has not been 

shown by each circuit due to the fact that LUTs that mapped 

circuits were much fewer than the total number of LUTs 

available in the Cyclone III devices. This means that most of 

the power is consumed by unused LUTs and thus the total 

power is not comparable to the used LUTs by algorithm with 

glitch unaware router fairly. 

Table 1: Performance comparison analysis 

Combinational 

logic 

Routing 

Type 

Total logic elements I/O 

pins 

Total 

Registers 

Peak 

inter- 

connect 

usage 

Dynamic 

Power 

Dissipation 

(mW) 
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logic 

register 

No. of 

registers using 

Synchronous 

Clear 

No. of registers 

using 

Asynchronous 

Clear 

No. of 

registers 

using Clock 

Enable 

Carry Select 

Adder 

Glitch unaware 

router 

249 238 142 16 141 141 6% 77.31 

Glitch aware 
router 

192 96 46 16 0 16 2% 68.29 

Booth 

Multiplier 

Glitch un 

aware router 

317 372 158 17 141 238 5% 78.81 

Glitch aware 
router 

262 246 78 17 0 17 4% 71.30 

Figure 5. Glitch aware-view of RTL schematic block diagram of carry select adder as a benchmarking circuit 
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Generally, the carry-select adder consists of two ripple carry 

adders and a multiplexer. Two n-bit numbers are added by a 

carry-select adder by using two ripple carry adders. In order to 

perform the computation two times, two carry adder circuits 

are required, first time with the assumption that the carry 

being 0 and second time with assumption that the carry is 

being 1. After accomplishment of two computations, the 

results of correct sum, as well as the correct carry are 

determined. 

The second benchmarking circuit chosen was booth 

multiplier. Booth’s multiplication algorithm multiplies two 

Figure 6. Glitch (a) unaware and (b) glitch aware RTL schematic block diagrams of booth multiplier as a 

benchmarking circuit  

 

                     CLK 

                    Load 

                     RST 

      Data_in[15:0]                     

                      LUT_enb 

 

            LUT_mult1[3:0] 
 

LUT_read_mult2[15:0] 

 

 

CLK 

RST              Data_Out[15:0] 

Load 

Data_In[15:0] 

Data_signal_path: Data_signal_path 

CLK 
RST                                Sync_Out[15:0] 

Sync_In[15:0] 

Real_data_In[15:0] 

LUT_SYNC:LUT_sync 

CLK 

RST                             LUT DATA OUT 1[3:0] 

W R                             LUT DATA OUT 2[3:0] 
LUT_DATA_IN[3:0] 

LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

CLK 

RST                                              LUT DATA OUT 1[3:0] 

W R                                              LUT DATA OUT 2[3:0] 

LUT_DATA_IN[3:0] 
LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

     LUT_BLOCK_4:LUT_BLOCK_4 

LUT_BLOCK_1:LUT_BLOCK_1 

 

Clk 

enable 

Multiplier [15:0]      

Multiplicand[15:0] Product[31:0] 

BOOTH:MULTIPLIER 

Mul_out[31:0] 

LUT_1_out[15:0] 
LUT_2_out[15:0] 

LUT_3_out[15:0] 

LUT_4_out[15:0] 

              LUT_BLOCK_3:LUT_BLOCK_3 

  

         LUT_BLOCK_2:LUT_BLOCK_2 

  

CLK 
RST                                              LUT DATA OUT 1[3:0] 

W R                                              LUT DATA OUT 2[3:0] 

LUT_DATA_IN[3:0] 

LUT_DATA_CHECK[3:0] 
LUT_mult[3:0] 

mult2[3:0] 

CLK 

RST                                 LUT DATA OUT 1[3:0] 

W R                                  LUT DATA OUT 2[3:0] 

LUT_DATA_IN[3:0] 

LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

CL

K 

CLK      CLK out 

CLK_mimic: 

CLK_mimic_x 

CLK 

Load 

RST 

Data_in[15:0] 

CLK 
RST          Data_Out[15:0] 

Load 

Data_In[15:0] 

Data_signal_path: 

Data_signal_path 

 

clk 

enb          sig out[15:0] 

rst 

sig in[15:0] 

routing:routing 

CLK 
RST                     Sync_Out[15:0] 

Sync_In[15:0] 

Real_data_In[15:0] 

LUT_SYNC:LUT_sync 

LUT_enb 
 

LUTmult1[3:0] 

 
LUT_read_mult[15:0] 

 

 
 

 

 

 

LUT_BLOCK_1:LUT_BLOCK_1 

 

CLK 

RST                             LUT DATA OUT 1[3:0] 

W R                             LUT DATA OUT 2[3:0] 

LUT_DATA_IN[3:0] 
LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

LUT_BLOCK_4:LUT_BLOCK_4 

CLK 

enb 

A[15:0]                     

B[15:0]               Product[15:0]        

BOOTH:MULTIPLIER 

 

MUL_OUT[15:0] 

CLK 

RST                                  LUT DATA OUT 1[3:0]               
W R                                   LUT DATA OUT2[3:0]                                          

LUT_DATA_IN[3:0] 

LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

CLK 

RST                                 LUT DATA OUT 1[3:0] 

W R                                 LUT DATA OUT 2[3:0] 

LUT_DATA_IN[3:0] 

LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

CLK 

RST                                   LUT DATA OUT 1[3:0] 

W R                                  LUT DATA OUT 2[3:0] 
LUT_DATA_IN[3:0] 

LUT_DATA_CHECK[3:0] 

LUT_mult[3:0] 

mult2[3:0] 

LUT_BLOCK_2:LUT_BLOCK_2 

  

LUT_BLOCK_3:LUT_BLOCK_3 

  

CLK 

RST          balancing_data_out[15:0]    

balancing_data_In[15:0] 

Balaancing_path() 

(a) Glitch unaware RTL view of Booth Multiplier  

(b)   Glitch aware RTL view of Booth Multiplier  



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.19, December 2012 

49 

signed binary numbers in two’s complement notation. Booth 

used desk calculators for multiplication that were faster at 

shifting than adding. He invented an algorithm to increase the 

multiplication speed. Booth’s algorithm is quite often used by 

researcher of computer architecture and related topics.  

Figure 6 shows the RTL view of booth’s multiplier for glitch 

unaware and glitch aware simulation results respectively. The 

power consumptions report is shown in Table 1. Similar to the 

carry select adder, the experimental set up consisted of a LUT 

of input size k=16 for Booth’s multiplier. The 

PowerPlayAnalyzer was used to generate power reports. For 

Booth’s multiplier, dynamic power consumption was reduced 

by a 7.5% compared to glitch unaware versatile place route’s 

router simulation. 

5. CONCLUSION 
In this paper, the authors have presented a technique for 

reducing dynamic power in FPGAs by minimizing glitches 

during routing for two specific circuits of carry select adder 

and Booth’s multiplier. The routing was carried out with 

GlitchReroute routing approach. The algorithm tried to find 

routes with target delays and balancing paths leading to LUT 

inputs, so that signal arrival times are aligned at LUT. The 

simulation tests have shown a reduction in dynamic power 

consumption in FPGAs. Finally a comparison was made with 

glitch unaware versatile place and route’s router and glitch 

aware router. The results attained 11.5% reduction in dynamic 

power in FPGAs on implementation of carry select adder and 

a similarly a 7.5 % reduction in power consumption in case of 

Booth’s multiplier was observed.  

For further research in the future, it is planned that dynamic 

power in FPGAs can still be reduced by using path balancing 

technique with other glitch reduction technique as a hybrid 

approach in FPGA. These approaches may include technology 

mapping and technology decomposition.  
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