
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

43

Logic Circuit Design Implementation on FPGA at

Reduced Dynamic Power Consumption

Kirthika Anandan

Department of Electronics and Communication
Engineering, M. Kumarasamy College of

Engineering, Thalvapalyam, Karur – 639119, INDIA

Kishana R. Kashwan, IEEE Member
Department of Electronics and Communication
Engineering – PG, Sona College of Technology

(Autonomous), TPT Road, Salem – 636005, INDIA

ABSTRACT

This paper introduces a new technique for reducing glitches in

logic circuits implemented on Field Programmable Gate

Arrays (FPGAs). The technique is based on the principles of

path balancing. The main objective was to achieve glitch

minimization which, in turn would reduce dynamic power

during routing on FPGAs. The glitch aware routing was

adopted for simulations tests. The input paths to look-up table

(LUT) are balanced by aligning signals so that all input

signals arrive simultaneously at LUT. To perform simulation

tests and validation of new design, two different benchmark

logic circuits of adder and multiplier were considered for

implementation on FPGAs. Simulated results’ analyses of

selected benchmark circuits showed that there was a reduction

in dynamic power consumption by FPGAs by about 11.5%

and 7.5% for LUT input size of 16 bits, for adder and

multiplier circuits respectively. The improvements in power

consumptions are based on the computations for glitch aware

router with path balancing compared to that of glitch unaware

routers.

General Terms

Digital Electronics, Logic Design, Circuits and Systems,

Arithmetic and

Keywords

VLSI, FPGA, Logic Circuits, Dynamic Power, Glitch, LUT,

Router, Logic Synthesis.

1. INTRODUCTION
The programmable logic blocks in an FPGA serves two

purposes, first it provides computation facility and second it

acts as memory for storage of digital information. The basic

building block is a programmable combinational logic. It

consists of flip-flops, latches and fast-carry-logic. Many

FPGAs also contain a heterogeneous mixture of different

blocks. These are used for specific functions, such as memory

blocks, multipliers and multiplexers. The FPGAs can be

programmed for making logic connections between logic

blocks and input-output (IO) blocks. Pass transistors and

multiplexers are used to connect logic gates. Many routing

algorithms are used to place and route operations. IOs occupy

nearly 40% of FPGA area and its design requires diversity in

supply and reference voltages. IOs also affect power

consumption as these form capacitances and act as gateways

for supply voltages and clock frequencies.

The power consumption in FPGAs can be broadly categorised

into two classes according to the sources of consumption.

These are dynamic and static power consumptions. According

to the literature available, dynamic power alone is about 67 %

of total power consumption in FPGAs [1]. It, therefore, is

quite explicit that reducing dynamic power in FPGAs would

effectively reduce total power consumption. Dynamic power

consumption takes place only during signal transitions at input

and output of a logical gate. There are two types of signal

transitions. First, the functional transitions that are required to

perform logical operations and the second transitions are due

to spurious signals or glitches. The glitches are short time

faults in a system or circuit, which normally occur due to

unbalanced inputs paths to LUT in an FPGA. The glitches

normally do not affect the functional accuracy of a

synchronous circuit but these do cause additional power

consumption in FPGA. Within dynamic power consumption,

glitches add about is 40% of power consumption in FPGAs

[2]. It, therefore, is very important to reduce glitches, if

dynamic power consumption is to be reduced for the designs

to be implemented on FPGA.

The concept of glitch aware power reduction algorithm was

introduced for the first time by Quang Dinh et al [2]. The

detailed analysis and results presented by [2] indicates that the

algorithm is very effective for reducing dynamic power

consumption in FPGAs. This paper is further extension of the

same work [2] for validating the algorithm by implementing it

for different logical benchmarking circuits of adders and

multipliers. For the design of logic system synthesis, don’t-

cares are an important concept and they are frequently used

for the logic circuits optimization. A don’t-care condition may

be defined as an input state of a logic function for which the

logical output may be either logic ‘0’ or ‘1’. It does not affect

the functional correctness of the circuit. Don’t-cares can occur

due to externally applied signals or sometimes even within

circuit itself due to neighbouring logic. For example a fan-in

does not contain a certain input combination. Yet another

example may be cited as a condition of a function whose

output does not affect the circuit’s outputs under specific

conditions.

A new technique to reduce dynamic power consumptions in

FPGAs using glitch reroute [2] is implemented and analysed

for simulated results for carry save adder and booth multiplier

circuits. This technique consists of delaying faster signals

deliberately so that these signals reach LUT at same time.

This is called balancing inputs paths to LUT. The goal here is

to reduce glitches which in turn would reduce dynamic power

consumption in FPGAs. Importantly it has no impact on the

other part of design flow of the same logical circuit. The

technique is applied only after accomplishment of placement

and routing functions. As a consequence, the algorithm does

not take into account the performance and area usage of the

logic circuit implementation on FPGAs. The experimental set

up for simulation tests maintains the results of the existing

compilation while only making changes to the glitches within

LUT.

Section 2 introduces power consumption analysis of FPGAs

and section 3 is focused on descriptions of proposed

implementation of technique. Section 4 includes detailed

simulation result analyses and discussions on findings of

implementation. Section 5 concludes the paper with results

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

44

and a brief future direction for a research on the techniques of

power reduction in FPGA implementation.

2. POWER CONSUMPTON IN FPGA
The Field Programmable Gate Array (FPGA) has been used

consistently for simulation of several circuits and systems

designs for research and educational purposes. FPGAs are

very flexible for design modification and have reusability

feature as any design can be erased and reconfigured at ease.

The increasing costs, short design time and changing

requirements suit most for programmable logic blocks. In

order to explain fundamental structures of FPGA, it consists

of logic blocks, I/O pads and interconnections, all of these are

programmable. This makes FPGA as most versatile

configurable logic circuit block. Even very advanced

industrial solutions are being implemented by using Hardware

Description Languages (HDLs) such as Verilog and VHDL in

conjunction with FPGAs hardware implementation. The basic

programmable logic element is a k-input LUT for FPGA

architecture. A k-input lookup table (k-LUT) can implement

any Boolean functions of and up to k input variables.

Power reduction is quite desirable for implementation of very

large logic circuits and systems. FPGAs are no exception and

more so due to the fact that FPGAs consume more power

compared to Application Specific Integrated Circuits (ASICs)

design. This is a disadvantage as being not much suitable for

wireless and handheld DSP appliances. This indicates that

there is a need for reduction of power consumption in FPGAs.

Significant dynamic power consumption can be calculated by

using the following equation.

Dynamic Power Consumption = ½V2
dd f Σi Ci Si (1)

Where Vdd is supply voltage, f is clock frequency, i = 1, ..., n

is total number of gates in a logic block, Ci is load capacitance

for ith gate and Si is switching activity for ith gate. This paper

is aiming to reduce switching activity for a gate so that it

consumes less dynamic power. The delays do occur in the

routing network. This may be due to late arrival of signals at

LUT inputs due to synchronization problems. This leads to

waiting of some of the early arriving signals so that an

alignment of the signals may be achieved. This finally leads to

the glitches and consequently a large amount of power

consumption occurs.

To demonstrate the effects of glitching, consider the signal

activity of an n-bit ripple carry adder. If next set of input

arrive at the adder input port, all n-bit sums are computed

simultaneously but the carry bits must ripple from the least

significant bit up to the most significant bit. The most

significant bit of the adder could switch n times due to ripple

factor. The sum is computed at the final transition. The other

intermediary switching is analogous to glitch. For example,

the carry-out of 32nd bit of a 32-bit ripple carry adder is

switched 32 times and sum-out also switches 32 times before

a final computation is made. The higher significant bits have

larger switching rate. Figure 1 illustrates two types of logic

circuits, glitch-prone and glitch-free circuits.

There are number of algorithms proposed to optimize the

FPGA performance and speed of execution of underlying

functions of algorithms. Versatile place and route software is

quite often used for optimization of routing operations in

FPGA [3]. The problem of glitches in FPGA was tried by

mapping that balances LUT levels for different paths [4]. Yet

another research aimed at reducing glitches by inserting

programmable delay units into configurable logic blocks of

FPGAs [5]. The delay units make sure that all signals arrives

at the same time at LUT. Some of the recent research on this

topic suggests that there have been efforts to reduce glitches

targeted to FPGAs. The delay due to various interconnections

is more responsible for glitches compared to logic functional

delay.

Many researchers have used versatile place and route (VPR)

toolset for FPGA placement and routing with Pathfinder [5],

[6]. CAD based designs have shown good results for

minimization of glitches which reduces dynamic power up to

10% and more significantly these do not change architecture

of the design [7]. A solution based on critical path with least

delay used Lagrangian relaxation method [8]. In as far as

algorithms are concerned, FPGA routing based on the

congestion was proposed in the Pathfinder research [9].

Firstly, a small sub group of critical paths is identified and

then the group is optimized by repeated trials of remaking

group by including some more paths and simultaneously

excluding other paths. There may be some of the paths

overlapping and hence least delay path method may not be

very efficient. More recent work for glitch minimization

includes new tools that can be used to investigate the power

consumption in FPGA circuits and architectures. [10], [11].

These methods are normally hybrid in the nature that the

combination of techniques such as GlitchMap, GlitchLess etc.

with efficient place and route algorithms often produce a

better solution. This research had demonstrated through

simulation tests that interconnects are usually the major power

consumption sources in FPGA and thereby total interconnect

power is dominant. Leakage power can also be considerable at

nano-scales as the transistors are more likely to be suffering

from leakage current at this scales. Area optimization in

FPGA had also been studied in details and proposed details

are supporting the fact that dynamic power can be, to some

extent, minimized. These techniques are helpful in two ways

as these tend to minimization of the dynamic power

consumption and same time area on the chip [12], [13]. In one

of the research, the shortest path technique is combined with

other constraints [14] such as complexity, hazards and fault

prone nodes of a graph. Here, the idea is that physically short

path may not be always good enough to optimize dynamic

power consumption in FPGAs. There are studies suggesting

that the relation between Boolean operations and algebraic

operations depends upon probabilities of each input being

logical 0 or 1 [15]. The fault detection may be strongly

depended upon these probabilities and thus determined power

consumption should be a function of accuracy of fault

detection. The switching activity and capacitance effects are

Figure 1. Topology of logic circuits (a) Glitch prone

and (b) Glitch free

Logic

Circuit

Logic

Circuit

Logic

Circuit

y0

(a)

 y1

y2

y3

fout

y2

Logic

Circuit

Logic

Circuit

Logic

Circuit

(b)

fout

y1 y0 y3

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

45

depicted in figure 2. These variations show that as levels of

the logic circuit, through which signals travel, increase, the

capacitive effects and switching activities both increase. The

rate of capacitance increase is faster and thus delays also

increase accordingly.

3. LOGIC DESIGN IMPLEMENTATION
The general algorithm overview used for implementing carry

select adder and booth multiplier is illustrated by figure 3.

Firstly a VPR router is initialized and then balancing is done

for chosen subsets of the paths with the goal of minimization

of delay and cost function in terms of length. Selected pairs

are reordered and then divided again in order to form new

pairs. Next step consist of using path finding algorithms to

reroute the paths with least delays and lengths of the paths in

order to reduce overall delay [16], [17].

The inputs are selected based on the principle that a longer

path would always result in power overheads due to more

capacitance involved and a number of buffers that appear in

the path of a signal as it travels through circuit levels.

Balancing is only performed on the relevant and effective

inputs as all inputs may not need balancing or may not

actually cause glitches. The balancing is performed by using

heuristic approach with constraints of switching activities and

capacitance as illustrated in figure 2.

LUT inputs are required to be ordered for the likelihood of

probable glitch occurrences. For ordering Boolean difference

signal probability and binary decision diagrams are also

cosidered as constraints. This research work focused on

multiple existing algorithms for computing ordering

arrangements. The experimental setup preferred small

increase in delays rather than large delays for simulations

tests. Then, finally the path ranking is determined for each

path. Figure 3 illustrates the general arrangement of the

experimental execution steps for glitch re-router algorithm for

conducting simulation tests for two chosen circuits of carry

select adder and booth multiplier chosen for experimental

tests. The flow chart sequence shows step by step method to

determine the path order, input signal balance and the ranks of

the input signals. Firstly a small set of paths of finite length is

chosen. Paths with smallest delays are identified and then

combine all such paths. Again increase the delay and repeat

the steps until a final threshold level is reached during

iterations. The target paths are chosen by selecting nodes

closest in vicinity and ensuring that no overlaps occur when

edges are connected.

For example, in a given data module, the experimental setup

included 16 delay paths with different widths. The different

widths of signals ensure that each of the 16 signals arrive at

different times at LUT while travelling through chosen paths.

On reaching to LUT, the signals get switched from 0 to 1 or 1

to 0. The mismatched arrival of signals at LUT leads to

unnecessary power dissipation in the circuit. It can be avoided

if design is planned and implemented properly on FPGAs.

The power so wasted can be minimized if some logic block in

FPGAs can route the incoming signal on balanced paths at the

time of signal reaching to router module. The router switches

the received data on to a balanced path based on its time

delay. Balancing path module balances the switched data. The

balancing paths match time delay between data paths and

LUT. The synchronization block within LUT receives data

from balancing path and performs synchronization on 16 bit

to check the received data for accuracy. In the next step it

separates a 16 bit data block and sends it to LUT Block. LUT

stores the synchronized data which can be used for any

combinational and sequential operations to be performed by

the logic circuit in the future operations. The simple method

explained here is very effective and easy to implement for

validations and simulation tests. Though the method is not

new and many researchers have applied for optimization, this

Figure 3. Flowchart for glitch minimization in logic design

of carry select adder and booth multiplier circuits.

Star

t

Run-time driven VPR router

For each 1-st level CLB

Get desired balance delay

delay

Compute path rank

Sort these inputs by their rank

For each input

Divide subsets of

paths

Path-finding algorithm Restore the
ripped-up

path

If path is

found

End

If path is

not found

Figure 2. Switching Activity Vs Capacitance with increasing

logical stages (levels) as signals pass through circuit

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

46

paper describes elaborately for two new benchmarking

circuits for simulations test.

4. SIMULATION RESULTS
The experimental setup was based on a computer system with

a 2.20 GHz Intel (R) Core (TM)2 Duo CPU with a system

type of 32-bit operating system from Microsoft Inc. The

benchmarking circuits for carry select adder used are shown

in figure 4 and figure 5 with glitch unaware and glitch aware

implementation respectively. The comparison of algorithm,

GlitchReroute, with glitch unaware versatile place and route’s

router and glitch aware router is illustrated in figure 4 and

figure 5. The LUT input size was selected with k = 16. Main

implementation platform was EP3C16F484C6 Cyclone III

device family from Altera Inc. as shown in figure 4 in box.

The software platform used was Quartus-II for running

simulation tests. Quartus version 10.1 Build 153 11/29/2010

SJ Web Edition, which is a registered trademark of Altera

Corporation. The toolbox, PowerPlayAnalyzer, a part of

Altera’s Quartus II software was used for estimating power

consumption on FPGA implementation of carry select adder.

The Quartus II was run for simulation in order to synthesize,

place, and route the circuit of adders as mentioned above.

These files are used for both glitch unaware versatile place

and route’s router and glitch aware versatile place and route’s

router for proposed circuit.

Figure 4. Glitch unaware-view of RTL schematic block diagram of carry select adder as a benchmarking circuit

CLK

 Load

 RST

 Data_in[15:0]
CLA_IN_B[15:0]

CLA_IN_A[15:0]

 LUT_enb

 LUT_addr1[3:0]

LUT_read_addr2[15:0]

 CLA_CARRY_IN

CLK
RST Data_Out[15:0]

Load

Data_In[15:0]

Data_signal_path: Data_signal_path

CLK

RST Sync_Out[15:0]
Sync_In[15:0]

Real_data_In[15:0]

LUT_SYNC:LUT_sync

CLK
RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]
LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]
LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

 LUT_BLOCK_4:LUT_BLOCK_4

LUT_BLOCK_1:LUT_BLOCK_1

Cin

A[15:0] B[15:0]

Carry Finalsum[15:0]

FA_TOP:CLA

CLA_CARRY_OUT

CLA_OUT[15:0]
LUT_1_out[15:0]

LUT_2_out[15:0]

LUT_3_out[15:0]

LUT_4_out[15:0]

 LUT_BLOCK_3:LUT_BLOCK_3

 LUT_BLOCK_2:LUT_BLOCK_2

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

47

Glitchreroute was performed on Quartus II to simulate the

circuits and generate a Netlist viewer specifically for RTL

schematics. Figure 4 also shows the routing module. Next step

was to run PowerPlayAnalyzer to estimate the power

consumption on board FPGA. For this a LUT of input size

k=16 was used. The PowerPlayAnalyzer reports showed

power estimation for carry select adder. Table 1 enlists the

dynamic power consumption which was computed by using

PowerPlayAnalyzer simulation test on carry select adder

circuit. GlitchReroute is able to reduce dynamic power

consumption by 11.5% compared to glitch unaware versatile

place route’s router. The total power consumed has not been

shown by each circuit due to the fact that LUTs that mapped

circuits were much fewer than the total number of LUTs

available in the Cyclone III devices. This means that most of

the power is consumed by unused LUTs and thus the total

power is not comparable to the used LUTs by algorithm with

glitch unaware router fairly.

Table 1: Performance comparison analysis

Combinational

logic

Routing

Type

Total logic elements I/O

pins

Total

Registers

Peak

inter-

connect

usage

Dynamic

Power

Dissipation

(mW)
Total

combinational

functions

Dedicated

logic

register

No. of

registers using

Synchronous

Clear

No. of registers

using

Asynchronous

Clear

No. of

registers

using Clock

Enable

Carry Select

Adder

Glitch unaware

router

249 238 142 16 141 141 6% 77.31

Glitch aware
router

192 96 46 16 0 16 2% 68.29

Booth

Multiplier

Glitch un

aware router

317 372 158 17 141 238 5% 78.81

Glitch aware
router

262 246 78 17 0 17 4% 71.30

Figure 5. Glitch aware-view of RTL schematic block diagram of carry select adder as a benchmarking circuit

CLK CLK CLK out

CLK_mimic:

CLK_mimic_x

CLK

Load

RST

Data_in[15:0]

CLK

RST Data_Out[15:0]

Load

Data_In[15:0]

Data_signal_path:

Data_signal_path

clk

enb sig out[15:0]

rst

sig in[15:0]

routing:routing

CLK

RST Sync_Out[15:0]
Sync_In[15:0]

Real_data_In[15:0]

LUT_SYNC:LUT_sync

LUT_enb

LUT_addr1[3:0]

LUT_read_addr2[15:0]

CLA_CARRY_IN

LUT_BLOCK_1:LUT_BLOCK_1

CLK

RST LUT DATA OUT 1[3:0]
W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

LUT_BLOCK_4:LUT_BLOCK_4

Cin

A[15:0] Carry

B[15:0] Finalsum[15:0]

FA_TOP:CLA

CLA_CARRY_OUT

CLA_OUT[15:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_addr[3:0]

addr2[3:0]

LUT_BLOCK_2:LUT_BLOCK_2

LUT_BLOCK_3:LUT_BLOCK_3

CLK

RST balancing_data_out[15:0]

balancing_data_In[15:0]

Balaancing_path()

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

48

Generally, the carry-select adder consists of two ripple carry

adders and a multiplexer. Two n-bit numbers are added by a

carry-select adder by using two ripple carry adders. In order to

perform the computation two times, two carry adder circuits

are required, first time with the assumption that the carry

being 0 and second time with assumption that the carry is

being 1. After accomplishment of two computations, the

results of correct sum, as well as the correct carry are

determined.

The second benchmarking circuit chosen was booth

multiplier. Booth’s multiplication algorithm multiplies two

Figure 6. Glitch (a) unaware and (b) glitch aware RTL schematic block diagrams of booth multiplier as a

benchmarking circuit

 CLK

 Load

 RST

 Data_in[15:0]

 LUT_enb

 LUT_mult1[3:0]

LUT_read_mult2[15:0]

CLK

RST Data_Out[15:0]

Load

Data_In[15:0]

Data_signal_path: Data_signal_path

CLK
RST Sync_Out[15:0]

Sync_In[15:0]

Real_data_In[15:0]

LUT_SYNC:LUT_sync

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]
LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]
LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

 LUT_BLOCK_4:LUT_BLOCK_4

LUT_BLOCK_1:LUT_BLOCK_1

Clk

enable

Multiplier [15:0]

Multiplicand[15:0] Product[31:0]

BOOTH:MULTIPLIER

Mul_out[31:0]

LUT_1_out[15:0]
LUT_2_out[15:0]

LUT_3_out[15:0]

LUT_4_out[15:0]

 LUT_BLOCK_3:LUT_BLOCK_3

 LUT_BLOCK_2:LUT_BLOCK_2

CLK
RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]
LUT_mult[3:0]

mult2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

CL

K

CLK CLK out

CLK_mimic:

CLK_mimic_x

CLK

Load

RST

Data_in[15:0]

CLK
RST Data_Out[15:0]

Load

Data_In[15:0]

Data_signal_path:

Data_signal_path

clk

enb sig out[15:0]

rst

sig in[15:0]

routing:routing

CLK
RST Sync_Out[15:0]

Sync_In[15:0]

Real_data_In[15:0]

LUT_SYNC:LUT_sync

LUT_enb

LUTmult1[3:0]

LUT_read_mult[15:0]

LUT_BLOCK_1:LUT_BLOCK_1

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]
LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

LUT_BLOCK_4:LUT_BLOCK_4

CLK

enb

A[15:0]

B[15:0] Product[15:0]

BOOTH:MULTIPLIER

MUL_OUT[15:0]

CLK

RST LUT DATA OUT 1[3:0]
W R LUT DATA OUT2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]

LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

CLK

RST LUT DATA OUT 1[3:0]

W R LUT DATA OUT 2[3:0]
LUT_DATA_IN[3:0]

LUT_DATA_CHECK[3:0]

LUT_mult[3:0]

mult2[3:0]

LUT_BLOCK_2:LUT_BLOCK_2

LUT_BLOCK_3:LUT_BLOCK_3

CLK

RST balancing_data_out[15:0]

balancing_data_In[15:0]

Balaancing_path()

(a) Glitch unaware RTL view of Booth Multiplier

(b) Glitch aware RTL view of Booth Multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.19, December 2012

49

signed binary numbers in two’s complement notation. Booth

used desk calculators for multiplication that were faster at

shifting than adding. He invented an algorithm to increase the

multiplication speed. Booth’s algorithm is quite often used by

researcher of computer architecture and related topics.

Figure 6 shows the RTL view of booth’s multiplier for glitch

unaware and glitch aware simulation results respectively. The

power consumptions report is shown in Table 1. Similar to the

carry select adder, the experimental set up consisted of a LUT

of input size k=16 for Booth’s multiplier. The

PowerPlayAnalyzer was used to generate power reports. For

Booth’s multiplier, dynamic power consumption was reduced

by a 7.5% compared to glitch unaware versatile place route’s

router simulation.

5. CONCLUSION
In this paper, the authors have presented a technique for

reducing dynamic power in FPGAs by minimizing glitches

during routing for two specific circuits of carry select adder

and Booth’s multiplier. The routing was carried out with

GlitchReroute routing approach. The algorithm tried to find

routes with target delays and balancing paths leading to LUT

inputs, so that signal arrival times are aligned at LUT. The

simulation tests have shown a reduction in dynamic power

consumption in FPGAs. Finally a comparison was made with

glitch unaware versatile place and route’s router and glitch

aware router. The results attained 11.5% reduction in dynamic

power in FPGAs on implementation of carry select adder and

a similarly a 7.5 % reduction in power consumption in case of

Booth’s multiplier was observed.

For further research in the future, it is planned that dynamic

power in FPGAs can still be reduced by using path balancing

technique with other glitch reduction technique as a hybrid

approach in FPGA. These approaches may include technology

mapping and technology decomposition.

6. REFERENCES
[1] Q. Dinh, D. Chen, and D. F. Wong, “A routing approach

to reduce glitches in low power FPGAs,” in Proc. of Int.

Symp. Physical Design, 2009, pp. 99–106.

[2] Quang Dinh, Deming Chen and Martin D. F. Wong, “A

Routing Approach to Reduce Glitches in Low Power

FPGAs”, IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 29, No. 2, 2010,

pp 235-240.

[3] F. Li, D. Chen, L. He, and J. Cong, “Architecture

evaluation for power efficient FPGAs”, in Proc. Int.

Symp. Field-Programmable Gate Arrays, 2003, pp.

175–184.

[4] L. Cheng, D. Chen, and D. F. Wong, “GlitchMap: An

FPGA technology mapper for low power considering

glitches,” in Proc. Design Autom. Conf., 2007, pp. 318–

323.

[5] J. Lamoureux, G. Lemieux, and S. Wilton, “GlitchLess:

Dynamic power minimization in FPGAs through edge

alignment and glitch filtering,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 16, no. 11, pp. 1521–1534, Nov.

2008.

[6] V. Betz and J. Rose, “VPR: A new packing, placement

and routing tool for FPGA research,” in Proc. Int.

Workshop Field Programmable Logic Applicat., 1997,

pp. 213–222.

[7] V. Betz, J. Rose, and A. Marquardt, “Introduction,” in

Architecture and CAD for Deep-Submicron FPGAs.

Boston, MA: Kluwer Academic, 1999, pp. 1–10.

[8] S. Lee and M. D. F. Wong, “Timing-driven routing for

FPGAs based on Lagrangian relaxation,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 22,

no. 4, pp. 506–510, Apr. 2003.

[9] L. McMurchie and C. Ebeling, “PathFinder: A

negotiation-based performance-driven router for

FPGAs,” in Proc. Int. Symp. Field- Programmable Gate

Arrays, 1995, pp. 111–117.

[10] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power

modeling and characteristics of field programmable gate

arrays,” IEEE Trans. Computer.-Aided Design Integr.

Circuits Syst., vol. 24, no. 11, pp. 1712–1724, 2005.

[11] R. Fung, V. Betz, and W. Chow, “Simultaneous short-

path and long path timing optimization for FPGAs,” in

Proc. Int. Conf. Comput.-Aided Design, 2004, pp. 838–

845.

[12] D. Chen and J. Cong, “DAOmap: A depth-optimal area

optimization mapping algorithm for FPGA designs,” in

Proc. Int. Conf. Computer-Aided Design, 2004, pp.

752–759.

[13] B. Ramkumar and Harish M Kittur, “Low-Power and

Area-Efficient Carry Select Adder” in IEEE trans. On

VLSI systems

[14] E. Dijkstra, “A note on two problems in connection with

graphs”, in Numer. Math., vol. 1, no. 1, pp. 269–271,

Dec. 1959.

[15] K. P. Parker and E. J. McCluskey, “Probabilistic

treatment of general combinational networks,” IEEE

Trans. Comput., vol. C-24, no. 6,pp. 668–670, Jun.

1975.

[16] A. Raghunathan, S. Dey, and N. K. Jha, “Register

transfer level power optimization with emphasis on

glitch analysis and reduction,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 18, no. 8,pp.

1114–1131, Aug. 1999.

[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.

Murgai, Saldanha, H. Savoj, P. R. Stephan, R. K.

Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: a

system for sequential circuit synthesis,” Dep. Electr.

Eng. Comput.Sci., Univ. California, Berkeley, CA,

Tech. Rep. UCB/ERL M92/41, 1992.

