
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

20

JADE based Virtual Checker to Avoid Plagiarism

in MOOC’s

Gaurav Shah

Shah & Anchor Kutchhi
Engineering College

W.T.Patil Marg, Next to Dukes
Co, Chembur, Mumbai-88,

India

ABSTRACT

The MOOC’s (Massive open online classes) have ushered in a

new era of learning overcoming the boundaries of time and

geography to provide high quality education to masses who

cannot afford university education. The major drawback

however is that although they have best tried to capture

classroom environment but facets such as teacher-student

interaction and the usefulness of assignments as a source for

enhanced understanding of subject matter have not been

captured. Also it has led to plagiarism, which not only is a

serious hazard but is also staining the otherwise excellent

image the MOOC’s could have had. In this paper we propose

a JADE based multi-agent system(MAS) as an effective step

to solve the problem of plagiarism. The system has considered

2 types of plagiarism namely local and internet-based

plagiarism. This will be used to filter out the students caught

in plagiarism and students who come out clean will then have

their solutions checked by using LEXICAL ANALYSIS to

determine the styling and subjected to tests as well as code-

checker to check for logical and syntactical correctness.

General Terms

Pattern matching, Lexical analysis, local, internet-based,

plagiarism, JADE, agents

Keywords

Virtual Checker, MOOC’s

1. INTRODUCTION
The MOOC’s try to capture the class room environment. It

consists of lectures, in-class quizzes followed by an

assignment based on the subject matter that was taught during

the week. The basic flaw that these systems have is that the

student cannot interact directly with the professor and hence

has no source to solve his doubt. Another facet that is equally

important is the assignment checking part. The assignment is

aimed at improving the student’s knowledge on subject matter

but since MOOC’s lack a fool-proof plagiarism checking

system, student take advantage of this drawback and try to get

the right solution. In this process they fail to realize that it is

ultimately affecting their understanding of the subject. The

plagiarism is divided into two categories: Internet-Based

plagiarism and Local Plagiarism.

INTERNET-BASED PLAGIARISM :- This is the category of

plagiarism in which the person involved obtains the solution

from the internet by using certain problem statements or

certain keywords in the problem statement in the search query

on an internet-search engine to arrive at an exact solution to

the problem and present it as their own.

LOCAL PLAGIARISM :- This is the category of plagiarism

in which the person involved copies the solution obtained by

another student involved in the course and presents the

solution as his own.

In order to obtain the “Proof of concept” a survey was

conducted in which 20 students of a college classroom were

given a problem and were told that the solutions are available

on the internet and were asked to present solution in 4 days

time with the condition that the sooner they answer the higher

grade they get. Only 3 students submitted original solutions

while 12 of them were involved in Internet-based plagiarism

and the rest in local plagiarism.

The proposed system is a JADE based multi-agent system

(MAS) that is used to check plagiarism.. To illustrate the

entire system, though-out the paper an example of a dummy

Programming course offered by the MOOC is taken. Initially

the students will submit their solutions to the MOOC server.

The solutions submitted will then be checked for both the

types of plagiarism.

A .Internet-based plagiarism
In order to deal with the Internet-Based Plagiarism, the

proposed system assumes subscription to google’s web search

service. The solution submitted by the student would be

divided into smaller parts according to the different parts

required to be implemented by the student for the assignment.

Each part of the solution would then be converted into a

sequence of Strings which will be used as a search query . The

google search index uses each String in the search query as a

key and the resulting URL’s or Web-Pages as a value stored

against that key. As we have an access to all of the search

corpus, we can use that to locate the source from where the

code was copied if at all an exact and complete match exists

otherwise we move on to the next solution. This procedure is

followed for each and every solution that is submitted.

B. Local Plagiarism
In order to deal with the Local Plagiarism, the system makes

use of the Boyer-Moore algorithm. Boyer-Moore algorithm is

a text-matching algorithm best-suited for the application

because the application is going to have large sized pattern

strings and the Boyer-Moore algorithm goes faster with the

increase in the length of the pattern string. Also the pre-

processing time and the matching time are significantly lower

as compared to the other text matching algorithm which

would result in a significant amount of time saved considering

the large number of times the string matching needs to be

carried out in order to determine whether the local plagiarism

exists among a set of solutions. In this case the pattern string

is going to be the token sequence associated with sequence of

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

21

string that was being used as a search query in the Internet

Based plagiarism and the text string is going to be the token

sequence corresponding to the entire solution of the other

student. Since the solution of student under consideration(e.g

student A) has been divided into parts, they can be distributed

over the network to other JADE agents in the cluster and can

be simultaneously matched against the same other student’s

solution(e.g all will match their part against solution of

student B) which also will be passed over the network by the

co-ordinator agent. If a match is found then the agent must

return a 1 and if not the agent must return a 0. The co-

ordinator will then take a sum of all the results and then divide

it by the total no of parts to obtain a value in between 0 and 1.

If that value is greater than the plagiarism threshold set

(typically around the 0.6 mark) then both student A and

student B are involved in plagiarism else they are not. This

procedure will be repeated for each student and their solution

will be matched in a similar fashion against the solution of

every other student who has submitted the solution.

2. JADE FRAMEWORK
Agent-oriented applications are an exciting blend of artificial

intelligence and distributed system techniques which model

the various structural components as agents. Each agent is

autonomous and has the ability to communicate with other

agents to achieve personal and communal goals. Such

applications employ an architectural model which enables

each agent to communicate with every other agent in the

application. They are generic in nature and can be easily

extended to model all the components in a given domain and

thus can help in capturing the workflow of that domain by

simply allowing the developer to concentrate on business

logic.

JADE (Java Agent DEvelopment Framework) simplifies the

implementation of multi-agent systems through a middle-ware

that claims to comply with the FIPA specifications and

through a set of tools that supports the debugging and

deployment phase. The agent platform is truly independent as

it can be distributed across machines which don’t even need to

run the same OS. JADE is a software platform written in Java

that provides basic middleware-layer functionalities which are

independent of the specific application and which simplify the

realization of distributed applications that exploit the software

agent abstraction. Each Agent being FIPA compliant will

exhibit qualities such as proactiveness, responsiveness,

autonomy, co-operation, mobility, adaptability and rationality.

JADE-based systems are generally loosely coupled and

message passing among agents is asynchronous. Every agent

has a thread dedicated to it which controls its life-cycle and is

used to perform autonomous tasks by the agent.

2.1 JADE Architecture
A JADE platform consists of a runtime environment (also

called containers) that can be distributed over the network and

provides all the services needed for hosting and executing

agents. A special container, called the main container must be

the first container to start and all other normal containers

register with it as soon as they start and must therefore know

the main container’s host address and port. A diagram

showing the typical architecture of the JADE platform is

shown in Figure 2. Starting another main container elsewhere

in the network constitutes a different platform to which new

normal containers can possibly register. The main container

manages the container table (CT), which is the registry of

object references and transport addresses of all container

nodes in the platform; manages the global agent descriptor

table GADT), which is the registry of all agents present in the

platform, including their current status and location; and hosts

the AMS (Agent Management Service) and DF (Directory

Facilitator), the two special agents that provide the agent

management service and the default yellow page service of

the platform respectively. The AMS will be used in our

system.

 PLATFORM 1

 MAIN CONTAINER PLATFORM
2

Fig 1: JADE architecture – Relationship between

containers and platform

Every other container manages their LADT (Local Agent

Descriptor Table) and cache of GADT (Global Agent

Descriptor Table). Whenever the agent wants to communicate

with the other agent the LADT is searched first. If a match is

not found then the main container’s GADT is searched and is

cached for future usage. Agents in JADE are identified by a

globally unique name called an Agent Identifier (AID)

consisting basically of the agent‟s local name and its

addresses (usually inherited from the platform). Each agent

can communicate transparently regardless of their actual

location: same container (e.g. A2 & A3 in Figure 1), different

containers in the same platform (A1 & A2) or different

platforms (A4 & A5) if they know other‟s agent identifier.

2.2 Message Transport Service
JADE consists of a Message Transport Service (MTS) that

manages all message communications within platform as well

as between platforms. To promote interoperability between

different non-JADE platforms, all standard Message

Transport Protocols (MTPs) defined by FIPA are

implemented by this service. Each MTP comprises of

standard encoding of the message envelope and definition of

transport protocol. HTTP-MTP is started by default when

main container is initialized. The Normal containers have no

default MTP. This creates a server socket on the main

CONTAINER

1

MAIN

CONTAINER

CONTAINER

2

NETWORK

A4

A1

A3 A2

AMS DF

AMS DF

A5

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

22

container host and listens for incoming connections over

HTTP at the URL specified. Whenever an incoming

connection is established and a valid message is received over

that connection, the MTP routes the message to its final

destination which, in general, is one of the agents located

within the distributed platform

2.3 Agent Communication
The communication paradigm adopted in JADE is the

asynchronous message passing. Each agent has a message

queue where the JADE runtime environment posts messages

sent by other agents similar to a mailbox; whenever a message

is posted in the message queue, the receiving agent is alerted.

It’s upto the programmer to decide if and when the agent

actually picks up the message from the queue for further

processing. This procedure is illustrated in Figure 2.

 Prepare the Get the message

 message to A2 from queue

 and

 process it

 Send the Post the message in

 message A2’s message queue

Fig 2: JADE asynchronous message passing paradigm

JADE uses FIPA compliant ACL message structure

specifications and has fields such as the sender, list of

receivers, communicative act (REQUEST, INFORM,

PROPOSE etc), content, content language and ontology.

3. DESIGN OF PROPOSED SYSTEM

 STUDENTS SUBMITTING SOLUTIONS

 FOR EVERY SOLUTION

 Fig 3: Overall system design

The Design of the proposed system is pretty straightforward

as can be seen in figure 3. The students upload their

submissions to the MOOC server. The internet based and

local plagiarism checker then pick each solution from the

submitted set and check it for respective types of plagiarism.

Those solutions that pass these tests are forwarded to the next

stage of processing and those solution that don’t are outputted

as the result of the plagiarism checker system. The internet

based checker is discussed in section 3.1 and local plagiarism

checker in section 3.2. This is followed by a discussion of

Boyer Moore algorithm which is used in both checkers.

3.1 Internet-based plagiarism checker
The internet based plagiarism checker is implemented as

shown in the figure:

 sub1.java

 sub2.java

 sub3.java

S1 =setContent(‘sub1.java’) , S2= setContent(‘sub2.java’)

S3 =setContent(‘sub3.java’)

 DATA STRUCTURE POPULATED BY
 COORDINATOR WITH SUB-FILES

 CLUSTER AGENTS ACCESSING GOOGLE SEARCH

 INDEX AND CO-ORDINATOR POPULATED DATA

 STRUCTURE FOR COMPARISON

 GOOGLE SEARCH INDEX

 Fig 4: Internet based plagiarism checker

The co-ordinator agent splits up the solution file according to

the number of functions to be implemented such that each

function is 1 file whose content is stored in the form of a

string in the data structure shown in the figure. Each cluster

agent then accesses this data structure once it receives a

message from the co-ordinator. The cluster agent then also

queries the google search index to obtain the string in which

the pattern string i.e. the string form of the function is to be

searched using the Boyer-Moore Algorithm.

 MOOC

 SERVER

INTERNET BASED
PLAGIARISM
CHECKER

LOCAL
PLAGIARISM
CHECKER

SET OF SOLUTIONS

THAT FAILED EITHER

CHECKS OR BOTH

A1 A2

 Distributed JADE runtime

.....
voidf1(){
.....}

voidf2(){
.....}

voidf3(){
.....}

CO-ORDINATOR

AGENT

S1

S2

S3

CLUSTER

AGENT 1

CLUSTER

AGENT 2

CLUSTER

AGENT 3

voidf1(){
....
.....}

voidf2(){
....
.....}

voidf3(){
....
.....}

A

B

C

A

B

C

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

23

3.1.1 The Google Search Index Generation
Google runs on a distributed network of thousands of low-cost

computers and can therefore carry out fast parallel processing.

Google has three distinct parts:

A. GoogleBot
Googlebot is Google’s web crawling robot, which finds and

retrieves pages on the web and hands them off to the Google

indexer. In reality Googlebot doesn’t traverse the web at all.

Googlebot consists of many computers requesting and

fetching pages much more quickly than you can with your

web browser. In fact, Googlebot can request thousands of

different pages simultaneously. Googlebot finds pages in two

ways: through an add form and through finding links by

crawling the web.

B. Search Indexer
Googlebot gives the indexer the full text of the pages it finds.

These pages are stored in Google’s index database. This index

is sorted alphabetically by search term, with each index entry

storing a list of documents in which the term appears and the

location within the text where it occurs.

To improve search performance, Google ignores (doesn’t

index) common words called stopwords(such as the, is, on, or,

of, how, why, as well as certain single digits and single letters.

C. Query Processor
The query processor has several parts, including the user

interface (search box), the “engine” that evaluates queries and

matches them to relevant documents, and the results

formatter.

PageRank is Google’s system for ranking web pages. A page

with a higher PageRank is deemed more important and is

more likely to be listed above a page with a lower PageRank.

Google considers over a hundred factors in computing a

PageRank and determining which documents are most

relevant to a query, including the popularity of the page, the

position and size of the search terms within the page, and the

proximity of the search terms to one another on the page.

 Fig 5:The Google Web Search process

1 – The Web Server sends query to index server.Content

inside the index server is identical to index at the nack of the

book.It tells which pages contain the words that match a term.

2 – The query travels to the doc server that actually retreives

the stored document. Snippets are generated to describe each

search result.

3 – The search result is returned to user in fraction of second

3.1.2 The m4 macro preprocessor for file split
m4 is a general purpose macro processor designed by Brian

Kernighan and Dennis Ritchie. m4 is an extension of an

earlier macro processor m3, written by Ritchie for the AP-3

minicomputer.

m4 has many features like a free-form syntax, rather than line

based syntax, a high degree of macro expansion (arguments

get expanded during scan and again during interpolation), text

replacement, parameter substitution, file inclusion, string

manipulation, conditional evaluation, arithmetic expressions,

system interface etc.

Unlike most earlier macro processors, m4 does not target any

particular computer or human language.

This m4 will be used by the co-ordinator agent to split the

code files according to the number of functions so there will

be as many files as there are functions. A practical example of

file splitting is as follows.

Suppose we have the following Java class:

// File Foo.java

class Foo{

 // Some properties of the Foo class

 public int aProperty1;

 public int aProperty2;

 public int aProperty3;

 // Some methods of the Foo class

 public void apple()

 {

 // Method body of apple method goes here

 }

public void banana()

 {

 // Method body of banana method goes here

 }

public void carrot()

 {

 // Method body of carrot method goes here

 }

}

If we make the following changes to the Foo class:

// File class-Foo.java

m4_changecom()

m4_changequote(,)

class Foo
{

 // Some properties of the Foo class

query

WEB

SERVER

INDEX

SERVER

DOC

SERVER

USER

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

24

 public int aProperty1;

 public int aProperty2;

 public int aProperty3;

 // Some methods of the Foo class

 m4_include(class-Foo-method-apple.java);

 m4_include(class-Foo-method-banana.java);

 m4_include(class-Foo-method-carrot.java);

}

The first two lines are needed to change the behaviour of m4

and can be ignored by users of this system. Note that the

purpose of the semicolons after the include directive is so that

indentation works correctly inside Emacs. If you don't use

Emacs then you can avoid those semicolons. Using this

system allows us to have methods of the Foo class in separate

files, like so:

// File class-Foo-method-apple.java

public void apple()

{

 // Method body of apple method goes here

}

// File class-Foo-method-banana.java

public void banana()

{

 // Method body of banana method goes here

}

// File class-Foo-method-carrot.java

public void carrot()

{

 // Method body of carrot method goes here

}

To get the building of the preprocessor to work, you will need

to add the following lines to your Makefile.

%.java: class-%.java class-%-method-*.java

 m4 -P class-$*.java >$*.java

.PRECIOUS: %.java

The above example illustrates the use of m4 macro. Since we

are using it for a programming assignment. The “m4_include”

statements can be put in the assignment for all the functions

that need to be completed in the assignment before its passed

on to the student so that when the completed programs returns

we can straight away split them into files. The call to the

preprocessor will be initialized from the setup method of the

coordinator JADE agent

import jade.core.Agent;

public class CoordinatorAgent extends Agent {

protected void setup() {

 // call to the preprocessor to split the files

 // after splitting convert the content of each file into a string

and store them in a data structure for future access

 }

}

3.1.3 The action() method and message passing

among JADE agents.

A behaviour represents a task that an agent can carry out and

is implemented as an object of a class that extends

jade.core.behaviours.Behaviour. The

Agent class, which must be extended by agent programmers,

exposes two methods: addBehaviour(Behaviour) and

removeBehaviour(Behaviour), which allow to

manage the ready tasks queue of a specific agent. Notice that

behaviours and sub-behaviours can be added whenever is

needed, and not only within Agent.setup() method. A

scheduler, implemented by the base Agent class and hidden to

the programmer, carries out a round-robin non-preemptive

scheduling policy among all behaviours available in the ready

queue, executing a Behaviour-derived class until it will

release control (this happens when action() method returns).

If the task relinquishing the control has not yet completed, it

will berescheduled the next round. A behaviour can also

block, waiting for a message to arrive. In detail, the agent

scheduler executes action() method of each behaviour present

in the ready behaviours queue; when action() returns, the

method done() is called to check if the behaviour has

completed its task. If so, the behaviour object is removed from

the queue.

The coordinator agents action() method will be used to

convert the content of each of the file obtained by splitting the

Solution code file, into a string and passing that string to the

cluster agents which will use it for matching against the

search index.

public class CoordinatorBehaviour extends Behaviour {

public void action() {

// access the data structure of subfiles created in the

 setup() method of agent.

//distribute Strings from the datastructure to the cluster agents

}

public boolean done() {

return true;

}

}

…..

import jade.core.Agent;

public class CoordinatorAgent extends Agent {

 protected void setup() {

 …...

addBehaviour (new CoordinatorBehaviour)

 }

}

3.1.4 Inter Agent Communication

Messages exchanged by JADE agents have a format specified

by the ACL language defined by the FIPA international

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

25

standard for agent interoperability. This format comprises a

number of fields and in particular:

• The sender of the message

• The list of receivers

• The communicative intention (also called “performative”)

indicating what the sender intends to achieve by sending the

message.

• The content i.e. the actual information

• The content language i.e. the syntax used for expression

• The ontology i.e. the vocabulary of the symbols used in the

content and their meaning

A message in JADE is implemented as an object of the

jade.lang.acl.ACLMessage class that

provides get and set methods for handling all fields of a

message.

3.1.4.1 Sending Messages

So to send a message to one agent in a cluster the co-ordinator

will communicate as follows:

{…

// setting the performative for the message

ACLMessage msg =new

ACLMessage(ACLMessage.INFORM);

msg.addReceiver(newAID(“nickname”,

AID.ISLOCALNAME));

msg.setLanguage(“English”);

msg.setOntology(“Assignment-Ontology”);

msg.setContent(“string from the datastructure ”);

send(msg);

}

3.1.4.2 Receiving Messages

As mentioned above the JADE runtime automatically posts

messages in the receiver’s private message queue as soon as

they arrive. An agent can pick up messages from its message

queue by means of the receive() method. This method returns

the first message in the message queue (removing it) or null if

the message queue is empty and immediately returns.

{

 ACLMessage msg = receive();

 if (msg != null) {

// Process the message

// compare the content of message obtained with each of the

google search indices to find a match.

 }

}

Since we have already subscribed to the Google services, so

we will be provided with the search index. We need to just

search the content of message sent by the co-ordinator and

search the string returned in the content obtained by querying

the google search index. If a match is found the student is

involved in plagiarism else we move on to the next function

of the assignment or to the next student’s solution and the

same procedure would be repeated.

3.2. LOCAL PLAGIARISM CHECKER
The local plagiarism checker is implemented as shown in the

Fig 6.

As can be seen in the figure the initial part upto the splitting

of the solution into individual files containing 1 function is

same as that in the internet- based plagiarism checker. After

splitting, each file is given to the Lexer which converts the

File content into a sequence of tokens.

If 2 expressions are written in the same language and in the

same manner then the token sequence generated by the lexer

will also be the same. Since local plagiarism involves direct

copying of the content of the solution of another person so the

above mentioned concept is used.

Solution of all other students stored in the database is then

converted into token sequences and then the token sequence

of a function of the earlier student is searched in the token

sequence corresponding to the complete solution submitted by

every other student. If a match is found then both the students

are involved in the act of plagiarism.

DB OF

SOLUTION

 sub1.java

 S1= setContent(token seq)

 S2= setContent(token seq)

 S3= setContent(token seq)

 sub3.java

 DB OF SOLUTION IN

 TOKEN SEQUENCE FORM

 Fig 6: Local Plagiarism Checker

3.2.1 Token-Sequence output of Lexer
A lexical analyzer is a program that transforms a stream of

characters into a stream of 'atomic chunks of meaning', as

shown in the figure below:

.....
voidf1(){
.....}

voidf2(){
.....}

voidf3(){
.....}

CO-ORDINATOR

AGENT

voidf1(){
....
.....}

voidf2(){
....}

voidf3(){
....
.....}

CLUSTER

AGENT 1

CLUSTER

AGENT 2

CLUSTER

AGENT 3

L
E

X

E

R

S1

S2

S3

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

26

 if (x>3.1) {printf ...

 Character Stream

 Token Stream

KEYWORD BRACKET – R IDENTIFIER OPERATOR NUMBER

“if” “(“ “x” “>” “3.1”

 Fig 7: Lexical analyzer concept

As a result of the lexical analysis process the list of 'atomic

chunks of meaning', so called 'tokens', prepare the

interpretation on some higher level. Each token consists at

least of a type identifier. Additionally, some parameters about

the matching 'lexeme' might be stored in the token.

So using lexer (lexical analyzer) we obtain the token sequence

output for 1 of the files (i.e. any 1 function) from the solution

of student A and for the entire solution of student B. This

sequence of Tokens is then converted into a String. The string

corresponding to student A’s function is the pattern string and

that corresponding to the complete solution of student B is the

text string in which the pattern string will be searched using

the Boyer-Moore Algorithm.

4. THE BOYER-MOORE ALGORITHM
The Boyer–Moore string search algorithm is one of the

most efficient algorithm which over the years has proven to be

the benchmark for String searching algorithms.

The algorithm preprocesses the pattern string being searched

for , but not the text string in which the search is to be carried

out. It is thus well-suited for applications in which the text

does not persist across multiple searches. It uses information

gathered during the preprocess step to skip sections of the

text, resulting in a lower constant factor than many other

string algorithms. In general, the algorithm runs faster as the

length of pattern increases.

Some of the key features are:

 performs the comparisons from right to left;

 preprocessing phase in O(m+) time and space

complexity;

 searching phase in O(mn) time complexity;

 3n text character comparisons in the worst case

when searching for a non periodic pattern;

 O(n / m) best performance.

The algorithm scans the characters of the pattern from right

to left beginning with the rightmost one. In case of a

mismatch (or a complete match of the whole pattern) it uses

two precomputed functions to shift the window to the right.

These two shift functions are called the good-suffix

shift (also called matching shift and the bad-character

shift (also called the occurrence shift).

Assume that a mismatch occurs between the

character x[i]=a of the pattern and the character y[i+j]=b of

the text during an attempt at position j. Then, x[i+1 .. m-

1]=y[i+j+1 .. j+m-1]=u and x[i] != y[i+j]. The good-suffix

shift consists in aligning the segment y[i+j+1 .. j+m-1]=x[i+1

.. m-1] with its rightmost occurrence in x that is preceded by

a character different from x[i] (see Fig 8).
y b u

 x a u

 shift

 x c u

Fig 8: The good-suffix shift, u re-occurs preceded by a

character c different from a
If there exists no such segment, the shift consists in aligning

the longest suffix v of y[i+j+1 .. j+m-1] with a matching
prefix of x (see Fig 9).

y b u

 x a u

 shift

 x v

Fig 9: The good-suffix shift, only a suffix of u re-occurs

in x.

The bad-character shift consists in aligning the text

character y[i+j] with its rightmost occurrence in x[0 .. m-2].
(see Fig 10)

y b u

 x a u shift

 x b contains no b

 Fig 10: The bad-character shift, a occurs in x

If y[i+j] does not occur in the pattern x, no occurrence

of x in y can include y[i+j], and the left end of the window is

aligned with the character immediately after y[i+j],
namely y[i+j+1] (see Fig 11)

y b u

 x a u shift

 x contains no b

 Fig 11: The bad-character shift, b does not occur in x

Note that the bad-character shift can be negative, thus for

shifting the window, the Boyer-Moore algorithm applies the

maximum between the the good-suffix shift and bad-

character shift. More formally the two shift functions are

defined as follows. The good-suffix shift function is stored in
a table bmGs of size m+1.

So the token sequence for 1 function of solution A is searched

in the token sequence of the entire program submitted by

another student B. However there can be an element of chance

involved where 2 students who might be thinking in the same

way may come up with identical solution. To completely

eliminate that factor we determine a threshold value of 0.6 for

the degree of plagiarism. In order to compute the degree of

plagiarism what is done is that each cluster agent assigns a 1

when token sequence corresponding to student A’s function is

 LEXICAL

 ANALYAZER

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

27

found in token sequence corresponding to the entire solution

of any other student B and 0 when it is not found. This result

is returned to the co-ordinator agent which then sums it up

and divides it by the total number of functions to be
implemented.

So for example if 2 student student A and Student B’s

solution are being compared and there are N functions which
need to be implemented then if

X => token sequence for a function of student A’s solution

Y=> token sequence for the entire solution of student B

∩=> Boyer-Moore applied, where 1st operand is searched in

 2nd operand

DOP => Degree of Plagiarism

     NYXYXDOP funcNfunc /1  

This will result in a DOP value between 0 and 1 which is

evaluated according to the

thresholdDOP  => case of plagiarism

thresholdDOP => not a case of plagiarism

Thus this will detect the required level of plagiarism taken

into consideration the occasional chance that a part of code

might be similar but certainly the 2 codes cannot be similar

entirely.

The entire Boyer Moore algorithm will be implemented in

the message processing section of the cluster agent as shown
in section (3.1.4.2)

4. CONCLUSION
The proposed system is filter for plagiarism which provides

an efficient check for both types of plagiarism. The file

splitting mechanism is appropriate as there is no data loss

involved and extreme care is taken to avoid the same. The

system aims at helping the MOOC’s to achieve its goal of

eradicating limitations to achieve quality education and also

help the students to explore the subject matter by eradicating

plagiarism techniques, which will benefit the student in the

long run.

5. FUTURE WORK
The proposed plagiarism system design is expected to be quite

effective for the MOOC’s in particular and the academic

domain in general. However plagiarism is rampant in other

domains like business enterprises etc. So we aim to develop a

generic system that, when configured can map to any required

domain and act as a plagiarism checker for that field. The

internet based plagiarism checker currently uses exact text

matching which also needs to be handled to check plagiarism

on part of those students who copy from the internet but make

slightest of modifications and call it their code. Also if the file

splitting mechanism, which is currently handling 1 file at a

time, is modified then it can be competent enough to handle

multiple files which will increase the efficiency of the system.

Thus the system will be much more robust, scalable, and will

help in modeling any domain effectively for plagiarism

checking.

6. REFERENCES
[1] Multi-Agent Systems in a Computational Environment of

Education: A Chatterbot Case Study by, André F. M.

Batista, Maria G. B. Marietto, Gislene C. O. Barbosa,

Robson S. França and Emerson A. Noronha Federal

University of ABC – Center of Mathematics,

Computation and Cognition Santo André, São Paulo -

Brazil

[2] Impact of Multi-Agents in Hospital Environment by,

Mijal Mistry,Dr. Dipti Shah

[3] Building a Truly Distributed Constraint Solver with

JADE by, Ibrahim Adeyanju School of Computing, The

Robert Gordon University, Aberdeen, UK

[4] Designing scenario in Virtual Knowledge Communities

using the JADE Framework by, Studienarbeit:von, Julien

Subercaze

[5] Compilers - Principles Techniques and Tools by Alfred

Aho - Monica Lam- Ravi Sethi- Jeffrey Ullman - Second

Edition

[6] Developing Multi-Agent Systems with JADE - Fabio

Luigi Bellifemine, Giovanni Caire, Dominic Greenwood

[7] jade tutorial jade programming for beginners, Copyright

(C) 2009 Telecom Italia S.p.A.

[8] JADE architecture (www.jade.tilab.com)

[9] Lexical analyzer (http://www.cs.nyu.edu/courses/fall06/

G22.2130–001/class–notes.html)

[10] pattern matching algorithms (http://bIochem218.stanford.

edu/Projects%202007/Ng.pdf;

http://cs.fit.edu/~wds/classes/algorithms/Text/text)

[11] m4 macro for file splitting (http://davin.50webs.com/

research/2008/sjcfimsf.html)

[12] Boyer-Moore algorithm (http://www–igm.univ–mlv.fr/~

lecroq/string/node14.html#SECTION00140)

