
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

48

Classification of Task Partitioning and Load Balancing
Strategies in Distributed Parallel Computing Systems

Rafiqul Zaman Khan

(Associate Professor)

Javed Ali
(Research Scholar)

Department of Computer Science,Aligarh Muslim University,Aligarh.

ABSTRACT

Distribution of the tasks amongst the various computing nodes

is itself an intellectually challenging problem in the high

performance distributed computing systems. To choose the

appropriate strategy for the required system is difficult

without the meaningful comparison of the existing task

partitioning and load balancing strategies. The effectiveness

of the strategy depend on the number of factors-efficiency,

interconnection topology, communication mode, program

structure, throughput and computing capabilities of the

structure. A number of task partitioning and load balancing

strategies have been proposed, each of which perform

remarkable results under different circumstances. The main

goal of the paper is to unravel the mystery of strategies and to

classify when and where each strategy is appropriate. In this

paper, taxonomy of task partitioning and load balancing is

presented in an attempt to provide a common terminology and

classification mechanism.

KEYWORDS:Task Scheduling, Dynamic, Preemptive,

Non-Preemptive, Parallel Computing etc.

1. INTRODUCTION
Scheduling is a function that assign job to the different

processors [6]. It’s a two step process, namely processor

allocation and assignment. Jobs are autonomous program that

execute in its domain. Resource allocation is done by the

scheduler over two dimensions, time and space, and at two

level jobs and threads. In running state, job constitutes threads

to reduce the overhead. If software package is used to execute

the parallel jobs instead of threads, it increased load of the

parallel computing system. Interacting entities are called

process if they are independent under the limitation of the

operating system. Threads and communication between them

may be static and dynamic [10].For example, in MIMD

architecture [1], number of threads, and the communication

pattern between the threads can change dynamically during

the execution in the parallel computing systems. If multiple

executing entities are parts of the same application then we

treat entities as a threads and application as a job. Parallel

computing is used to solve the large problems in the scientific

and systematic manner. Effective task partitioning and load

balancing strategies of large task is crucial to achieve high

performance in parallel and distributed system. The increasing

demand of the high performance computing systems amongst

the various field of the science is the key feature of interest in

the parallel computing. The selection of appropriate strategy

for the particular system is the deciding factor for the

successful execution of the tasks. A parallel job is the

collection of the tasks having some precedence relationship. A

task can be identified as a executable fragment that must be

sequentially executed without partial parallel execution

[2].All parallel job cannot be fully parallelized. In a

homogeneous architecture the serial fraction of the

computation has to be executed at the speed of any of the

identical processor, limiting the speed that can be obtain due

to parallel execution of the jobs.The sequential bottleneck can

be greatly reduced by executing the tasks on the

heterogeneous parallel computers by running the critical tasks

on a faster processor. The efficiency analysis of the

heterogeneity presented by Polychronopoulos and Andrews

[4] and Almeida and Menasce [5]. Processor allocation in the

efficient manner deals with the determination of the number

of processor allocated to a job; the assignment phase means

the distribution of the job’s task to the allocated processor [7].

Time complexity analysis tool for the task partitioning

developed by Pugh and Nirkhe [8] which accurately estimates

the execution time of general real time program employing on

high level structures. Towsley and Nelson[9] present a

analytical model for partitioning the independent tasks on the

different processors.Due to the large variety of tools,

computing architectures and different requirement there is no

ideal task partitioning strategy. Impact of heterogeneity in

loosely coupled systems analyzed by Freund in different

processing paradigms (MIMD,SIMD,SISDetc.).

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

49

Figure: The hierarchal view of the different task partitioning strategies in different platforms.

2. DETERMINISTIC TASK (STATIC)

PARTITIONING STRATEGIES:
In deterministic task partitioning the characteristics of an

application such as communication cost, execution time,

synchronization, and data dependency are known in advance

[11].It assign the tasks to the different processors before

execution, and allocation remain same during the execution of

the process. Dynamic scheduling performs scheduling at

runtime, and allocation of the process may change during the

execution of tasks. Static scheduling cannot support load

balancing and fault tolerance while dynamic scheduling

support these parameters. Deterministic scheduling on

Network of Workstation (NOW) is NP-complete in strong

sense while nondeterministic is not strong NP-complete.

Purely static task partitioning with OpenCL, determines the

best partitioning across the processors in a system and divides

the tasks into as many chunks as there are processor with each

processor receiving the appropriate chunks [13].

PY (Papadimitriou and Yannakakis)[34] scheduling

approximate the absolute achievable lower bound of the start

time of a node by using attribute e-value. From the first node

to exit node e-value is computed recursively to assign the

priority to the node. After calculating the e-value of the node,

each node is inserted into a cluster in such a way that

ancestors have data arrival times larger than the e-value of the

node.

LCTD (Linear Clustering with Task Duplication) [35]

scheduling identify the edges among clusters that determine

the completion time after the linear clustering of DAG. After

that it tries to duplicate the parents corresponding to these

edges to reduce the start times of some nodes in the cluster.

EZ (Edge Zeroing) Scheduling [33] select computing

environment by merging edge weights. This scheduling

strategy finds the edge with the largest weight in every step. If

merging does not increase the completion time, the two

cluster incident by the edges will be merged (zeroing the

largest weight).The ordering of the node is define in the

resulting cluster based on the static b-level of the nodes.DAG

edges are sorted in a descending order of edge weight.

MCP (Modified Critical Path)[31] scheduling decide the

priority of the nodes on the basis of ALAP. It compute the

ALAP of the existing node, and construct a list of node in

ascending order of ALAP times.MCP looks for the processor

idle time slot for a given node. Select the first node from the

node list and insert it into the processor of earliest execution

time. It cannot guarantee an optimal schedule for the fork and

join structure.

ETF (Earliest Time First) scheduling [32] technique, select

the nods of the smallest start time from the node of the earliest

start time in the ready queue at each step. Earliest start time is

computed by examine the start time of the node on all

processor exhaustively. When two node have the same EST

then ETF breaks the tie by selecting the node with the higher

static priority. The priorities are assigning to the node by

computing the static b-level. This strategy is not guaranteed a

optimal schedule for the fork and join structure.

3. NON DETERMINISTIC TASK

(DYNAMIC) PARTITIONING

STRATEGIES:
 Position Scan Task Scheduling (PSTS) is pure dynamic load

balancing, highly parallel and efficient, and can be used in

centralized and decentralized manner [14]. It is based on

divide and conquers principle in which hyper-grids of

dimension k are divided into grids of dimension k-1, until the

dimension is 1.Position Scan Load Balancing (PSLB)

technique is two phase technique. In first phase the system is

modeled as a hypercube only at one time. In the second phase

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

50

load balancing is performed by obtaining necessary

information for each system node. On the basis of the prior

information PSLB strategy calculate its future load, and load

is migrated according to the capability of the nodes. An

important aspect of this node is that, in the case of load

migration each node knows exactly where to send its extra

work load. The communication is take place only between the

neighbor nodes.

Evolutionary Task Scheduling [26] upon the previous

scheduling stages, in static and dynamic environment. The use

of heuristic in the initialization phase and specific mutation

operator are two parameters which provide the beneficial

result for the effective scheduling in the static environment.

In the consistent environment, moving the tasks from high

level processors to the processor of smaller makespan by

using “rebalancing” operator provide the better result. But in

the case of inconsistent environment less greedy operator

provide the good scheduling. The information collected from

the previous state is used, to select the environment by the

scheduler.

DPS(Dynamic Priority Scheduling) [27] assign the priorities

to the tasks based on the difference of bottom level (b-level)

and top(t-level), to schedule the minimum schedule length in

Directed Acyclic Graph(DAGs) [3].Compile time scheduling

is used in the heterogeneous environment .Dynamic process

assigning select more important tasks before less important

ones. The mapping and scheduling strategies are depend upon

the processor scheduler, network architecture and the DAG

structure[28].The t-level is the length of longest path

(execution cost+ communication cost) between target task and

entry task, while b-level is the largest path between target task

and exit task. In this way, t-level determine the earliest start

time, b-level of a task is bounded by the critical path of the

DAG [12].

DLS[29] used a GDL(generalized dynamic level) to

determine dynamic priorities, for all tasks in the ready queue,

over all processors at every scheduling step.GDL give the

priority to the processor according to their speed, and many

other factors are taken into account. Top level and bottom

level are loss their meaning in the case of the heterogeneous

architecture due to the different execution cost on each

processor. It consider the various factors, median of the

execution cost over all processors, average execution cost and

maximum or minimum cost for the computation of the

schedule levels.

4. PREEMPTIVE TASK PARTITIONING

STRATEGIES:
Preemptive Deterministic Scheduling (PDS) ensure replica

behavior while preserving concurrency. Replication is

achieved by the threads and there is no communication

between the threads. Performance improvement is achieved

due ti multithreading by exploiting concurrency in thread

execution. Multithreaded replica shows non deterministic

behavior. Only one physical thread is schedule at given time,

so it shows poor scalability and performance. PDS schedule

multiple threads at same time so its throughput five times

from Preemptive Nondeterministic Scheduler (NPDS)

[11].PDS remove the need for inter replica communication yet

preserves a large degree of replica concurrency. Optimal

preemptive schedule subject to release date are taken to

minimize the execution time on the homogeneous platforms’.

This strategy performs the two step, in first step, minimize

maximum completion time on the desired number of

machines. In second step, maximum lateness is minimizes

with respect to due dates for the jobs [12] on the arbitrary

number of machines.

Fast Preemptive Scheduling (FPS) [17] strategy simulates

preemptive task execution at a very low overhead and requires

small runtime support in heterogeneous and homogeneous

parallel computing environment. Preemptive Task Scheduling

(PTS) [18],a list heuristic scheduling strategy is used

homogeneous distributed memory systems.

RM (Rate Monotonic)-DU (Decrease Utilization)-NFS (Next

Fit Scheduling) [19] strategy does not suffer from execution

time and period anomalies. It’s a scheduling of periodically

arriving tasks on multiprocessor environment. This strategy

partitioning tasks by using a variant of next-fit-bin-packing. If

the following assumption does not hold; (1) assume that a task

meet its deadline if it did so when all tasks are executed at

their maximum execution time, or (2) assume that a task

meets its deadline if it did so when all tasks arrived

frequently, then this situation is known as scheduling

anomalies. RM-DU-NFS is the combination of DU and NFS

which is based on high system utilization bound.

Optimal Preemptive Scheduling [20] is used to schedule n

jobs on, m parallel uniform machine. By assigning shortest

remaining processing time jobs to the fastest available

machine, discounted flow time is minimized by serving jobs

preemption in increasing order of their remaining processing

time. Shortest Remaining Processing Time on Fastest

Machine (SRPT-FM) rule is also optimal for the discounted

flow time criteria. Flow time is minimized by scheduling jobs

according to the shortest remaining processing time on the

fastest machine. Minimization of the makespan is achieved by

scheduling the (LRPT-FM rule) Longest Remaining

Processing Time on Fastest Machine [21].

PTS (Preemption Threshold Scheduling) [23] disable the

preemptions up to a specific priority level, called preemption

threshold. Regular priority assign to the arriving tasks, and the

tasks may preempt only if the priority of the arriving task is

higher than the threshold of running task.

In FPP (Fixed Preemption Point) scheduling[24] strategy, a

task is assign in a non-preemptive mode, and a preemption

can take place at a specific point of the code which is known

as preemption point. In this way, a task is divided into

subtasks. If the higher priority task is arrive then preemption

is postpone until the next preemption point. So the tasks

cooperate to each other by the preemption point.

5. NON-PREEMPTIVE PARTITIONING

STRATEGIES:
 LSA (Loose Synchronization Algorithms) use non-

preemptive deterministic scheduler to maintain multithreaded

replica consistency. Its control concurrency by the leader

(mutex) thread, which enforced the leader dictated order on

the execution of their thread (followers) [13]. OFT (Optimal

Finish Time) non preemptive strategy is known as NP-

complete with many uniform processors [14].LPT (Largest

Processing Time First) scheduling is near optimal to non-

preemptive OFT.

MSBC (Multiple Strict Bound Constraints) scheduling is non-

preemptive static strategy for heterogeneous computing

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

51

systems. It perform alternative task priority schedule instead

of Heterogeneous Earliest Finish Time (HEFT) scheme. It’s

also used to raised the performance of parallel computing

applications on the heterogeneous platforms due to macro data

flow graph implementation [16].

EDF (Earliest Deadline First) Strategy, schedule periodic or

sporadic tasks on uniprocessor without preemption and

without inserted idle time [25].Periodic tasks are invoked after

a certain time interval while sporadic tasks are invoked in

arbitrary time but within the limited time constraints.EDF is

universal for the set of periodic or sporadic tasks.

Comparative analysis of various task partitioning and

scheduling strategies is discussed below. This analysis is

highly beneficial to choose the appropriate strategy under the

different requirement and architecture:

S.N. Name of Strategy Type of Strategy Architecture Remark Ref

1 PY (Papadimitriou and

Yannakakis) Scheduling

Static Homogeneous DAG based scheduling.

Not Optimal.

34

2 LCTD (Linear Clustering with

Task Duplication)

Static Homogeneous DAG based scheduling.

Not Optimal

35

3 EZ (Edge Zeroing) Static Homogeneous DAG based scheduling 33

4 MCP (Modified Critical Path) Static Homogeneous DAG based scheduling

Optimal Scheduling

31

5 ETF (Earliest Time First) Static Homogeneous DAG based scheduling.

Optimal Scheduling.

32

6 Position Scan Task Scheduling

(PSTS)

Dynamic Heterogeneous It can be used in centralized and

decentralized manner.

14

7 Evolutionary Task Scheduling Static and

Dynamic

Heterogeneous Previous state information decide

the scheduling environment

26

8 DPS(Dynamic Priority

Scheduling)

Dynamic Heterogeneous Difference of top level and bottom

level of node decide the priority of

the tasks, Its DAG based

scheduling.

27

9 DLS (Dynamic Level

Scheduling)

Dynamic Heterogeneous DAG based scheduling. Priority

assign to the tasks on the basis of

GDL (Generalized Dynamic Level)

in the ready list at every scheduling

step.

29

10 LMT(Levelized Min Time)

Scheduling

Dynamic Heterogeneous DAG based scheduling. During first

phase level sorting is used and in

second phase greedy heuristic is

applied for assigning priority.

30

11 FPS(Fast Preemptive

Scheduling)

Preemptive Heterogeneous and

Homogeneous

Scheduling cost is very low 17

12 PTS(Preemptive Task

Scheduling)

Preemptive Homogeneous Cannot be implemented in

Heterogeneous

18

13 PDS(Preemptive Deterministic

Scheduling)

Preemptive Heterogeneous Multiple threads, and there is no

inter replica communication

11

14 Optimal Preemptive Scheduling

subject to release date

Preemptive Homogeneous Many step process 12

15 RM-DU-NFS Scheduling Preemptive Heterogeneous Free from scheduling anomalies 19

16 Optimal Preemptive Scheduling

with discount flow time

objective

Preemptive Homogeneous SRPT-FM rule is also optimal for

discounted flow time criteria

20

17 SRPT-FM Scheduling Preemptive Homogeneous Minimize flow time 21

18 LRPT-FM Scheduling Preemptive Homogeneous Minimize makespan 21

19 PTS(Preemptive Threshold

Scheduling)

Preemptive Real Time System It’s used to reduce unnecessary

preemption

23

20 FPP(Fixed Preemption Point)

Scheduling

Preemptive Real Time System Non preemptive task make

preemptive with the help of

preemption point in code of the job

21 LSA(Loose Synchronization

Algorithm) Scheduling

Non-preemptive Heterogeneous Its multithreaded replica strategy in

which leader(thread) control

to(follower) thread by using mutex

(locking/unlocking).

13

22 OFT(Optimal Finish Time)

strategy

Non-preemptive Homogeneous NP-Complete 14

23 LPT(Largest Processing Time Non-preemptive Homogeneous Its near optimal to non-preemptive 15

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

52

First) strategy OFT

24 MSBT(Multiple Strict Bound

Constraints) strategy

Non preemptive,

static

Heterogeneous Its use macro data flow graph

implementation

16

25 EDF(Earliest Deadline First)

Scheduling

Non-preemptive Real Time System Universal for the set of periodic or

sporadic tasks

25

Table 1: Comparison of Different Task Partitioning Strategies under the various architectures

6. FUTURE WORK
Advancement of the technologies and the architecture is a key

factor for the mapping heuristics of the task partitioning

strategies. A researcher decides his direction of the research

problem according to the existing strategies. Comparative

analyses of the recent scheduling strategies provide the

standard of the existing work in the field of the parallel

computing systems. In the static scheduling the most

challenging direction is to extend DAG scheduling to the

heterogeneous environment. A heterogeneous computing

environment is a collection of heterogeneous machines

consisting of communication protocols, high speed

interconnections, interfaces and efficient parallel computing

tools. One research avenue in the research direction is that

new model and optimized algorithms should be designed

which cover the major fields of the parallel computing

systems in the efficient manners. A common terminology is

used assigning the tasks onto the different type of the

parallel computing architectures.

7. CONCLUSION
We have studied problems, discussed in the literature from the

last twenty years. The main intension of the paper is to

provide a suitable framework for comparing past work in the

area of distributed parallel computing systems. Ideal

performance of the strategy is depending upon the

requirement and the architecture used for the distributed

parallel processing systems. From the brief discussion of

scheduling strategies it’s clear that there is no ideal strategy

for all parallel computing system The fruitful comparative

analysis of strategies provides easiest comparisons of the

existing systems. In this paper, Dynamic, preemptive and non-

preemptive task partitioning and load balancing strategies are

briefly discussed.

8. REFERENCES:

[1] Gary. E. Christensen, MIMD vs. SIMD parallel

processing: A case study in 3D medical image

registration, Parallel Computing 24 (9/10) (1998) ,pp.

1369–1383.

[2] Feitelson D.G., “A Survey of Scheduling in

Multiprogrammed Parallel Systems”, Research Report

RC 19790 (87657), IBM T.J. Watson Research Center,

August 1997.

[3] Jia-X. Z.; Wei-M. Z.; , “A DAG-based partitioning-

reconfiguring scheduling algorithm in network of

workstations,”High Performance Computing in the Asia-

Pacific Region, 2000. Proceedings. The Fourth

International Conference/Exhibition on , vol.1., 2000,

pp.323-324

[4] Andrews J. B. and Polychronopoulos C. D.. “An

analytical approach to performance/cost modeling of

parallel computers”. Journal of Parallel and Distributed

Computing, 12(4):Aug. 1991, pp.343–356.

[5] Menasce, D. A., Saha, D., Porto, S. C. D. S.,Almeida, V.

A. F., and Tripathhi, S. K. “Static and dynamic processor

scheduling disciplines in heterogeneous parallel

architectures”. J. Parallel Distrib. Comput. 28, 1 (July

1995), pp .3-6.

[6] [Gajski,D., and Peir, J., “Essential Issue in

Multiprocessor”, IEEE Computer Vol 18, No.6 ,1985,PP.

1-5.

[7] Menasce, D. A., Porto, S. C.,and Tripathi, S. K.. Static

heuristic processor assignment in heterogeneous message

passing architectures. Int. J. High Speed Computing.

1994, PP.114–135.

[8] Shmoys D. B., Wein J., and Williamson D.P.,

“Scheduling parallel machines on-line”. SIAM Journal

on Computing,, December 1995.

[9] Nelson R. and Towsley D., “Comparison of threshold

scheduling policies for multiple server systems,” IBM,

Research. Report,1985.

[10] Feitelson D.G. and Rudolph L.. Parallel job scheduling:

Issues and approaches. In IPPS’95 Workshop: Job

Scheduling Strategies for Parallel Processing,Springer–

Verlag, Lecture Notes in Computer Science LNCS 949,

1995,pp.1-3.

[11] Kwok Y. and Ahmad I., “Static Scheduling Algorithms

for Allocating Directed Task Graphs to Multiprocessors”,

ACM Computing Surveys 31(4) (December 1999) 406–

471

[12] Yu-Kwong K. and Ishfaq A., “Efficient Scheduling of

Arbitrary Task Graphs to Multiprocessors Using a

Parallel Genetic Algorithm”,Journal of Parallel and

Distributed Computing, 1997, pp.1-3.

[13] Grewe D.and M. F. O’Boyle. A static task partitioning

approach for heterogeneous systems using OpenCL. In

CC’11, Mar.-Apr. 2011.

[14] Savvas K and Tahar Kechadi, M. “Dynamic Task

Scheduling in Computing Cluster Environments,”

Proceedings of the ISPDC/Heterogeneous Parallel

Computing, IEEE conference, 2004, pp.121–154.

[15] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen and S.

Ali. “Task Execution Time Modeling for Heterogeneous

Computing System. Proceedings of Heterogeneous

Computing Workshop”, 2000, pp. 184-199 .

[16] Chen H.. “On the Design of Task Scheduling in the

Heterogeneous Computing Environments”. IEEE Pacific

Rim Conference on Communications, Computers and

Signal Processing, 2005.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

53

[17] Ahmed M., S.M.H. Chowdhury, M. Hasan, Fast

preemptive task scheduling algorithm for homogeneous

and heterogeneous distributed memory systems, in: Ninth

ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2008, pp. 721– 726.

[18] Radulescu A. and A. J. C. van Gemund. “On the

complexity of list scheduling algorithms for distributed

memory systems”. ACM Int’l Conf. on

Supercomputing,Rhodes Greece, 1999.

[19] Andersson B., Jonsson J., “Preemptive multiprocessor

scheduling anomalies,” Proceedings of IPDPS 2002,

pages: 12-19, 2002

[20] Pandelis] D. G., “Optimal Preemptive Scheduling on

Uniform Machines with Discounted Flow Time

Objectives,” European Journal of Operational Research,

Vol. 177, No. 1, 2007, pp. 630-637.

[21] Gonzalez T., “Optimal Mean Finish Time Preemptive

Schedules, Technical Report 220, Computer Science

Department, Pennsylvania State University 1977.

[22] Renan A. S., Romulo S. de O., "A Heterogeneous

Preemptive and Non-preemptive Scheduling Approach

for Real-Rime Systems on Multiprocessors,", 2012

Second Brazilian Conference on Critical Embedded

Systems, 2012, pp.70-75.

[23] Desrochers M., Lenstra J.K., and Savelsbergh M.W.P.,

“A Classification Scheme for Vehicle Routing and

Scheduling Problems”, European Journal of Operational

Research ,1990, pp. 320–331.

[24] Burns A.. “Preemptive Priority Based Scheduling: An

Appropriate Engineering Approach”. Technical Report

YCS 214, University of York, 1993,pp.12-18.

[25] Jeffay, K.; Stanat, D.F.; Martel, C.U.; “On Non-

Preemptive Scheduling of Period and Sporadic

Tasks,” Real-Time Systems Symposium, Proceedings.,

Twelfth , vol., no., 1991, pp.129-139.

[26] Zamfirache, F.;,Zaharie, D., Craciun, C. ,“Evolutionary

Task Scheduling in Static and Dynamic Environments”

Computational Cybernetics and Technical Informatics ,

International Joint Conference on , vol., no.,

2010,pp.619-625.

[27] Ahmad, I.; Dhodhi, M.K.; Ul-Mustafa, R.; , “DPS:

Dynamic Priority Scheduling Heuristic for

Heterogeneous Computing Systems,” Computers and

Digital Techniques, IEE Proceedings - , vol.145, no.6, ,

Nov 1998,pp.411-418.

[28] Norman M. G. and Thanisch P.. “Models of Machines

and Computation for Mapping in Multicomputers”. ACM

Comput. Surv.,1993. pp.263–302.

[29] Sih, G.C.; Lee, E.A.; , “A compile-time scheduling

heuristic for interconnection-constrained heterogeneous

processor architectures,” Parallel and Distributed

Systems, IEEE Transactions on , vol.4, no.2, , Feb 1993,

pp.175-187.

[30] Iverson M., F. Ozgumer, and Follen G..“Parallelizing

Existing Applications in a Distributed Heterogeneous

Environment” In Proceedings of the 4th Heterogeneous

Computing Workshop (HCW’95), , 1995, pp. 91–99.

[31] Wu, M.Y. and Gajski, D. D., “Hypertool: A

Programming Aid for Message-Passing Systems”. IEEE

Transaction Parallel Distributed. Systems. 1990 pp.

331–344.

[32] Hwang, J.-J., Chow, Y.-C., Anger, F. D., and Lee, C.Y.

“ Scheduling Precedence Graphs in Systems with Inter-

processor Communication Times. SIAM J. Computer,

1989, pp. 245–256.

[33] Sarkar, V. “Partitioning and Scheduling Parallel

Programs for Multiprocessors”. MIT Press, Cambridge,

MA. 1989.

[34] Papadimitriou, C. H. and Yannakakis, M. ,“Towards an

Architecture-Independent Analysis of Parallel

Algorithms”. SIAM J. Computer, 1990,pp. 324–327.

[35] Chen, H., Shirazi, B., and Marquis, J. “Performance

Evaluation of a Novel Scheduling Method: Linear

Clustering with Task Duplication”. In Proceedings of the

2nd International Conference on Parallel and Distributed

Systems, 1993,pp. 271–276.

AUTHOR’S PROFILE
Dr. Rafiqul Zaman Khan, is presently working as a Associate

Professor in the Department of Computer Science at Aligarh

Muslim University, Aligarh, India. He received his B.Sc

Degree from M.J.P Rohilkhand University, Bareilly, M.Sc

and M.C.A from A.M.U. and Ph.D (Computer Science) from

Jamia Hamdard University. He has 18 years of Teaching

Experience of various reputed International and National

Universities viz King Fahad University of Petroleum &

Minerals (KFUPM), K.S.A, Ittihad University, U.A.E, Pune

University, Jamia Hamdard University and AMU, Aligarh. He

worked as a Head of the Department of Computer Science at

Poona College, University of Pune. He also worked as a

Chairman of the Department of Computer Science, AMU,

Aligarh.

His Research Interest includes Parallel & Distributed

Computing, Gesture Recognition, Expert Systems and

Artificial Intelligence. Presently 04 students are doing PhD

under his supervision.

He has published about 25 research papers in International

Journals/Conferences. Names of some Journals of repute in

which recently his articles have been published are

International Journal of Computer Applications (ISSN: 0975-

8887), U.S.A, Journal of Computer and Information Science

(ISSN: 1913-8989), Canada, International Journal of Human

Computer Interaction (ISSN: 2180-1347), Malaysia, and

Malaysian Journal of Computer Science(ISSN: 0127-9084),

Malaysia. He is the Member of Advisory Board of

International Journal of Emerging Technology and Advanced

Engineering (IJETAE), Editorial Board of International

Journal of Advances in Engineering & Technology (IJAET),

International Journal of Computer Science Engineering and

Technology (IJCSET), International Journal in Foundations of

Computer Science & technology (IJFCST) and Journal of

Information Technology, and Organizations (JITO).
Javed Ali is a research scholar in the Department of Computer

Science, Aligarh Muslim University, Aligarh. He published 5

papers in international repute journals..He received State

Scientist Award by making refrigerator without electricity.

His research interest include parallel computing in distributed

systems.He did Bsc(Hons) in mathematics and MCA from

Aligrah Muslim University,Aligarh.

