
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

13

Priority based Distributed Job Processing System

P. Srinivasa Rao
Computer Science

YPR College of Engineering
&Technology, A.P, India

V.P.C Rao, PhD.
Computer Science

St. Peter's Engineering
College, A.P, India

A.Govardhan, PhD.

Computer Science
JNT University Hyderabad

A.P, India

ABSTRACT
This paper proposes a framework for implementing a Priority

Based Job processing system that has the capability to specify

the priority of a job at the time of submission, execute the job

at as per the priority at the job processor end. The framework

will scale horizontally as well as vertically without any

change in the components. This feature is achieved through

simple configuration. The advantages of such a framework

over other implementations is that we are using a global queue

where in the processors can be dynamically added or removed

without affecting the overall processing of jobs. This makes it

flexible enough for any processor to handle any type of job

without any restriction. While, it is still possible to impose

restrictions on specific processors handling special type of

jobs that is implemented as a configuration option and does

not in any way impose restrictions on the processors.

Therefore, new types of processors can seamlessly added to

the entire network of processors without affecting the existing

processors.

General Terms
Distributed Job Processing, Load Balancing,Parallel

Processing.

Keywords
Distributed, Job Processing, Priority,Load Balancing ,

Monitoring, Recovery.

1. INTRODUCTION
There are several Job/Batch processing systems implemented

over the past decades, majority of them being on Mainframe

systems. While such systems have met the functional

requirements, the usage of them has been mostly restricted to

offline / batch mode operations. Few of such systems are

Payroll Processing systems, Back office systems in a financial

institution for interest computation etc. Such systems, having

lengthy processing time, processing large volumes of data,

never had the requirement for a real-time computation or

priority based computation.

Several batch / job processing systems do exist today, but they

may not have priority based scheduling implementation. Some

of the obvious problems are:

1. Some of the system may not have the capability to
define a priority.

2. Not many levels of priorities are supported.
3. No clarity on how priority is managed.
4. It is not clear which component manages priority

(Dispatcher or Processor)

While such challenges do exist today, given the technology

available today, it is not difficult to implement a Job

Processing system that supports priority based scheduling.

There are several challenges in implementing such a system.

So, how do we build such a system?

Some of the critical challenges are:

1. Defining a priority.
2. Handling of the priority by the processor.
3. Technology support available in implementing such a

mechanism.

2. APPROACH
In this article, we will discuss about an approach and

feasible implementations of a priority based job processing

system. It is assumed that there is more than one processor

available, but not necessarily online, in the system. By ‘not

necessarily online’, we mean that a system is capable of

processing the job, but is currently not available and will be

available in the near future. Also, since the entire system has

the reporting capability, is does have its own persistence,

possibly through a local or remote database. So, the status of a

job is maintained in the persistence, a database. The reporting

can be done from the data available in this database.

To start with, let us consider the basic requirement of a

priority based job scheduling system. The capabilities should

include the following:

1. Should clearly define the priority levels.
2. There should be a mechanism to assign priority to a

Job.
3. The processor should be able to handle job

processing requests based on the priority.

3. DESIGN
Let us consider feasibility of implementation of such a

system. How can the priority handling be implemented?

Solution 1: The processors can be classified based on the

priority. This means:

a. Each processor is identified with a priority; apart

from its other attributes.

b. The dispatcher has the information about all the

processors and their priority levels.

c. When a job is about to be submitted, the dispatcher

identifies the job’s priority, identifies the processor

with the appropriate priority.

d. The dispatcher then checks if the processor is free to

take up this job. It then dispatches the job to the

appropriate processor.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

14

e. Processor then takes up the job.

The solution has some advantages. The processors have pre-

defined levels of priority. Thus, each processor deals with

only the job that matches its own priority. Implementing this

is simple too.

While this is quite a feasible solution, this approach has few

drawbacks. Assigning priority to the processors means that we

need to have pre-configured processors with respective

priority levels. But, what if few of the processors go down and

are not available? This will result in queue getting built up

and jobs lying in the queue.

What if we design a processor that handles priority jobs of all

levels? Based on the load it can take up any job and process it.

Our second approach discusses exactly this implementation.

Solution 2: Let us consider that all the processors are

capable of handling any job and of any priority.

 Fig1: Job Processing Flow Chart

In such a scenario, the system will have the following

features:

a. Dispatcher can dispatch a job to the request queue,

without bothering about the priority.

b. The processor is capable of handling jobs of any

priority.

c. The processor internally, maintains independent

thread-pools for different priority jobs.

d. Based on the priority, the processor assigns the job to

appropriate pool.

e. The threads in a given pool have pre-defined priority,

i.e. they are allocated CPU time based on the priority

number assigned to them.

The solution 2 proposed above appears simple and feasible.

Let us discuss in detail about how such a system can be

implemented.

Job Dispatcher – This is the component that accepts the

job requests from the external systems, validates them and

places the jobs in the Job Queue for processing. The

dispatcher also records all the requests in the Database.

Job Queue – This is the message queue that stores the job

requests dispatched until a processor picks them up for

processing. Note that, for reliable job processing system, this

Queue should have persistence capability, so that, in case of

system failures, the requests lying in the queue are not lost.

(Not all queues support persistence. For example, native

message queue implementations in Unix systems do not

support persistence. However, commercial message queues

like Microsoft Message Queue, Active MQ, JBoss MQ etc

support persistence.)

Job Processor – The processor is the component that picks

up a job request from the queue, processes it. As shown in the

diagram, the processor also reports the progress and status of

job processing. If a job is a long running job, progress

information is sent at periodic intervals to the monitor. The

Job processor also needs to report its health status. This is

achieved through an independent thread in the job processor.

Irrespective of whether a job processing is being done or not,

the Heartbeat thread sends out the information about the

availability and readiness of the processor.

The Figure 2 depicts the internal components of a typical Job

Processor. The Job Processor primarily contains two threads.

The first one is the main processing thread. This thread is

responsible for handling the job processing request. For long-

running jobs, this thread may also send out regular progress

messages to the monitor through the Progress queue. While

this is not mandatory, by suitable design of the progress

message protocol, real time progress of a long-running job can

easily be monitored. The second thread is the heartbeat thread.

The responsibility of this thread is to send out messages to the

monitor indicating that the Job Processor is active. The

information also can include the current load, expected time to

complete etc.

Figure 2. Job Processor with Priority Thread Pool

Progress / Status Queues – The progress or status queue

is the message queue that receives messages with the

information about the Jobs currently under processing. The

processors, at periodic intervals, post these messages. The

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

15

monitor receives these messages and updates the persistence

database accordingly. The final status of the job is also

communicated to the monitor by the processor through this

queue.

The Figure 3 shows the flow chart of the Job Processing steps

that takes care of identifying the Job priority and assigns to

the appropriate processing thread. The processor runs, it

continues to send the progress messages at regular intervals.

Thus, the Job dispatch components are always aware how

many processors are active with their corresponding load and

how many processors are not available.

Figure 3: Job Processing System

For the implementation of a prototype, we used the Java

environment for designing a priority pool based Job

Processor. The core of the processor is the priority queues and

the processor. Standard Java environment provides an internal

queue named LinkedBlockingQueue. The declaration will be

similar to the following.

LinkedBlockingQueue<Runnable> queue =

 new LinkedBlockingQueue<Runnable>();

The thread that needs to wait on this queue will be

initialized as shown below.

ThreadPoolExecutor threadPool =

 new ThreadPoolExecutor(DEFAULT_POOL_SIZE,

 MAX_POOL_SIZE,

 keepAliveTime,

 TimeUnit.SECONDS,

The DEFAULT_POL_SIZE and MAX_POOL_SIZE can

be designed as per the application requirement, load to be

supported and the resources available.

What is the advantage of the thread pool? The thread pool

is internally managed through the respective queues internal

to the processor. The processor can have multiple thread pools

based on the priority. For example, a processor can have two

thread pools, one for Low priority with 5 threads and the other

for High priority with 10 threads. The biggest advantage of

such a design is that when the processor is loaded with Jobs of

one priority, other priority jobs can still be taken up. For

example, if a Low priority job is submitted to a processor

having 100% load with prior low priority jobs, then the newly

arrived low priority job can be given to the high priority pool.

Thus, there will be no starvation.

An instance of job execution component that actually

handles the Job requests is assigned to this tool. As and when

a Job request is received, the processor places the request in

the appropriate Thread Pool based on the priority. A priority

queue is always allocated to a job execution component. The

component waits in a passive mode. As and when a request is

placed in the internal priority queue, a new thread of job

execution component is started up. The job execution

component then picks up the processing request and executes

the job. This is triggered by the code similar to given below.

TaskExecution task = new TaskExecution(newJob);

threadPool.execute(task);

where the ‘task’ is an instance of job execution client.

4. SIMULATION and ANALYSIS
Experiment 1

We implemented a Java based job processing system with

various options. As part of this experiment, we defined a Job

that compute 200000 prime numbers. Thus, the Job

processing time was allowed to take whatever time it takes to

compute.

1. The Job could take the priority as an attribute. The
priority could be Low or High.

2. The dispatcher was able to dispatch the job to the
alternate queues (i.e. first to Low priority queue,
second to high priority queue, third to low priority
queue and so on).

3. The processor was designed to have two independent
thread pools, one for Low priority and the other was
for high priority.

4. Each thread pool had the capacity to process 10 jobs
concurrently, beyond which, jobs will wait in the
queue.

5. When the Job processing was delegated to the
appropriate thread, the thread priority was set to
either low or high based on the Job’s priority.

6. The job was configured to compute 200000 prime
numbers.

7. A total of 40 Jobs were dispatched, 20 with low
priority and 20 with high priority.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

16

8. The wait time, processing time were measured for
each job.

9. Finally, the average values were plotted as a graph as
shown in Figure 4.

As can be observed, the total time for Low priority jobs are

very high as compared to that for the high priority jobs when

the number prime number computations are kept same at

2000000.

 Figure 4 : Result of Experiment 1

Here is the data that was collected over several iterations and

averaged out.

Priority
Wait Time

(ms)

Processing

Time (ms)

Total Time

(ms)

Low Priority 231217 112141 343358

High Priority 133129 72955 206084

Table 1: Data collected as part of Experiment 1

Experiment 2

We then implemented a Java based job processing system

with more options. As part of this experiment, we defined a

Job that compute prime numbers for a fixed period of

approximately 40 seconds. Thus, the Job processing time was

fixed and we monitored how many prime numbers were

computed.

1. The Job could take the priority as an attribute. The
priority could be Low or High.

2. The dispatcher was able to dispatch the job to the
alternate queues (i.e. first to Low priority queue,
second to high priority queue, third to low priority
queue and so on).

3. The processor was designed to have two independent
thread pools, one for Low priority and the other was
for high priority.

4. Each thread pool had the capacity to process 10 jobs
concurrently, beyond which, jobs will wait in the
queue.

5. When the Job processing was delegated to the
appropriate thread, the thread priority was set to
either low or high based on the Job’s priority.

6. The job was configured to compute for
approximately 40 seconds.

7. A total of 40 Jobs were dispatched, 20 with low
priority and 20 with high priority.

8. The wait time, processing time and number of prime
computations were measured for each job.

9. Finally, the average values were plotted as a graph as
shown in Figure 5.

Figure 5: Result of Experiment 2

As can be observed, when the computation time was kept

constant, the number of prime numbers computed was

considerably higher (almost double).

Here is the data that was collected.

Priority
Wait Time

(ms)

Processing

Time (ms)

Number of

Primes

Low Priority 104630 44014 349504

High Priority 116286 42012 701410

Table 2: Data collected as part of Experiment 2

5. COMPARISON
The results were compared with the data collected through

an implementation of Sender initiated algorithm. The network

overhead in the Sender Initiated Algorithm was quite

enormous and it increased the waiting time of the jobs in case

of sender initiated algorithm. The figure below demonstrates

at-least 12% improvement in the total processing time in our

proposed approach.

Figure 6: Comparison

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.17, December 2012

17

6. CONCLUSION
The idea presented here uses the currently available

technologies on Java platform to implement a priority based

scalable, high performing, cost effective job processing

system. This technique had the option to configure the

processors and priority pools. The technology can be utilized

to design enterprise level Job processing systems.

The proposed system can be enhanced further to include

load balancing based on job priority and cost of routing and

cost of processing. Such systems can be commercially quite

viable in areas like web-based batch processing services,

services provided over cloud computing platforms etc.

7. GLOSSARY
Word Meaning

MQ Message Queue

JMS Java Messaging Specification

Active MQ Industry standard, free Messaging System

8. REFERENCES
[1] Ambika Prasad Mohanty (Senior Consultant, Infotech

Enterprises Ltd.), P Srinivasa Rao (Professor in CSC,

Principal, YPR College of Engineering & Technology),

Dr A Govardhan (Professor in CSC, Principal, JNTUH

College of Engineering), Dr P C Rao (Professor in CSC,

Principal, Holy Mary Institute of Technology &

Science), Framework for a Scalable Distributed Job

Processing System.

[2] Ambika Prasad Mohanty (Senior Consultant, Infotech

Enterprises Ltd.), P Srinivasa Rao (Professor in CSC,

Principal, YPR College of Engineering & Technology),

Dr A Govardhan (Professor in CSC, Principal, JNTUH

College of Engineering), Dr P C Rao (Professor in CSC,

Principal, Holy Mary Institute of Technology &

Science), A Distributed Monitoring System for Jobs

Processing.

[3] J. H. Abawajy, S. P. Dandamudi, "Parallel Job

Scheduling on Multi-cluster Computing Systems,"

Cluster Computing, IEEE International Conference on,

pp. 11, Fifth IEEE International Conference on Cluster

Computing (CLUSTER'03), 2003.

[4] Dahan, S.; Philippe, L.; Nicod, J.-M., The Distributed

Spanning Tree Structure, Parallel and Distributed

Systems, IEEE Transactions on Volume 20, Issue 12,

Dec. 2009 Page(s):1738 – 1751

[5] David P. Bunde1, and Vitus J. Leung, Scheduling restart

able jobs with short test runs, Ojaswirajanya Thebe1,

14th Workshop on Job Scheduling Strategies for Parallel

Processing held in conjunction with IPDPS 2009, Rome,

Italy, May 29, 2009

[6] Norman Bobroff, Richard Coppinger, Liana Fong,

Seetharami Seelam, and Jing Xu, Scalability analysis of

job scheduling using virtual nodes, 14th Workshop on

Job Scheduling Strategies for Parallel Processing held in

conjunction with IPDPS 2009, Rome, Italy, May 29,

2009

[7] Y-T.Wang and R.J.T.Morris. Load Sharing in Distributed

Systems. IEEE Trans. Computers, Vol. C-34, No. 3,

1985, pp. 204-215

[8] Java Message Service (JMS):

http://java.sun.com/products/jms/

