
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.18, December 2012

5

A Modified Dynamic Parallel Algorithm for

Sequence Alignment in BioSequences

S. Nirmala Devi
Research Scholar
Bharath University

Chennai – 600 073. India

S.P. Rajagopalan, PhD.
Professor Emeritus, Dr. M.G.R Educational and

Research Institution University
Chennai-600095. India

ABSTRACT
This paper presents a Modified Dynamic Parallel Algorithm

for Sequence Alignment in BioSequences. DNA sequence

alignment between two or more bio sequences using

algorithms is a complex problem due to its applicability in the

field of biology. This algorithm achieves its efficiency in

using computational resources by making a M X N matrix ,

M represents the length of first sequence and N represents the

length of the second sequence .This modified Dynamic

algorithm performs calculation to fill the three main diagonal

cells without evaluating other cells in the matrix.

 The proposed model is based on Index Based Pattern

Matching using Multithreading [13] to obtain the optimal

alignment using Multithreading. The executed results indicate

that with the proposed algorithm Memory Efficiency and Fast

Execution are achieved over the well-known dynamic

programming approach Needleman-Wunsch and Hirschberg

approach.

Keywords
DNA operations, sequence alignment, Multithreading, score.

1. INTRODUCTION
The study of algorithms for different character strings is one

important area of algorithm design. Among the most

important is the efficiently searching for substrings or

generally different patterns in different databases. In many

instances we do not want to find a subsequence exactly, but

something similar. The process of discovery of patterns

proves to be essential for biological researches and business

scenarios.

The basic unit of an organism is DNA and the basic units of

DNA are nucleotides and each nucleotide is one of the

following four types: adenine (A), guanine (G), cytosine (C)

and thymine (T). It can be viewed as a long sequences of A’s,

G’s, C’s and T’s. It is very difficult to retrieve necessary

information from the sequence when the size of the database

grows. Its length ranges from a few hundred to several

billions of nucleotides of different species. Thus, it is a

complicated task to find out the degree of similarity and the

degree of difference between nucleotide (DNA/RNA) and

amino acid (protein) sequences.

The knowledge of a DNA sequence and gene analysis can be

used in several biological, medicinal and agriculture research

fields such as: possible disease and abnormality diagnoses,

forensics, pattern matching, biotechnology etc.,

Alignment program tries to find the best alignment between

two sequences given the scoring system. There are two

approaches to make the alignment algorithm.

1.1 Local Alignment
An alignment that searches for segments of the two sequences

that match well. There is no attempt to force entire sequences

into an alignment, just those parts that appear to have good

similarity, according to some criterion [3].

Example:

 LGPSTKDFGKISESREFDN

 | | | |
 LNQLERSFGKINMRLEDA

1.2 Global Alignment
An alignment that assumes that the two sequences are

basically similar over the entire length of one another. The

alignment attempts to match them to each other from end to

end, even though parts of the alignment are not very

convincing[3].Using the same sequences as above, we would

get

 LGPSTKDFGKISESREFDN

 | | | | | |

 LNQLERSFGKINMRLEDA

To find the similarity between biological sequences several

software tools were built. The most commonly used web tool

is Basic Local Alignment Search Tool (BLAST) [4].

 Another tool that is use for multiple sequence alignment is

DIALIGN which combines both local and global alignment

features and used dynamic programming in its algorithm [5].

2. BACKGROUND AND RELATED

WORK
Several methods for sequence alignment have been proposed

and they have their own advantages and limitations [1]

[7][8][9].

In [1] Amine Dhraief presented a Parallel method for

computing Longest Common Subsequences.

In [7], Yinan Li presented a method called WHAM, which

employs novel hash-based indexing and bitwise operations for

pair wise alignment.

In [8] Isokawa et al. presented a method to deal with multiple

sequence alignment using a Genetic Algorithm.

Most commonly used algorithm for local sequence alignment

is Smith-Waterman Algorithm [9].

The proposed algorithm is based on Dynamic Programming

Needleman_wunsch Algorithm and Hirschberg method.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.18, December 2012

6

2.1 Needleman_Wunsch Algorithm
Given two input strings x and y, this method build a matrix F

such that the entry F[i, j] is the score of the optimal alignment

of x[1..i] and y[1..j] , where an alignment is defined to be the

path from the top-left corner to the bottom-right corner of the

Needleman-Wunsch Matrix[10][11].

This method calculates value for each cell for the entire

matrix.

The path is composed of the three moves:

Diagonal if xi aligns with yj either via a match or

mismatch

Right if xi aligns to a gap

Left if yj aligns to a gap.

The steps of Needleman-Wunsch Algorithm is as follows:

1. Initialization:

F(0,0)=0

F(i,0)=-1

F(0,j)=-1

2. Main Iteration

 For each i = 1 to M

 For each j = 1 to N

F(i,j) =max

{ F(i − 1, j − 1) + s(xi, yj), case 1

F(i − 1, j) − d , case2

F(i, j − 1) − d , case3 }

ptr(i, j) =

{ DIAG , if case 1

LEFT , if case 2

UP , if case 3 }

3. Termination

Performance:

Time : O(NXM) to fill out the entire matrix

Space : O(NXM) to store all the trace back pointers.

This method fills all the cells of the matrix which requires

more computation time and more memory space.

2.2 Hirschberg Algorithm
Hirschberg presented algorithms for multiple sequence

alignment by using divide-and conquer techniques. The divide

and conquer techniques can effectively reduce the space

complexity for multiple sequence alignment. First, the cutting

points of sequences are found and the sequences are separated

into two sets of subsequences, according to the cutting points.

Then the dynamic programming techniques are applied for

aligning the subsequences in the subsets. [2][3].The alignment

based on divide-and conquer method has the benefit for

increasing the speed compared to sequence alignment using

dynamic programming method.

3. MODIFIED DYNAMIC PARALLEL

ALGORITHM USING

MULTITHREADING
In this MDPA method the very large size DNA sequences are

divided into subsequences depending upon the sizes of

sequences which have the maximum length. The main idea by

using multithreading is to solve the sequence alignment

problem on a single CPU machine is to make the alignment

simultaneously in a timesharing manner [12][13].

The subsequences are stored in separate arrays and the

modified dynamic parallel algorithm is executed on these

sequences.

Example:

Consider the Input sequences A and B as shown in Fig.1

 Fig 1: Input Sequences A and B

Here the length of sequence A=17 and the length of sequence

B = 16.

Based on the Length of the sequence having maximum length,

here length of A=17 and the above sequences are split into

subsequences as shown in Fig.2 and they are passed as

parameter to various threads.

 Thread 1 Thread 2

Fig 2: Splitting of sequences A and B

If then length of the sequences are very long we can specify

the cutting point and further it can also be subdivided in

number of subsequences and various threads can also be

created based on the number of subsequences.

The algorithm steps are as follows:

Input: Two Sequences A of m characters and B of n

characters

Given two sequences A, B, create a matrix D of m x n (m is

the length of A and n is the length of B).

Output: The score value and an alignment of the two

sequences in which all characters in both sequences

participate.

Step 1: [initialization of variables]

 match = +1

 mismatch = - 1

 gap = -1

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.18, December 2012

7

 D[0][0] =0

 D[1][0]=-1

 D[0][i]=-1

Step 2: fill the value in the three diagonal cells (below main

diagonal, main diagonal, and above main diagonal)

 For each i =1 to m

 For each j = 1 to n

If (i==j)

 D[i][j]=D[i-1][j-1]+match;

 Dir(i,j)= Diagonal

Else if (i!=j)

if(i-j<=1 && i-j>=-1) {

 D[i][j]= max{

 D[i-1,j1]+mismatch, D[i-1,j]+gap ,D[i,j-1]+gap}

if max= D[i-1,j-1]+mismatch

 dir(i,j) = diagonal

If max= D[i-1,j]+ gap

 dir(i,j)=Left

If max= D[i,j-1]+gap

 Dir(i,j) = Up

Step 3: Trace the Backtracking Matrix

 i=A.length

 j=B.length

 score=D[i][j];

 while (i > 0 && j > 0) {

 if ((D[i][j] == mD[i-1][j-1])+ match)) {

 newSeqA += A[i-1];

 newSeqB += B[j-1];

 i--;

 j--;

 continue;

 } else if (mD[i][j] == mD[i][j-1] - 1) {

 newSeqA += "-";

 newSeqB += B[j-1];

 j--;

 continue;

 } else {

 newSeqA += A[i-1];

 newSeqB += "-";

 i--;

 continue;

 }

 }

Step 4: print score value and the alignment of two sequences.

To validate the proposed method let us take two sequences

A=”AGTA” and B=”ATA’.

Create a matrix of size m x n, m is the length of sequence A

and n is the length of sequence B.

The execution of the MDPSA method is as follows:

Step 1: Initializing values for match gap and mismatch.

D[0][0]=0

D[0][1]=-1

D[1][0]=-1

Dir-specifies the track back for optimal alignment.

Step 2: Fill values only in the cells of three main diagonals

For i=1 to 4

For j=1 to 3

If (i==j)

 D(1,1)=D(0,0)+isMatch(A(i-1),B(j-1))

 D(0,0)=0+1=1

 Dir=diagonal

If(i!=j)

D(1,2)=max(D(0,1),D(1,1),D(0,2)+isMatch(A(i-1),B(j-1))

 Max(-1,1,N value)= 1

Dir= left - The maximum value

And for all the three diagonal values, the value of the matrix

is as follows (Fig.3):

Fig 3: Filled Matrix of the new Algorithm MDPSA

D(4,3) represents the optimum score and the value is 2.

Trace back the optimal alignment from this optimal score

position by the dir value to get the optimal alignment.

4. EXPERIMENTAL RESULTS
The proposed method is implemented using Java jdk1.6 on a

Intel i3 PC for dealing with the DNA sequence alignment

problem. To make comparison between the proposed method

and NeedlemanWunsch and Hirschberg method, sequences

A=”AGTA” and B=”ATA” are given as Input to find the

optimal solution for the given sequences.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.18, December 2012

8

Fig 4. shows the Scoring Matrix and optimal alignment for

the given Sequences using existing NeedlemanWunsch

method.

Fig 4: the output alignment and score matrix for the

sequences A=ATA and B=AGTA by using

Needleman-Wunsch algorithm.

The last cell (5, 4) has the maximum score Alignment value.

Fig. 5 shows the result of the proposed method Modified

Dynamic Parallel algorithm before using Multithreading.

Fig 5: the output alignment and score matrix for the

sequences A=ATA and B=AGTA by using the new

Algorithm MDPSA

To validate the proposed method using Multithreading,

sequences A=”AGTAACATA” and B=”ATAACTA” are

given as Input and Fig.3 shows the optimal alignment and

scoring matrix.

Sequence A is divided into two subsequences as a1=”AGTA”

and a2=”ACATA”

Sequence B is divided into two subsequences as b1=”ATA”

and b2=”ACTA”

Optimal score matrix and optimal Alignment is for a1, b1 and

a2, b2. The result is shown in Fig.6.

From these results, MDPSA algorithm finds the same optimal

solution as Needleman-Wunsch algorithm and Hirschberg

algorithm and it calculates only the three diagonal values

(main diagonal, below main diagonal and above main

diagonal) and this algorithm will not manipulate values for

other cells, thus reducing execution time.

Fig 6: the output alignment and score matrix of the new

Algorithm MDPSA using Multithreading.

Table 1. shows the comparison between the specified existing

algorithms with the proposed technique for the Sequence Set

X as A=”ACTA”, B=”ATA” and Y as

A=”ACAAGACAGCGT”, B= “AGAACAAGGCGT”.

Table 1. Comparisons of existing Algorithms with MDPSA

From the comparisons the new approach is efficiently

improving the time complexity as it is based on

multithreading technique. The use of sequence analysis is

very broad and Modified Dynamic Parallel algorithm can

improve system performance. This Multithreaded

implementation improves the CPU utilization and increases

the time efficiency.

5. CONCLUSION
This paper describes the implementations of finding the

Sequence Alignment based on bioinformatics algorithm in

a highly parallel way and it is very easy to implement. This

method can also be used for sequence alignment in protein

sequences and also for business and marketing research to

analyze series of purchase over time. The proposed method

Algorithms
Sequence

Set

Memory

Used in

KB

CPU Time

in Seconds

FDPSA
X 159 0.031

Y 160 0.093

FDPSA(Thread)
X 161 0.046

Y 161 0.078

Needleman-

Wunsch

X 159 0.047

Y 160 0.109

Hirschberg
X 154 0.063

Y 148 0.103

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.18, December 2012

9

showed significant improvement in terms of the efficiency in

finding the solution.

6. REFERENCES
[1] Amine Dhraief, Parallel Computing the Longest

Common Subsequences (LCS) on GPUs: Efficiency and

Language Suitability, INFOCOMP 2011 : The first

International Conference on Advanced Communications

and Computation.

[2] Hirschberg, D.S 1977. Algorithms for the longest

common subsequence problem. Journal of ACM ,24:664-

675.

[3] A.Aho, D.Hirschberg and B. Jullman –Bounds on the

complexity of the longest Common Subsequence

Problem, J. Assoc. Comput.Mach., Vol.23, No.1, 1976.

[4] Biology, Cambridge University Press, New York, 1997.

BioInformatics Educational Resources Documentation

(online), European Bioinformatics Institute United

Kingdom.Available:

http://www.ebi.ac.uk/2can/tutorials/protein/align.html

[5] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi,

[6] DIALIGN, http://dialign.gobics.de

[7] Yinan Li , WHAM : A High Throughput Sequence

Alignment Method , SIGMOID ’11, June 12-16, 2011.

[8] Isokawa,M. Wayamaa,M., and Shimizu T.1996 .

Multiple sequence alignment using a Genetic Algorithm.

Proceedings of the Seventh Workshop on Genome

Informatics, 7:176-177.

[9] Smith, T. F. and M. S. Waterman, Identification of

common molecular subsequences, Journal of Molecular

Biology, 147:195-197, 1981.

[10] Needleman S, Wunsch.,”A general method applicable to

the search for similarities in the amino acid sequences of

two proteins”, J Mol Biol. 1970, 48:443-453.

[11] Rong X, Jan 2003, Pairwise Alignment - CS262 -

Lecture 1 Notes(online), Stanford University. Available:

http://ai.stanford.edu/~serafim/cs262/Spring2003/Notes/

1.pdf

[12] Deitel P. and Deitel H., Java How to Program, Prentice

Hall, 2003.

[13] S.Nirmala Devi , “An Index based Pattern Matching

using Multithreading “, International Journal of

Computer Applications (0975 – 8887) Volume 50- No.6,

July 2012.

http://dialign.gobics.de/

