
International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.15, December 2012 

24 

Online Cleaning of Wireless Sensor Data Resulting in 

Improved Context Extraction 

 
Sangeeta Mittal 

Department of CS & IT 
A-10 Sector-62 
Noida, UP, India 

Alok Aggarwal 
Department of CS & IT 

A-10 Sector-62 
Noida, UP, India 

S.L. Maskara 
G-2W, Soura Niloy Housing 

1-Kailash Ghosh Road 
Kolkata, WB, India 

 

 

ABSTRACT 

Wireless Sensors enable fine grain monitoring of activities of 

individual and social interest. Typically these sensors sense & 

send data continuously directly or through other sensor nodes 

to a base station. Wireless Sensor Data are inherently noisy 

and have frequent random spikes due to dynamic nature of the 

medium. Hence, the decision at the receiving node based on 

such data is likely to be erroneous. Erroneous data and 

decisions may affect its transformation to meaningful form 

like ‘context’. It is therefore desirable to clean the data for 

improved context extraction. Bayesian Belief Networks are 

used here to quantitatively encode the dependencies among 

various sensors. These dependencies are then used to estimate 

missing data and also to detect and recover from errors. 

Cleaned data is then used for deriving Contextual Information 

and it results in improved context feature calculation. In this 

paper five algorithms for Bayesian Belief Network 

Construction have been evaluated and their performance of 

classification studied. Conjunctive rules are defined to map 

the sensors to already defined context. A secondary data 

obtained from weather sensor boards installed at Intel research 

lab at Berkeley have been used to demonstrate the approach.  
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Smart Sensor Systems, Ambient Intelligence, Sensor 
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1. INTRODUCTION 
Wirelessly connected sensors are used for continuously 

emitting information about the environment in which they are 

placed. WSNs are enabling interesting monitoring 

applications like health care, security, habitat and 

environment monitoring. In a typical Wireless Sensor 

Network, tiny sensing devices, measure some physical 

parameters of their surrounding like body temperature, blood 

pressure, heart beat, ambient temperature, humidity wind 

speed and seismic activity using Richter scale and many 

more[1]. The sensed data is then transmitted to defined 

destination and presented to the end user. Over the past 

decade, sensor technologies have advanced in sensor 

hardware, routing mechanisms and data interpretation to 

gather this information from even remote unreachable places. 

Due to inherent uncertainties of wireless medium and low 

resources of sensors, errors are though frequently introduced 

by the time data is received at the receiver. Several 

mechanisms have been developed for detecting and 

minimizing errors [1]. Extraction of useful information from 

this ever increasing pile of raw data and that too in real time, 

is critical for taking remedial actions or enhancing the 

understanding of environment or undergoing activity [1]. 

Sensors are capable of sensing, calibrating and then 

transmitting the sensed values. This builds a heap of data at 

the receiving station very early; hence at the receiver methods 

are applied to extract the categorical knowledge from the 

physical parameters in real time. This categorical knowledge 

can be defined as pertaining to context of the place being 

monitored. Examples of such derived information can be 

location, activity, proximity, physical conditions etc. This   

abstract representation of physical parameters has to be 

derived from error free raw sensor data [2]. Suitable machine 

learning methods have to be applied for extraction of 

contextual knowledge from sensor data. In literature several 

machine based tools like Neural Networks, Decision Trees 

and Hidden Markov Models have been used for same [3]. 

Here Bayesian Belief Networks (BBNs) that are stochastic 

models that describe and quantify probabilistically the 

relationship between one or more set of data variables are 

used for contextual information extraction. The reason for 

choosing BBNs particularly is due to the fact that the sensors 

are densely deployed to capture the underlying phenomenon 

closely. The proximity among sensors results in high 

probability of correlations among some of them.  In most of 

the situations these correlations, information and the 

associated knowledge are random in nature and as such 

require the use of probability and random theories for 

interpretation. The graphical representation of the 

independences between the modelled variables allows for ease 

of interpretation of the model and its parameters. 

Classification is done using BBNs by establishing posterior 

probabilities of the various classes for a given instance of the 

feature variables. A major advantage of classifiers based on 

BBNs lies in their ability to give reliable classifications even 

if evidence is available for only a subset of the feature 

variables [4]. Unlike [4] BBNs are used here as multipurpose 

tool, one of the purpose is domain knowledge modelling. The 

model constructed has been used to clean the data by 

detecting & removing errors from sensor data stream, provide 

energy efficient sampling and derive contextual information. 

It has been shown that this has resulted in improved feature 

extraction as compared to the previous results as described in 

[4].  A two-step mechanism of removal of errors & extraction 

of context from raw sensors data has been worked out. The 

first step is to do an offline modeling of relationships among 

attributes of dataset by Bayesian Belief Networks using 

various BBN construction algorithms as discussed in second 

section.  The second step is to use the BBN as constructed for 

sensor data cleaning that is, detection of outliers and 

approximation of missing data. This is discussed in third 

section. In fourth section, the use of this model for deducing 

features of context i.e. class of temperature, humidity, ambient 
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light and time of the day from observable sensor data and 

extracting context using rule based system is discussed. The 

paper is concluded in the last section.  

2. BAYESIAN BELIEF NETWORKS 

FOR MODELING SENSOR DATA 
A Bayesian Belief Network is a Directed Acyclic Graph 

(DAG) consisting of a set of nodes and edges. Each node of 

the graph represents a random variable and each arc represents 

a direct probabilistic dependence between two variables. A 

BBN conveys a joint probability distribution of its variables, 

which is the product of the local distributions of each node 

and its parents. The DAG represents the structure of 

dependencies between nodes and gives the qualitative part of 

BBN. Quantification consists of prior probability distributions 

over those variables that have no predecessors in the network 

and conditional probability distributions over those variables 

that have predecessors [5]. 

2.1  Construction of Bayesian Belief 

Networks  
Let U = {x1…… xk} for k >= 1 be a set of feature variables 

that describe a problem domain. A Bayesian Belief Network, 

B over these set of variables U is a network structure BBNs, 

which is a Directed Acyclic Graph (DAG) over U and a set of 

probability tables BBNp  , where 

))(|( iip upaupBBN 
  for all i= 1 to k         (1) 

where pa(ui) is the set of parents of ui in BBNs[5]. A Bayesian 

Belief Network also represents joint probability distribution 

on whole set of variables, U as 





k

i
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The main issue in learning a BBN is determining the 

dependence probabilities. One of the methods is to approach 

the experienced persons of a domain and get the probabilities 

as well as arcs from them. But many times, due to non-

availability of sufficient number of experts or even. if 

available, to assist them , machine learning algorithms making 

use of graph algorithms and information theory are used to 

autonomously find both the graph and probabilities of 

dependence among the various features. The second method is 

a supervised one and requires labelled training dataset, D of 

that domain. Even for a small feature set, the exhaustive 

possible probability distribution calculation with all possible 

graphs is an enormous task.  Therefore most of the algorithms 

proposed to find BBNs, first find the graph and then the 

probability distribution. Coarsely, the methods are divided as 

using either of the two approaches. First of these assume, total 

dependencies and then after going through data removes all 

the arcs where dependency is not detected in data. The second 

type of method initiates with empty arc sets and calculate its 

information score with respect to data. It keeps on searching 

for other possible graphs until the one with highest score is 

found [5]. As the number of possible graphs over a set of 

variables can be large, heuristic searching methods like hill 

climbing and greedy search are used instead of linear 

searching. Due to exhaustive calculation of independence 

among variables, algorithms in first category face the problem 

of ‘Memory Crash’ with graphs of order of more than ten 

nodes. Due to this problem of conditional independence based 

algorithms and size of our dataset, representative algorithms 

from second type of methods are chosen [6]. These are: A 

Naïve Bayesian Structure (A1) employs a static graph 

structure of problem domain where class variable is root and 

all other variables are only dependent on it and independent of 

each other [7]. Algorithm A2 creates a Maximum Weighted 

Spanning Tree Structure.  Weights are based on either the 

mutual information between the two variables or the score 

variation (when one node becomes a parent of the other) and 

assigned to each edge in an initial random DAG. Given a 

desired root, the minimum weighted spanning tree can be 

obtained, using Kruskal’s or Prim’s methods. Another metric 

for reducing search space has been devised by Cooper et al in 

[8] as K2 Algorithm (A3). The method requires an initial 

DAG to be provided as node topological order. The initial 

DAG may be a totally random graph or an informed one like a 

MWST DAG, reversed MWST and a randomly ordered DAG. 

With respect to each of these orders, the search space is 

explored to maximize probability of structure given data i.e. 

maximize the ‘Bayesian Score’ of DAGs as calculated in 

equation 3 [9]. A detailed description of these algorithms can 

be found in [10]. 

                                                                                               (3)       

 

Heuristic based searching algorithms like Greedy Search (A4) 

and Hill Climbing Search (A5) were used to study the effect 

of search methods on computation time of classifier and its 

performance. Bayesian Score as defined in (3) was used in 

greedy search to choose the next DAG with maximum score 

and in hill climbing to jump away from local maxima. All the 

algorithms are implemented using BNT Structure learning 

package available at [11]. 

2.2 Experiments – Datasets and Models 
For validating our methods, a real wireless sensor board data 

set is used. The data has been collected from 54 Mica2Dot 

weather sensor boards deployed in planned but non uniform 

manner in the Intel Berkeley Research lab between February 

28th and April 5th, 2004. The area of the lab is approximately 

41* 31 sq. m. At [12], time stamped data from all the boards 

with schema as shown in figure 1 is provided.  
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Fig 1: Schema of the Sensor Database 

Tuples with node id, current humidity, temperature, light and 

voltage measurements reach once every 31 seconds to the 

gateway node. The observation data of 28 continuous days is 

available in the dataset which is large enough for training as 

well as testing.  

Data Preprocessing 
The data received in the database at the receiving server is 

continuous. All the physical parameters are real values 

depicting the measurements in Celsius for temperature, 

percentage for relative humidity, lux for light and volts for 

voltage. The sensors data was highly noisy and had lot of 

missing and erroneous values. For structure learning purpose 

tuples with missing were discarded at the time of training. 
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Records with erroneous values were identified based upon 

non - feasibility of physical parameters like relative humidity 

can never be negative, temperature can’t reach 122 degree 

Celsius.  

Quantization and Clustering 

 Though the lab is an indoor, probably controlled, 

environment but still in a typical day temp variations of up to 

9 degrees at same point of time is observed. The reasons for 

this kind of variation could be real world conditions like 

incidence of sunlight at some boards while location of air 

vents near others. At night time, areas near windows get 

colder, while at sun rise the east side of the lab report 

increased temperature due to sun. Uniform temperatures are 

sensed by all boards towards end of the day. Thus it is clear 

that the climatic data has spatial and temporal properties even 

within indoors. These correlations are modelled by belief 

networks where spatiality is modelled in clusters and 

temporality in the time stamped data itself. Given small area 

of the lab and physical proximity of some boards with each 

other, the motes are clustered into thirteen groups, named 

from G1 to G13. Figure 2 shows the arrangement of sensors in 

the lab and our clustering scheme in bold rectangles. 

 

 

Fig 2. Clustering of Sensors placed in a 41*31 sq.m Indoor 

Area 

The temporal dimension of the data set is prepared first by 

converting dates into day numbers starting from 28th February 

as day-1. Then parameter wise average of a set of 120 tuples 

each is taken to obtain 24 hour wise instances of data in one 

day.  All the physical parameters being measured are 

inherently continuous. These are quantized to discrete 

categories. There are two reasons for doing this. One of the 

reasons is Bayesian Belief Networks are known to work better 

on discretized values. The other reason is that categorized 

symbolic values as shown in table 1 are more understandable 

instead of actual real values [13]. Taking inputs from various 

weather experts and information on Internet, the 

categorization of temperature is done in 5 classes, humidity in 

4 classes and light in 7 classes. The detail of range of values 

within each class is given in table 1. The quantized values of 

the features replaced the actual values in the data sets 

accordingly. 

Both the steps discussed above are domain specific and 

domain specific knowledge and/or inputs from experts are 

required to undertake these. For various instances of similar 

applications, the preprocessing is required to be changed only 

when quantification criteria are modified or new features are 

added [14].  

2.3 Domain Modeling Using Bayesian 

Belief Network 
The BBN construction algorithms discussed in section 2.1 

model relationships between feature variables Cluster Ids and 

Time of the day, the virtual sensors and temp, humidity and 

ambient light of the described data set. The final sensor data 

obtained per cluster per hour over a period of 25 days is used 

for offline learning BBN models. Models were extracted 

using all the algorithms described in 2.1; some of these are 

also shown in Figure 3.  

Table 1. Quantization of WSN Data for BBN Modeling 

 

The algorithms as discussed work on different principles, to 

work out the output structure in a non-deterministic manner. 

This explains the differences in dependency graphs obtained 

by various algorithms. Still, some obvious dependencies like 

that of temperature with time of the day e.g. cold at night time 

and location i.e. clusters e.g. clusters near windows show 

higher temperature during day is correctly represented in all 

three models. For evaluation of all structures in classifying 

Feature of Context 
Class 

No. 
Range 

Symbolic 

Name 

Temperature (Range 

in Degree Celsius) 

1 <10 Very Cold 

2 10 – 18 Cold 

3 19-25 Normal 

4 26-35 Mild 

5 >35 Hot 

Humidity ( Range in 

% of Relative 

Humidity) 

1 <=20 Dry 

2 21-28 

Comfortably 

Humid 

3 29-45 Quite Humid 

4 >45 Highly Humid 

Ambient Light ( in 

Lux) 

1 <=10 Pitch Dark 

2 11-50 Very Dark 

3 51-200 Dark Indoors 

4 

201-

400 Dim Indoors 

5 

401-

1000 

Normal 

Indoors 

6 >1000 Bright Indoors 
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unseen data, the conditional probability tables for each of the 

variables were calculated using maximum likelihood 

estimation (using frequency counts).  This provided the 

complete quantitative models of all the features. In next 

section use of BBN as a tool for online cleaning of data 

transmitted by sensors is shown. 

 

(a) 

 

         (b) 

 

(c) 

Fig 3. Bayesian Belief Network obtained using (a) 

K2+MWST (b) GS (c) Naïve Bayesian Network 

3. ONLINE DATA CLEANING FOR 

CONTEXT EXTRACTION 
A layered architecture was defined by us in [4] for context 

extraction at base station from raw sensor data transmitted to 

it. A modified mechanism with an additional step of BBN 

based data cleaning & optimization is discussed here for 

recovering correct data in presence of errors and facilitating 

energy efficient sampling. 

  

Fig 4. Mechanism of  Context Extraction from Cleaned 

Raw Sensor Data 

This results in refined input data for better context 

extraction.  A hierarchical WSN, where the sensing nodes are 

at one layer and the collector node which may be a more 

resourceful computer acting as base station for all nodes is 

another layer forms the part of context extraction architecture. 

The processing is distributed at these two layers as given in 

Figure 4.  

3.1 Processing within Nodes 

Processing at Sensor Node 
The first layer, which is present in individual sensor nodes 

does threshold based quantization of raw sensor values. This 

is required as the data is to be utilized Bayesian Belief 

Networks which may not perform well on continuous real 

valued data. This layer after adding location as Node 

Id/Cluster Id & time information transmits the quantized 

tuples which are used as primary context feature. The tuples 

may introduce error either at the source due to faulty or 

compromised sensor or during transmission. 

Processing at the Base Station 
This data is utilized by the second layer at the base station. 

The classification component based on BBNs stores 

probabilistic relations of various features quantitatively in 

compact form. Dynamic sampling decisions are taken here 

according to the need of application in current scenario. For 

example, sampling one hourly temperature data performs 

satisfactorily in indoor office environments and significant 

reductions can be obtained in number of transmissions. While 

in a freezer with perishable goods, transmission has to be 

more frequent. Sampling can also be adjusted as to selectively 

sample only few types of sensors while maintaining the 

quality of query answer. It is explained in more detail in next 

section. In case a value is missing or an outlier is introduced 

during transmission BBN based inference detects & recovers 

that value. In this layer the semantics of context are defined 

and an automatic procedure to classify context features into 
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abstract context situations is laid [15]. Features obtained in 

such way provide a reliable and energy efficient context after 

rules are applied on them. The underlying WSN can be large 

such that nodes don’t always directly transmit to base station. 

In such cases we make use of existing routing and topology 

maintenance mechanisms provided in several research works 

and sensor applications. In next subsections, evaluations of 

the use & performance of BBNs in handling data errors in 

form of outliers and missing values is done.  The values 

assigned by the classifiers are compared against the actual 

classes. Accuracy is defined as the percentage of instances 

that were labelled with correct class values. On the other hand 

the percentage of misclassified instances is termed as Error 

rate. The BBN based classifier labels instances with class 

value having maximum a posterior probability. Given 

evidence attributes, in some instances more than one class 

have maximum a posterior probability, such instances are not 

classified by the classifier here and are counted as percentage 

of ‘Rejection’. Any test instance contributes to exactly one of 

these percentages.  Any classifier having higher Accuracy is 

better. Algorithms were also compared on Error Rate vs 

Rejection Rate. An algorithm that rejects instances instead of 

misclassifying them is preferable to reduce false alarms in 

case of actuation [16]. 

3.2 Outliers & Detection of Faulty Sensors 
Owing to various factors such as the surroundings, the quality 

of the sensors, sensors running out of power, compromised 

sensors etc outliers are introduced in data. Right now, we are 

assuming that all outliers are false and introduced due to 

errors. Figure 5(a) & (b) showing the values obtained from 

‘Temperature’ Sensors & Humidity Sensors over a period of 2 

days show unexpected or infeasible values randomly scattered 

in the data.  For Outlier Detection BBN is used as a classifier. 

The classification task in general consists of classifying a 

variable, C called the class variable given a set of variables A 

= a1.....an, called attribute variables. A classifier Z: A  C is a 

function that maps an instance of A to a value of C. Given 

dataset D over U, BBNs have been constructed in previous 

section. To use a Bayesian network as a classifier, 

argmaxyP(C|A) using the distribution P(U) represented by the 

BBN is calculated. That is, 

)(

)(
)|(

AP

UP
ACP     (4)    

Maximizing LHS,     maximizing )(UP  





n

i

ii apaap
1
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If all variables in A are known, eq. (5) can be used to find 

posterior probability distribution of class values in C. This is 

known as Probabilistic Inference and is used to estimate 

probability of a set of query nodes, given values for some 

evidence. This is also called belief propagation in BBNs.  

 

(a) 

 

(b) 

Fig 5 (a) Temperature  Data of 2 days (b) Relative Humidity 

Data of 2 Days 

Using belief propagation the base station compares the 

probability of its most likely data, with the probability of its 

actual sensed reading. If the two differ largely then the data is 

designated as an outlier [17]. To simulate a realistic 

behaviour, random outliers are added to each frame of the 

generated data. The percentage of outliers is varied in each 

frame of the learning data to test the robustness of our 

classifier. Figure 6(a) shows the effect of performance of 

outlier detection on different percentages of outliers in Test 

data. Figure 6(b) shows the error percentage in prediction 

using test data after the learning phase. As the number of 

outliers increases the accuracy decreases and then remains 

constant at 66%. BBNs obtained above provide a tool for real-

time detection of outliers. BBN provide information about the  
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(a)  

 

(b) 

Fig 6 a) Effect of Outliers in Training Data on Outlier 

Detection using K2+MWST (b) Effect of Outliers on the 

prediction accuracy of Temperature Feature using K2+ 

MWST Algorithm 

distribution of the actual data at sensors and hence predicts the 

temperature values of any sensor at any time. It then compares 

this prediction with its sensed value. If the two differ 

significantly, and if the sensed value is not probable, then its’ 

decided that reading is indeed an outlier. After this the base 

station may replace the outlier with probable value, ask for 

new value or stop the node entirely from sending further data 

if it repeatedly sends outliers. 

3.3  Approximation of Missing Values 
In sensor data sampled at a specific time instance value of one 

type of sensor may be missing in some instances. The sample 

of original lab data obtained at the base station is shown in 

figure 7. The highlighted data tuples have missing values of 

Ambient Light. Light has important role to play to derive 

context like presence of persons. It is not always true that 

people are present only in the daytime. There are data 
instances that represent working in labs till late in the night. 

Automation related to weather control hence critically 

requires light information all the time. Such errors frequently 

occur in sensor networks due to node failures and lost packets. 

Congestion, Collisions, fading and other interferences due to 

moving objects or bad weather are major reasons of partial or 

completely missed data [18].  Missing values impact the 

monitoring & tracking applications. Generally missing values  

 

Fig 7. Excerpts of Actual Sensors Data Received at Base 

Station ( Highlighted Tuples have Msiing Values) 

are handled by error correction codes and extra protection bits 

which are not known to very effective when missing values 

are frequent. Information obtained as BBN can be used to 

recover missing values. In the learning phase the data with 

missing values were discarded as there was enough complete 

data to learn the belief network structure and parameters. 

Though for online extraction of context from incoming sensor 

data, any missing value can’t be simple discarded as it will 

affect the quality of context deduced. Here the offline 

modeled BBN is used as a classifier to predict the missed 

value. This is performed by inferring its class using inference 

algorithm of message passing. For example in above 

instances, given values of all other sensor variables, ambient 

light can be deduced with high confidence. BBNs can also 

predict missing values even if values from more than one 

sensor are missing. 

4. Energy Efficient Context Extraction 

Using Cleaned Data 
Prediction of values from the Bayesian Belief Network 

structure and parameters is an inference problem. BBN based 

classifier when applied on available incoming stream provides 

the values of missing data and also predict with probabilistic 

confidence whether it is erroneous or not. Here use of BBN 

has been described to enable energy efficient data sampling 

and context information extraction. Further, the energy 

efficiency of data collection can be improved owing to 

knowledge encoded in the BBN maintained at the base station 

typically for stationary phenomenon like indoor weather, 

where BBN parameters don’t change frequently. 

4.1 Dynamic Sensor Sampling 
The readings of different sensors are correlated with each 

other across time and space at times. Bayesian Belief 

Networks quantify this correlation [19]. If one sensor is 

dependent on another, using BBN the value of either can be 

probabilistically calculated given the other. The accuracy of 

this calculation depends upon the amount of correlation and 

correctness of received data. For evaluating the effect of 
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dynamic sampling on accuracy, 3 days of sensor data was 

used for testing. Evaluation of all algorithms in deducing 

values of each sensor types for test data set is shown in figure 

8. The accuracy rate of K2 based algorithms is overall better. 

It is noted that humidity’s prediction given rest other 

information yields maximum accuracy in all algorithms. It 

shows that, humidity need not be sent every time in sensor 

transmission. This dynamic sampling provides significant 

energy savings while not compromising information. 

 

Fig. 8 Accuracy of  Various Learning Algorithms in 

Classifying Context Features 

The accuracy rate of any algorithm is not near perfection i.e. 

close to 100 %. It was found by further analysis that all 

algorithms performance improved if the time window size is 

increased to 2 hrs. This however decreases the quality of 

monitoring to a coarser level which may be undesirable in 

sensitive monitoring like store of perishable goods or 

livestock. 

 

Fig. 9 Computational Time Taken by Different Algorithms 

on a 2.4Ghz Clock  Speed Machine 

Another important factor for successful dynamic sampling is 

the amount of time taken to calculate the pseudo values of the 

sampled parameters is Computational Time (CT). The time 

taken should be negligible, such that the sample looks to be 

real. All the algorithms were run on same data using a core 2 

duo processor of 2.4GHz clock speed with 2 GB RAM. As 

shown in figure 9 there are slight variations in computation 

time of each algorithm. Greedy Search and Hill Climbing take 

more time to classify due to their search space being larger 

than those of other algorithms used here.  

4.2 Extracting Features of Context from 

Cleaned Data 
Information of interest from sensors like activity, location and 

surroundings (nearby persons, devices) are called ‘contexts’. 

As compared to our previous work in [4], here the same test 

data is used, but here it is first cleaned on arrival at the base 

station (outlier detection & missing value replacement) and 

then used to classify the feature of interest. Previously, BBN 

was directly applied to test data for feature classification. Like 

earlier, 5-Fold 10 Times Cross-Validation has been used to 

generate training & testing datasets from available data. Given 

the flexibility of our model any of the feature variables whose 

value needs to be determined can act as class variable. 

Multiple categories of classes in each feature have been 

described in table 1 already. Confusion matrix is used to 

assess the ability of the learnt model in distinguishing all class 

values appropriately with high accuracy. In tables 2 & 3 

confusion matrix of classification of humidity and ambient 

light are shown. For every class two columns of values are 

given, first column named ‘P’ i.e. Previous contains the 

classified instances as reported in [4]. The column labelled ‘I’ 

,that is, Improved is the number of classified instances using 

approach described here.  Similar matrices for other features 

are not shown here due to shortage of space. It is interesting to 

note that mostly the classifier gets confused between adjacent 

classes this is due to the fact that humidity doesn’t change 

abruptly after every one hour. The intra cluster variations are 

also not captured.  

TABLE 2. Confusion matrix for cross validation testing of 

humidity classification with K2+MWST 

Actua

l 

Class 

Value

s 

Predicted Class Values 

1 2 3 4 

P I P I P I P I 

1 2

3 

2

7 

14 10 0 0 0 0 

2 4 4 128

9 

131

7 

468 434 44 44 

3 0 0 356 406 263

5 

258

5 

265 265 

4 0 0 60 60 418 376 166

9 

171

1  

T ABLE 3. Confusion matrix for cross validation testing of 

Ambient Light Classification with K2+MWST 
 

Actual 

Class 

Predicted Class Value 

1 2 3 4 5 6 

P I P I P I P I P I P I 

1 
107 129 64 49 15 14 27 24 20 14 4 4 

2 57 45 168

8 

174

2 
225 204 141 129 40 32 6 5 

3 3 3 442 388 132

4 

145

1 

442 383 20 10 11 7 

4 27 27 235 160 348 287 170

6 

185

0 
65 60 26 23 

5 18 11 51 40 12 10 107 76 432 498 54 39 

6 0 0 0 0 32 32 55 55 67 62 398 403 
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The confusion matrix in table 3 shows a high misclassification 

rate not only to adjacent classes but further also. The effect is 

easily explainable as this may be due to the fact that though 

light exhibits regular pattern during 24hrs window but is 

easily hindered by the presence of some object near the 

sensor, thus giving abrupt values. Besides above matrices, the 

accuracy was also tested using only the time of the day and 

cluster id as available data. The model inferred 55-60% 

correct results for temperature as well as humidity in this case.  

Very good accuracy with confusions mainly in adjacent 

classes was obtained while classifying temperature given 

other features. Similar evaluations were done in [4], but 

results of confusion matrix are better here in terms of number 

of misclassifications among classes.  Specifically the spilling 

to adjacent classes has reduced in most of the cases. The 

confusion matrices of only two features with only two 

algorithms have been shown here due to limitations of space. 

Matrices of other combinations were created and similar 

results were obtained. The correctly classified features would 

prove more reliable for identifying associated context. It 

would act as a breakthrough in sensor based actuator 

networks. The mechanism to do so is discussed in next 

section. 

4.3 Rule Based Context Extraction 
After obtaining features of context with sufficient confidence, 

the context “weather” can be extracted from the data using 

simple rule based substitution. The type of weather context 

that is of interest to us is pleasant, comfortable, suitable for 

work, not suitable for work and uncomfortable. The 

qualitative description of context in table 4 specifies mapping 

of features of weather to type of weather.  . The rules are 

defined based upon personal opinion and description is 

qualitative and intuitive. Background domain knowledge is 

leveraged to specify domain specific rules to be satisfied by 

patterns of data from available sensors. Simple Rule Based 

matching will be useful due to its ease in interpretation, 

generation and instant classification of new instances [20]. 

Preliminary context features are used in rule preconditions to 

derive weather context sought here 

Table 4. Definition of Context and its Classes 

C
o

n
te

x
t 

 (
W

ea
th

er
) 

Values of Context Features of Context 

Pleasant 

Normal Temperature, 

Comfortable Humidity, 

Normal Light 

Comfortable 
Normal or Mild Temp, 

quite humid, Normal Light 

Suitable_to_work 

Hot or Cold Temperature, 

quite humid and Normal 

Light 

Not_Suitable_to_work 
Hot Temp, Humid and 

Dim Light or dark 

Uncomfortable 

Very Cold or Very Hot 

Temp, Very Humid or Dry, 

Dim Light 

 

Few instances of rules that will be used by classifier are: 

r1: (Temp=3) ^ (Humidity = 2) ^ (Ambient_Light = 5)  

Weather = Pleasant 

r2:  (Temp=3 or 4) ^ (Humidity = 3) ^ (Ambient_Light = 5) 

 Weather = Comfortable 

r3: (Temp =2 or 4) ^ (Humidity = 3) ^ (Ambient_Light = 4 or 

5)  Weather = Suitable_to_work 

rd: ( )  Weather =Suitable_to_work 

In case of conflict in rule matching, the criteria for matching 

will be majority voting. The rule with the greatest number of 

antecedents matching is applied. The default rule triggers if 

the input sensor pattern doesn’t match any rule. The default 

rule, if triggered, classifies the instance in majority class. In 

the rule set above last rule is the default rule as the case 

should always be. It has been found to be most frequent 

prevalent context from available data. As the testing data is 

not labelled with actual contexts, heuristic validation was 

applied to find that results are significantly correct. For 

example, if the arriving instance is Temp=2, Humidity =4 and 

Ambient_Light = 4; none of the rule matches exactly, so r3 

that has maximum antecedents matching is fired and 

accordingly context is mapped as “Suitable_to_work”.  

All the steps towards context extraction are scalable to 

increase in number of input modalities for defining features of 

context [21]. The increase in type of such modalities will 

improve the semantics of context. For example, sensors to 

define presence of no. of persons in the lab can improve the 

extraction of current weather. The increase in number will 

make context extraction more accurate [22]. It would take an 

expert’s opinion or testing on already tagged data to quantify 

the amount of improvement achieved in context extraction. 

But given the mechanism of extraction, it can be concluded 

that it will be at least proportional to the improvement in 

feature extraction. 

5. CONCLUSIONS 
Wireless Sensors generate lot of data about the phenomenon 

they are sensing. Thus making sense out of this data in real 

time is challenging. Being sent wirelessly, the data is also 

prone to errors. In this paper use of Bayesian Belief Networks 

has been demonstrated to improve quality of sensor data by 

recovering missing values and detecting outliers. The cleaned 

data is then used for context extraction. Mechanism to 

implement energy efficient sampling has also been included. 

Five of the BBN learning algorithms are evaluated for doing 

these tasks. Good results are obtained in terms of accuracy 

and computation time taken to predict the feature values. The 

actual and inferred features thus can be used in a simple rule 

based system to abstract the desired context which is current 

weather of the indoor environment under study. The methods 

described here are applicable to any new application with its 

own set of contexts and corresponding features. 
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