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ABSTRACT 

On-line signature verification can be used in real time 

applications like credit card transactions or resource accesses 

because of its popularity in regular authentication. In 

signature verification number of signatures avalible to train a 

model is very limited, and therefore identification of the most 

suitable features which characterize the class is critical. 

Therefore feature selection is essential to minimize the 

classification error. The mRMR (minimum Redundancy 

Maximum Relevance) method is applied to select the features. 

Verification is based on global features and scores from 

functional features. The scores are generated by comparing 

the functional features of the test signature with the 

corresponding reference features. These scores are treated as 

additional features in a two-class classification problem 

solved with the ANN and SVM. Verification accuracy is 

enhanced by fusion of user specific global and functional 

features.  The methods are tested with the database of 

SVC2004. 

Keywords 

Support vector machine, On-line signature verification, 
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1. INTRODUCTION 
Automatic signature verification is a commonly used form of 

biometric verification and identification, because of wide 

spread acceptance of static signature in the application of 

personal authentication, document certification for a very long 

time in manual verification [1]. It can be predicted that as the 

technology enhances online signature will be one of the 

important means of biometric in this field with good user 

acceptance. The online context is more desirable to prevent 

imitation. An impostor can imitate visible shape of the 

signature, but it is nearly impossible to achieve the imitation 

of dynamic content of the signature, which is embed in the 

gesture of signing and is very personal.  

2. LITERATURE REVIEW 
One of the first publications on on-line signature verification 

was by Herbst and Liu [2]. In this paper handwriting was 

modeled as ballistic motions that do not involve sensory 

feedback. Extensive literature is available in the field of 

online (dynamic) signature verification.  A survey of signature 

verification can be found in [3-5].  

Leclerc and Plamondon categorized the various signature 

verification methodologies into two types: functional 

approach and parametric approach [4]. In the function-based 

approach, online signatures are characterized and analyzed as 

time sequences (e.g., position trajectory, velocity, 

acceleration, pressure, direction of pen movement, and 

azimuth) [6]. 

In general, function-based features show better discriminating 

ability than the parameter-based features but they usually 

require time-consuming algorithm for comparison. However, 

the work by Aguilar et al. reported that the parametric 

approaches are equally competitive with the function based 

approaches [7]. In parametric approaches, the authenticity of a 

test signature is estimated by comparing test feature set 

against reference feature set. Each matching method is based 

on similarity (or dissimilarity) measurement. In the parameter 

based approach, one commonly used distance measure is 

Euclidean distance [6].   The verification methods are based 

on Neural Networks (NN) [8],  Hidden Markov Model 

(HMM) [9], and Support vector machine (SVM) are mostly 

used [10-11].  

Function-based approaches can be classified into local and 

regional methods. In local approaches, the time functions of 

different signatures are directly matched by using  elastic 

matching technique such as dynamic time warping [12-16]. 

However, the time complexity of DTW is of      . In the 

case of function-based approach, the matching methods must 

take care of the phase shift and non-linear distortion of 

functions.  

A popular technique used for signature verification is the 

SVM. With the help of training examples from two classes, an 

SVM search the maximum separating hyperplane. In [11], 

comparison of SVM classifiers with HMM classifiers is 

carried out in terms of the number of samples used for 

training and verification using different types of forgeries. 

Under both conditions, SVM appears to produce better result. 

However, the main limitations of SVMs are high algorithmic 

complexity and extensive memory requirements in large-scale 

tasks. 

Signature verification schemes based on Neural Network are 

also proposed [8]. Although, the neural network-based 

approaches have the capabilities in generalization, the 

drawback is the need for a large number of genuine and 

forgery signatures for training, which is not always practically 

viable. 

In the verification system user data should be described in 

such a way that it will discriminate the user maximally. To 

fulfill this purpose the intra class variability is to be reduced 
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and at the same time the inter class variability is to be 

preserved. To reduce the intra class variation and keeping the 

discriminatory feature, it is better to normalize the signature in 

the function domain before feature extraction and matching. 

The fusion of function and feature based verification score 

gives better accuracy. Selection of the consistent statistical 

feature is a great challenge in feature based verification [17]. 

3. ONLINE SIGNATURE 

VERIFICATION SYSTEM 
A diagram of a general signature verification system is shown 

in Fig. 2.  

 

Signature verification systems are generally divided into two 

modules: Signature enrollment or training module and 

signature verification or testing module. A signature 

verification system must provide a solution to the problems of 

data acquisition, preprocessing and normalization, reference 

signature selection, feature extraction, matching, and 

performance evaluation. Out of these feature selection and 

verification methods have been considered in this paper. 

Detail discussion of other modules is beyond the scope of this 

paper.  

4. DATABASE 
First international signature verification competition 

(SVC2004) was held as a step towards establishing common 

benchmark databases and benchmarking rules [18]. For each 

of the two tasks of the competition, a signature database 

involving 40 sets of signature data was created, with 20 

genuine signatures and 20 skilled forgeries for each set. 

Experimental results have been conducted using the Task 1 

SVC2004 database. Shape of online signature and its 

associated function are shown in Fig, 1. 

 

Figure 1: On-line signature shape and its associated 

functions from SVC2004 database 

5. FEATURE EXTRACTION 
Both global feature and functional feature are used here for 

verification.  

5.1 Global Feature Extraction  
In the global parametric approach, a fixed set of parameter is 

extracted to describe a signature pattern. More importantly, 

this approach is expected to be more stable against the 

variations in local regions, which are common in signatures. 

The difficulty with this approach lies in selecting the salient 

parameters that can distinguish between the classes and are 

consistent among the same set. The major limitation of this 

approach lies in its discriminative ability [19-20]. An 

averaging effect arises in calculating the parameters over the 

whole pattern. Although this effect is obviously the reason for 

the above-mentioned stability, the parameters selected from a 

small set of signers may not work well on a larger set of 

signers [19].  

However, verification with global features of a signature has 

several advantages. It is simple to compute and address the 

concerns related to privacy because it does not need to retain 

the original signature once the features are extracted. In total 

48 global features are calculated here for every signature.   

5.2 Functional Feature Extraction 
In the functional approach, complete signals [          

          etc, where,   is index of the signature samples] 

directly or indirectly constitute the feature set. The two 

signals, one from the reference signature and the other from 

the test signature, are then compared point-to-point or 

segment-to-segment basis [21]. The challenge within this 

approach is that two signals are likely to have different 

durations and also undergo non-linear distortions.  

Seventeen signature functions (local features) are taken for 

score generation. Three measures are estimated for 

comparison, namely 1) correlation coefficient 2) DTW 
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distance 3) Euclidean distance. From the outputs of three 

measures total          scores are estimated.  

6. FEATURE SELECTION 
In signature verification number of sample signature avalible 

to train a verifier model is very limited [22], whereas number 

of avalible features (or attributes) are very large compared to 

the sample data. Feature vector with very large dimensionality 

leads to th curse of dimensionality problem [23]. 

Identification of the most suitable features  of the oserved data 

which characterize the class is also critical. Therefore feature 

selection is very essetial to minimize the inconsistancy in 

classification. 

6.1 Feature Selection by mRMR Method 
In an unsupervised situation minimal error usually requires 

the maximal statistical dependency of the target class, say C, 

on the data distribution [22, 24]. The method of Minimum 

Redundancy Maximum Relevance (mRMR) has been 

proposed by Peng et al. [22]. 

One of the most popular approaches to realize maximum 

dependency is maximum relevance feature selection, i.e., 

selecting the features with the highest relevance to the target 

class C. Relevance is usually characterized in terms of 

correlation or mutual information. Results of global feature 

selection by mRMR method are shown in Table 1. Out of 48 

features, 10 best selected features using mRMR method is 

shown in Table 1. 

 Table 1: 10 common selected features 

Average 

Rank 

Symbol 

used 
Name and description. 

9.45 
    

 -directional average absolute 

acceleration 

13.85 
    

 -directional average absolute 

acceleration 

15.1 
    

Standard deviation of  -directional 

acceleration 

15.7 
     Average absolute acceleration 

16.625 
   Average pen pressure          

18.075 
    

Standard deviation of the phase  
        

18.45 
     

Median of writing pen pressure 

           
18.575 

    
Entropy of  shape signature 

function 

18.65 
     Standard deviation of acceleration 

18.775 
   

Duration of the complete writing 

process in ms 

Out of 51 scores, 10 common selected scores using mRMR 

method is shown in Table 2. 

 

 

Table 2: 10 common selected functional scores 

Average 

Rank 

Feature Name and 

Description. 

Matching Method 

13.325 X directional 

acceleration 

Correlation efficient 

13.675 Pressure Function Euclidean Distance 

13.875 Absolute acceleration Correlation Coefficient 

13.875 Pressure function DTW Distance 

15.575 Y directional 

acceleration 

Correlation Coefficient 

16.4 Absolute acceleration Euclidean Distance 

17.075 Pressure function Correlation Coefficient 

17.55 Time function DTW Distance 

17.6 Time function Euclidean Distance 

19.375 
Magnitude of change 

in XY coordinate 
Euclidean Distance 

 

In global feature and functional score concatenated    

      .  First 48 features are global features and rest 51 

features are scores as explain above.  Feature number 63 

corresponds to score feature number          Magnitude of 

overall acceleration with correlation score. Feature number    

corresponds to X directional acceleration with correlation 

score. Similarly feature number 97 corresponds to score 

feature number          Magnitude of acceleration with 

Euclidean distance score. Out of 99 (global features and 

scores respectively concatenated), 10 best selected features 

and scores method are shown in Table 3 using mRMR 

method. 

Table 3: 10 common selected features and functional 

scores (jointly selected). G means global feature and S 

means score from local feature. 

Average 

Rank 

Feature 

No 
Feature Name G/S 

17.2 22 
 -directional average 

absolute acceleration 
G 

24.65 23 
 -directional average 

absolute acceleration 
G 

25.9 63 Magnitude acceleration S 

27.075 61 X directional acceleration S 

29.45 25 
Standard deviation of x-

directional acceleration 
G 

30.1 24 
Average absolute 

acceleration 
G 

30.875 62 Y directional acceleration S 

31.325 86 Pressure Function S 

32.55 69 Pressure Function S 

34.425 97 
Magnitude of 

acceleration 
S 

Average rank has been computed as the mean of ranks 

corresponding to all 40 users in SVC2004 database. 

7. SUPPORT VECTOR MACHINE  
Online signature verification problem can be put as a two 

class classification problem. In this problem the goal is to 

separate the two classes by a function which is induced from 

the training data. Consider the example in Fig. 3. There are 

many possible linear classifiers that can separate the data, but 
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there is only one that maximizes the margin (maximizes the 

distance between the nearest data point of each class) as 

shown by bold line in Fig. 3. This is termed as the optimal 

separating hyperplane. 

 
Figure 3: Optimal separating hyperplane 

7.1 The Optimal Separating Hyperplane 
Consider the problem of separating the set of training vectors 

belonging to two separate classes 

                                                                    

                                                                

with a hyperplane:                                                           

The separating hyperplane is said to be optimum if the 

distance between the closest vectors to the hyperplane is 

maximal and the separation is without error. There is some 

redundancy in Eq. 3, and it is appropriate to consider a 

canonical hyperplane [25-26], where the parameters     are 

given by, 

   
 

                                                         

A separating hyperplane in canonical form must satisfy the 

following constraints, 

    
                                                

The distance          of a point x from the hyperplane 

      is,  

          
        

   
                                                   

The optimal hyperplane is given by maximizing the margin, 

 , subject to the constraints of Eq. 5. The margin is given by, 

          
        

             
       

           

    
        

 
        

   
     

       
 
        

   
        

 
 

   
    
        

            
       

           

 
 

   
                                                                                                 

The maximization of   can be implemented by minimizing a 

function     , where 

     
 

 
                                                                               

It is independent of   because provided Eq. 5 is satisfied (i.e. 

it is a separating hyperplane) changing b will move it in the 

normal direction to itself. Accordingly the margin remains 

unchanged but the hyperplane is no longer optimal in that it 

will be nearer to one class than the other. The saddle point of 

the Lagrange functional gives the solution to the optimization 

problem of Eq. 8 under the constraints of Eq. 5 [27]. 

         
 

 
       

 

   

     
              

where   are the Lagrange multipliers. The Lagrangian has to 

be minimised with respect to     and maximised with respect 

to    . Lagrangian duality enables the primal problem, Eq. 

9, to be transformed to its dual problem, which is easier to 

solve. The dual problem is given by  

   
 

     
   
 

 
   
   

                           

Thus, differentiating      with respect to     and setting the 

results equal to zero, we get the following two conditions of 

optimality: 

Condition 1:           
  

  
              

 
    

Condition 2:            
  

  
          

 
                                

The solution vector   is defined in terms of an expansion that 

involves the   training examples. Although this solution is 

unique by virtue of the convexity of the Lagrangian, the same 

can not be said about the Lagrange coefficients,   . 

It is also important to note that at the saddle point, for each 

Lagrange multiplier   , the product of that multiplier with its 

corresponding constant vanishes, as shown by  

       
                                      

Therefore those multipliers exactly meeting Eq. 12 can 

assume nonzero values. This property follows from the Kuhn-

Tucker conditions of optimization theory [28]. Hence only the 

points    which satisfy,  

    
                                                           

will  have non-zero Lagrange multipliers. These points are 

termed Support Vectors (SV). If the data is linearly separable 

all the SV will lie on the margin and hence the number of SV 

can be very small. Consequently the hyperplane is determined 

by a small subset of the training set. The other points could be 

removed from the training set and recalculating the 

hyperplane would produce the same answer [25].  
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7.2 Gamma and C in SVM 
In signature verification number of observation is very less 

compared to number of features. It is better to use the linear 

SVM rather than nonlinear kernel SVM. Because the number 

of features is already much larger than the number of 

observations, non linear mapping is not essential which map 

the data into a higher dimensional features space. If linear 

SVM is used then only parameter C is needed to search for the 

better accuracy.  

As conjectured in [29] a small C yields a high error rate on the 

training patterns, whereas a large C is bound to result in a 

high error rate on future patterns. In this signature verification 

problem training accuracy is achieving 100% with large C but 

testing accuracy is not able to reach near 100%. So to get 

better testing accuracy and thereby a more reliable SVM 

classifier it is needed to restrict the value of parameter C 

within a limited range.  

8. NUMERICAL EXPERIMENT 
Six numerical set up has been consider for verification using 

SVM as shown in Table 4. 

Table 4: Six numerical setups. 

Setup 1:   Global Feature Based Verification Using 

Nonlinear (RBF kernel) SVM 

Setup 2:   Global Feature Based Verification Using Linear 

SVM 

Setup 3:   Local Score Based Verification Using Nonlinear 

(RBF kernel) SVM  

Setup 4:   Local Score Based Verification Using Linear 

SVM  

Setup 5:   Global Feature and Local Score Based 

Verification Using Nonlinear (RBF kernel) SVM  

Setup 6:   Global Feature and Local Score Based 

Verification Using Linear SVM  
 

The LIBSVM- A Library for Support Vector Machines 

toolbox is used for experiment [30]. Since version 1.2, it 

implements an SMO-type algorithm proposed in [31]. All the 

algorithms proposed in this thesis are implemented in 

MATLAB 7.7 [32]. Two class SVM parameters and their 

ranges are shown in Table 5. 

Table 5:  Parameter for the two class SVM classifier 

Parameter Name Value 

Kernel Type Radial basis function (RBF) 

                    
 

Degree 0 

Gamma( )                 

Coefficient 0 

C                 

Cache size 50 

epsilon 0.001 

SVM type Two Class c SVM 

9. RESULTS 
The results from the final stage of signature verification using 

SVM is shown in Table 6.  User specific ranked features are 

used in this experiment. Summary of results using SVM with 

common ranked features is shown in Table 7. 

Table 6: Summary of results using SVM technique and 

user specific  ranked feature 

Setup 

% 

Training 

Accuracy 

% 

Testing 

Accuracy 

            
Time 

(s) 

1 100 95.75 -52.05 -27.3 0.39 

2 99.88 95.94 NA -25.33 0.34 

3 100 91.75 -45.91 -22.25 0.47 

4 100 91.5 NA -16.2 0.22 

5 100 96 -55.91 -40.98 0.41 

6 100 97.69 NA -34.58 0.22 

Table 7: Results using SVM and common ranked 

features 

Setu

p 

% 

Training 

Accuracy 

% 

Testing 

Accuracy 

            

Time 

(s) 

1 100 91.57 -27.88 -7.83 0.39 

2 99.63 90.69 NA -23.79 0.74 

3 100 90.75 -27.8 -8.62 0.36 

4 100 89.5 NA -17.11 0.26 

5 100 92.13 -28.95 -26.9 0.37 

6 100 92.38 NA -22.39 0.26 
 

Time indicated in Table 6 and 7 is the average time required 

to train 20 signatures and to test 40 signatures.ANN classifier 

model is formed with one hidden layer consist of five neuron 

feed-forward back propagation network. Average Testing 

accuracy is 96.125% for user specific best selected 5 features. 

Average Testing accuracy drops down to 87.25% for best 

selected common 5 features. 

10. DISCUSSION AND CONCLUSION 
Acceleration and pressure related features are 

mostly selected in all the ranking processes. By observing the 

performance of linear and nonlinear SVM it is found that 

linear SVM with only six number of features gives better 

result than non linear SVM (with RBF kernel function). 

Training accuracy is 100% in the case of nonlinear SVM but 

testing accuracy is not close to training accuracy. But in the 

case of linear SVM testing accuracy is closer to the training 

accuracy. It implies that linear SVM is more reliable in global 

feature based verification. Time taken in linear SVM is also 

less. All these results indicate that linear SVM outperforms 

the nonlinear (RBF kernel) SVM for this particular case. 

Combination of global features and functional scores is 

proven to be fruitful giving better verification accuracy 

(97.69%).  
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