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ABSTRACT 

 In software development research, early prediction of 

defective software modules always attracts the developers 

because it can reduces the overall requirements of software 

development such as time and budgets  and increases the 

customer satisfaction. In the current context, with constantly 

increasing constraints like requirement ambiguity and 

complex development process, developing fault free reliable 

software is a daunting task. To deliver reliable software, it is 

essential to execute exhaustive number of test cases which 

may become tedious and costly for software enterprises. To 

ameliorate the testing process, a defect prediction model can 

be used which enables the developers to distribute their 

quality assurance activity on defect prone modules. However, 

a defect prediction models requires empirical validation to 

ensure their relevance to a software enterprises. In recent past, 

several classification and prediction models, based on 

historical defect data sets, have been used for early prediction 

of error-prone modules. Considering these facts, in this paper, 

a new Support Vector based Fuzzy Classification System 

(SVFCS) has been proposed for defective module prediction. 

In the proposed model an initial rule set is constructed using 

support vectors and Fuzzy logic. Rule set optimization is done 

using Genetic algorithm. The new method has been compared 

against two other models reported in recent literature viz. 

Naive Bayes and Support Vector Machine by using several 

measures, precision and probability of detection and it is 

found that the prediction performance of SVFCS approach is 

generally better than other prediction approaches. Our 

approach achieved 76.5 mean recall and 34.65 mean false 

alarm rate on three versions of Eclipse (Eclipse (2.0, 2.1, 3.0) 

and Equinox software bug data sets which strongly endorse 

the significance of proposed model in defect prediction 

research.  
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1. INTRODUCTION 
As our dependency on software is increasing, software quality 

is becoming gradually more and more important in present 

era. Software used almost everywhere and in every tread of 

life. Software consequences such as fault and failures may 

diminish the quality of software which leads to customer 

dissatisfaction [1]. A software failure is the departure of the 

system from its required behavior; error is the incongruity 

between the required and actual functionality; whereas 

adjudged or hypothesized cause of an error is a fault [2], 

which is also known as a defect (or as a bug) among software 

professionals [3]. Due to the increasing of complexity and the 

constraints under which the software is developed, it is too 

difficult to produce quality software. On the other hand, the 

software development companies cannot risk their business by 

shipping poor quality software [4] as it results in customer 

dissatisfaction. Bugs in software product cause much loss of 

time and money. However, learning from past experience, it 

would be possible to predict bugs in advance for new software 

products. To achieve this, we must first know which programs 

are more failure-prone than others. With this knowledge, we 

can search for properties of the program or its development 

process that commonly correlate with causes of bugs. 

Previous studies have shown that, of the overall development 

process 27% man hour is consumed by testing [5]. To 

ameliorate the testing process we can use the defect prediction 

models. These models can be used in defect prediction, risk 

analysis, effort estimation, software testability and 

maintainability, and reliability analysis during early phases of 

software development. It can also be used in business risk 

minimization by predicting the quality of the software in the 

early stages of the software development lifecycle (SDLC). 

This would not only help in increasing client’s satisfaction but 

also trim down the cost of correction of defects. It has been 

reported in [4] that the cost of defect correction is 

significantly high after software testing. An additional 

advantage of early defect prediction is better resource 

planning [7] and test planning [6], [7]. Therefore, the key of 

developing reliable quality software within time and budget is 

to identify defect prone modules at an early SDLC stage by 

using defect prediction models. The importance of defect 

prediction is evident from the research work conducted in this 

regard. The rest of the paper is organized as follows. In 

section 2 we briefly discuss the previous work. In section 3, 

information regarding data sets is presented. Working 

methodology and performance evaluation are presented in 

section 4. In section 5, different types of learners are 

presented. SVFCS model generation process is presented in 

section 6. Result and discussion are presented in section 7. 

Section 8 identifies the future directions and concludes the 

paper. 

 

2. PREVIOUS STUDIES 

As our dependency on software is increasing, software quality 

is becoming gradually more and more important in present 

era. Software used almost everywhere and in every tread of 

life. Software consequences such as fault and failures may 

diminish the quality of software which leads to customer 

dissatisfaction [1]. A software failure is the departure of the 

system from its required behavior; error is the incongruity 

between the required and actual functionality; whereas 

adjudged or hypothesized cause of an error is a fault [2], 

which is also known as a defect (or as a bug) among software 

professionals [3]. Due to the increasing of complexity and the 

constraints under which the software is developed, it is too 

difficult to produce quality software. On the other hand, the 

software development companies cannot risk their business by 

shipping poor quality software [4] as it results in customer 

dissatisfaction. Bugs in software product cause much loss of 
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time and money. However, learning from past experience, it 

would be possible to predict bugs in advance for new software 

products. To achieve this, we must first know which programs 

are more failure-prone than others. With this knowledge, we 

can search for properties of the program or its development 

process that commonly correlate with causes of bugs. 

Previous studies have shown that, of the overall development 

process 27% man hour is consumed by testing [5]. To 

ameliorate the testing process we can use the defect prediction 

models. These models can be used in defect prediction, risk 

analysis, effort estimation, software testability and 

maintainability, and reliability analysis during early phases of 

software development. It can also be used in business risk 

minimization by predicting the quality of the software in the 

early stages of the software development lifecycle (SDLC). 

This would not only help in increasing client’s satisfaction but 

also trim down the cost of correction of defects. It has been 

reported in [4] that the cost of defect correction is 

significantly high after software testing. An additional 

advantage of early defect prediction is better resource 

planning [7] and test planning [6], [7]. Therefore, the key of 

developing reliable quality software within time and budget is 

to identify defect prone modules at an early SDLC stage by 

using defect prediction models. The importance of defect 

prediction is evident from the research work conducted in this 

regard. The rest of the paper is organized as follows. In 

section 2 we briefly discuss the previous work. Section 3 

gives basics of the proposed algorithm SVFCS. Thereafter, in 

section 4, information regarding the data sets and evaluation 

strategy are presented. Result and discussion are presented in 

section 5. Section 6 identifies the future directions and 

concludes the paper. 

 

3. DATA SETS 
In this section we briefly discuss the data sets that are used for 

experiments. Data set used in this study come from three 

different sources UCI machine learning data base [23], 

Promise data repository [20] and Bug Prediction data set [24] 

and are listed in Table 1. We used six data sets for 

experimental purpose. Iris and Pima Indians Diabetes 

database (from UCI) are used to validate the working of 

proposed model. Iris data set contain three classes of 50 

instances. Each class represents an Iris plant. However, 

because SVM basically works on binary classification 

problem we removed one class from the data set. Pima 

Indians Diabetes database, Table 1,  contains the information 

regarding the diabetes test in Indian women. It contains eight 

attribute and 768 instances with one class attribute denoting 

diabetes test positive or negative. Eclipse data sets (from 

promise data) are used to build software defect prediction 

model using complexity metric. Eclipse data set consists of 

two types of data group; file level (each row of the data set 

corresponds to single file) and package level (each row of the 

data set corresponds to single package). It contains overall 

199 attributes which are the combination of class level, 

method level, package level, file level and abstract syntax tree 

(AST) based attributes. It also contains two types of defects, 

pre release defects (Number of non trivial defects reported 

before six months of product deployment.) and post release 

defects (Number of non trivial defects reported after six 

month of product deployment). The entire attributes can be 

categorized into two groups: 

 

 

 

 

Table 1. Data Sets. 

 

(NB = Non byggy modules, B = Buggy modules, N= Diabetes 

tested negative and P= Diabetes tested positive.) 

 

3.1 Complexity Metrics  

Several complexity metrics (like FOUT, MLOC, and NBD) 

are included in the data set. Attributes that are reported are 

also aggregated using average, sum, and maximum value.  

 

3.2 Abstract Syntax Tree Based Metrics 

 These metrics are based on the abstract syntax tree of each 

file or package. It includes the type of each node (Annotation 

type declaration, modifiers…), size of AST and the frequency 

of nodes in AST. This information can be used to calculate 

other software metrics without reanalyzing the source code. 

Eclipse bug data set is publically available on Promise data 

repository [20]. All experiments are performed on complexity 

metrics of eclipse data set of version 2.0, 2.1, and 3.0 at 

package level. Information regarding attributes used in this 

research work is given in Table 2.  

 

In addition, we used Equinox design metrics. Equinox data set 

have overall 18 features and 5 bug related   attributes which 

denotes the severity of bugs with the number of occurrences. 

From the 18 features we select 8 design level metrics which 

available at the end of design phase of SDLC. Instead of using 

bug severity level information we use a binary class attribute 

which only represents buggy or non buggy modules which 

listed in Table 2. 

 

4. WORKING METHODOLOGY 

The objective of this research is to build an efficient Fuzzy 

inference system that can learn and predict bugs in software 

products. Here, we have applied SVM, a supervised training 

algorithm for classification of data into two sets, buggy and 

non-buggy. Then various rules are generated inferred from the 

support vectors. The final set of the rules is chosen from the 

given set of rules using genetic algorithm optimization. The 

experiments were performed on Eclipse bug data on package 

level. Data contains the bugs reported before and after the 

release of product, called pre and post defects. Using the post 

defects as class labels for buggy and non buggy, rule base is 

prepared.  
 

4.1 Performance Measurements 

The performance of SVFCS is evaluated through the measures 

based on confusion matrix. The confusion matrix (also called 

a contingency table) is a measurement table which relates the  

Data set No. of 

attributes 

Class distribution No. of 

instances 

Iris 4 33.33% 150 

Diabetes 8 N (65%), P 

(35%) 

768 

Eclipse 2.0 199 NB (49%),  

B (51%) 

377 

Eclipse 2.1 199 NB (55%), 

 B (45%) 

434 

Eclipse 3.0 199 NB (52%),  

B (48%) 

661 

Equinox 8 NB (60%),  

B (40%) 

324 
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Table 2. Attributes Information. 

 

predicted results with the real values of the dataset, and 

therefore, it makes possible to obtain measures about the hit 

and miss of the classifier. For a given model and set of 

instances, there are four possible outcomes associated with it. 

If the instance is defective (in fault prediction approach) and it 

is predicted as defective, it is counted as a true positive; if it is 

predicted as non-defective, it is counted as a false negative. If 

the instance is non-defective and it is predicted as non-

defective, it is counted as a true negative; if it is predicted as 

defective, it is counted as a false positive. This two-by-two 

confusion matrix, Fig.1, (for binary class problem) forms the 

basis for many common metrics. The measurements based on 

confusion matrix include accuracy, precision, recall, and F-

measure. In literature these measures are widely used to 

evaluate the prediction results of a classifier.  Next we 

explained all these measures. 

 
Accuracy 
In a binary class problem, accuracy is the ratio of the correctly 

classified instances to the total number of instances. It 

measures the hit and miss of the classifier and measures as 

follows: 

 

Accuracy=
     

           
 

 

 
  Predicted  

  Buggy Non-Buggy 

Original Buggy TP= True Positive 
Rate 

FN=False Negative 
Rate 

 Non-

Buggy 

FP=False Positive 

Rate 

TN=True Negative 

Rate 

                        

Figure 1. Confusion Matrix. 

 

                  

Precision 
It denotes the correctness of the predicted results and 

measures the miss classification rate. It is defined as the ratio 

of the total number of correctly detected instances to the total 

number of detected instances for particular class (buggy or 

non-buggy). It can be calculated as: 

 

Precision=
  

     
 

 

Recall 
The recall measures the ratio of correctly classified instances, 

for one class (buggy or non-buggy), to the total number of 

instances that really belongs to the class. It counts the number 

of hits of the classifier for the class. It is also known as 

probability of detection and can be calculated as: 

 

Recall=
  

     
 

 

However, there is a significant trade-off between recall and 

precision[28,29]. For instance, if model predicts only one 

module and it belongs to the desired class than the model’s 

precision will be 1 but, the recall will be low if the desired 

class contains more than one modules. In contrast, if model 

predicts all the defective modules correctly along with some 

non-defective modules incorrectly, it results in high recall and 

low precision.  Therefore, there is a need of a combined 

measurement strategy such as F-measure, which efficiently 

combines the recall and precision in a single efficient 

measure. 

 

F-measure  
The F-measure combines the values of precision and recall for 

a classifier, for one class (faulty or not-faulty). It considers the 

measurements, recall, and precision, equally important and is 

calculated by taking their harmonic mean.  

 

F-measure=
                  

                
 

 

ROC 
Receiver operating characteristics graph are well known 

technique for assessing the classifiers performance. It is a two 

dimensional graph in which abscissa represent the probability 

Eclipse[20] Component Attributes Description 

File ACD 

NOI 

NOT 

TLLOC 

Number of anonymous type declarations 

Number of interfaces 

Number of classes 

Total lines of code 

Class NOF 

NOM 

NSF 

NSM 

Number of fields 

Number of methods 

Number of static fields 

Number of static methods 

Method FOUT 

MLOC 

PAR 

VG 

FAN_IN  

Number of method calls 

Method lines of code 

Number of parameters 

Cyclomatic complexity 

Count of calls of higher modules 

Equinox[24]  CBO  

DEPTH  

LCOM  

NOC  

DOC  

RFC  

WMC  

Coupling between objects 

Depth of inheritance 

Lack of cohesion 

Number of children 

Dependence on a descendent 

Response for a class 

Weighted method per class 
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of false alarm or cost and ordinate represent the probability of 

detection or benefit. It can handle both discrete and 

continuous classifiers. Discrete classifiers output only the 

class level, where as continuous classifier output a curve. 

Each discrete classifier produces a pair of PF and PD that 

represent a point on ROC graph. Definition of ROC curve 

contains some interesting points: 

 

(a) Point (0, 0) denotes that it would never trigger a 

false alarm and also never issue a positive 

classification. 

(b) Any point situated on the line that is drawn in 

between (0, 0) to (1, 1) contains no information. 

(c) Point (0, 1) denotes the ideal position .But it’s never 
achieved by any classifier. So any classifier situated 

close to this point, is always preferable. 

 

5. LEARNERS 

This section contains the information regarding the 

classification and optimization algorithms used in this study. 

 

5.1. SUPPORT VECTOR MACHINE 
Support vector machines (SVM) are Kernel based 

classification approach proposed by Vapanic [25]. It works on 

the concept of decision planes which defines the decision 

boundaries between the objects of different classes. Basically 

SVM is designed for two class problems in which it defines 

an optimal decision hyperplane based on number of support 

vectors to classify the data objects however; it can be 

extended for multiclass problems. Support vectors are the 

subset of initial data set which is used to define a decision 

boundary between the classes. Some basic characteristics of 

SVM are 

 

1. It can be generalized for high dimensional data sets. 

2. SVM is formulated as quadratic programming 

problem; therefore it provides a global optimal 

solution. 

3. It is robust to outliers because it uses a margin 

parameter ∆c to control the misclassification error. 

 

 

 
Figure 2. Non Linear SVM 

 

 

 
Figure 3. Linear SVM 

 

In the rest of the section we briefly discuss the SVM for both 

linearly and non- linearly separable data. 

 

5.1.1. LINEAR SVM 
For linearly separable data, SVM attempts to draw a decision 

line (hyperplanes, in high dimension) between two classes in 

such a way that the distance between the support vectors of 

two classes and the decision line is maximized. Fig. 2 shows 

the linear separation of two classes in two dimensional space. 

Mathematically, for a binary class problem we have to 

approximate a function ₣: Rd→ {±1} using training data in the 

d dimensional space. Let we have two classes C1 and C2 

represented as x C1 when y= +1 and x C2 when y= -1; (xi,yi) 

  Rd  × {±1}. For a linearly separable data there exists a pair 

of (w, b) such that 

 

 

                C1                  (1) 

 

                C2                                 (2) 

 

For all i = (1…….n); where w is the weight vector which 

represents the vector orthogonal to d dimensional space and b 

is the bias term. We can recombine the inequality constraints 

as 

 

     
                C1  C2                (3)

  

 

 This learning problem can be reformulated as 

 

              
                   (4) 

  

Subject to         
                ,  

    

 

where (xi, yi)   to training set and n is the number of 

instances. The quadratic optimization theory can be used to 

solve this problem. The dual form of the above optimization 

problem is obtained using Lagrangian duality technique which 

is shown in the following equations:  

 

 

Maximize    
 
    

 

 
        

 
           

                     (5) 

 

Subject to       ,       
 
           

and i=1,2,……n.     

     

The solution of this optimization problem is found in the form 

of vector α =(          .An input pattern is classified 

according to the sign of decision function as 

 

₣                
                     (6) 

  

 

   
       ₣   
       ₣   

    

 

5.1.2. NON-LINEAR SVM 

In cases where SVM cannot classify the data objects using 

liner formulation, it extends its capability by mapping the data 

objects into the higher dimension feature space using the non-

linear mapping, such that x→£(x) where £: Rd→Rs is the 

feature map. According to the Burge (Burges et. al, 1998), a 

transformation can be used for linear separation of data in 

high dimensional feature space. It creates a hyperplane which 
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correspond to the curved surface in lower dimensional space. 

This transformation can be done using the Kernel function 

which is defined as:  

 

K (     )= £    
 £                      (7)

    

Therefore, the optimization problem of linearly separable 

case, equation 5, can be reformulated to handle the non linear 

data objects as: 

 

Maximize    
 
    

 

 
        

 
                                 (8) 

 

 

Subject to       ,       
 
          

and i = 1,2,……n                  (9) 

 

where K(     ) is the kernel function which is used for 

nonlinear mapping of the data objects into the high 

dimensional feature space. The classification decision can be 

constructed as 

 

₣                                        (10)               

      

   
       ₣   
       ₣   

                 (11) 

 

The most common kernel functions used in literature are 

 

Linear: K(     )=   
    . 

 

Polynomial: K(     )=    
       d 

 

Gaussian (RBF) K(     )=     
         

 

    

 

Sigmoid (MLP) K(     )=tanh(    
         

 

We have tried all the three nonlinear kernel functions for our 

experiments. The Gaussian (RBF) yielded the best 

performance result, therefore we have used RBF kernel for 

further experiments. 
 

5.2 NAIVE BAYES  
Naïve Bayes (NB) [28] classifier is the statistical classifier 

which uses the Bayes posterior probability theorem. The 

primary axiom of NB classifier is “All attributes are 

uncorrelated”.  Posterior probability of each class (defective 

or non defective) is calculated on each attribute of each data 

instance and data is assigned to class with the highest 

posterior probability. It can handle both continuous as well as 

discrete attributes efficiently. For a given dataset of size D 

with N attributes and M classes  NB classifier computes the 

posterior  probability for vector X by equation 12 and assigns 

X to the class for which it possess maximum posterior 

probability. 

 

                  
 
                   (12)                   

 

For continuous attributes (13) and (14) are used. 

 

                                        (13) 

 

              
 

       
 
 

        
 

    
 

                 (14)          

 

Here C is the class variable,  X is a random vector which 

represents  attribute values and       represents the mean and 

the standard deviation of the attributes. 

 

5.3 FUZZY INFERENCE SYSTEM 
Fuzzy inference is the process of mapping from given input to 

an output using fuzzy logic. Mapping provides the 

information regarding decision making. Several methods have 

been used for fuzzy classification [22]. For n training patterns 

(X11……..Xnm) with m features and C classes we can inferred 

fuzzy if then rules using support vectors as given below. 

 

Rule : If X1 is A11 and … and Xm  is A2m then class of X = Ci 

 
Where Xj is jth feature of the input X, and each of Aij 

represents membership grade with Gaussian membership 

function with center Vij and standard deviation one. 

Membership of Xj is   defined as 

  

     
         

 

                  (15) 

                

To calculate the firing strength of each rule we used product 

operation between each antecedent for given input pattern and 

classification decision is made according to the rule which 

have maximum firing strength. Firing strength of Vi (vector i) 

for input X is 

 

                               
 
              (16) 

 

For this study we inferred “Sugeno type zero” fuzzy rules in 

which consequent part is constant (defective or non-

defective).  For a training patterns (support vector) 

(X11……..Xnm) with m features and c classes we can construct 

fuzzy if then rules as given below for classification.  

 

Rule : If X1 is A11 and … and Xm  is A2m then class of X = Ci 

 

 An example of fuzzy expert system is presented in Fig. 4. 

 

5.4 GENETIC ALGORITHM 
Genetic algorithm [29] is the process of global search and 

optimization, modeled from natural genetics inspired by the 

biological evolution process, which explore the search space 

by incorporating a set of candidate solution in parallel, Fig. 5. 

It maintained a set of candidate solution and evolves it by 

applying a set of stochastic operations. Stochastic operations 

are: 

 

 Reproduction: - Reuse the existing 

solution by copying it into the new 

population with the reproduction 

probability. 

 Crossover: - New solutions are generated 

by recombining the randomly selected 

part of the selected solution on the basis 

of crossover probability. 

 Mutation: - New solutions are generated 

by mutating the randomly selected part of 

selected solution with mutation 

probability. 
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5.4.1 GENETIC REPRESENTATION AND FITNESS 

EVOLUTION 
In this work a chromosome is represented by a rule vector as 

V = (v1 v2 ... vn), where n is the number of the fuzzy rules 

which are  generated and Vk is the boolean value representing 

whether the k’th rule is selected in the rule vector  V or not. 

Vk={0 if  rule is not selected and 1 if rule is selected}. Each 

rule vector V is obtained by randomly assigning 1 or 0 to each 

parameter of V. The length of V is same as number of rules. 

Consider the set of Chromosomes V = (v1 v2 ... vn). The 

fitness score of the rule vector is determined by [27]:  

 

Eval  (Vt) = w1・f1(Vt) − w2・f2(Vt),           (16) 

 

Where w1 and w2 are non-negative constant weights assigned 

to the two kinds of objectives, f1 (Vt) is the classification 

performance determined by the measurements (accuracy, 

recall and precision) and f2(Vt) is the number of the fuzzy 

rules in fuzzy rule set. 

 

6. MODEL GENERATION 
Our prediction model is generated through three phases. 

Initially, the first set of IF-THEN rules is obtained through an 

equivalence of the SVM training. Attribute values of each 

support vectors combined with AND (connective) treated as 

antecedent part and class value work as consequent part of the 

rule; which is further used for classification. The second set of 

rules is generated by combining the first set based on strength 

of firing signals of support vectors using Gaussian kernel. The 

main advantage of this method is that, it guarantees that the 

number of final fuzzy IF THEN rules is not more than the 

number of support vectors in the trained SVM. Genetic 

algorithm is applied for rule set optimization which 

simultaneously enhances or maintains the performance of the 

model and minimizing the number of rules used for 

classification. In other words, the optimization is performed 

while considering both the minimization of the number of the 

extracted fuzzy rules and the maximization of the 

performance of the fuzzy classification system, i.e., the 

number of correctly classified training patterns with the less 

fuzzy rules. Basically the model work as zero order Sugeno 

type fuzzy inference system [22]. Basic steps of model 

generation are: 

 

1. Data sampling is done using stratified sampling. Partition 

the selected data set in training and testing set 

maintaining the same ratio of both classes in each set. 

2. Normalize the test and train dataset such that they have 

zero mean and unit variance. 

3. Perform SVM classification on training data set using the 

box constraint value as per number of rules desired and 

‘RBF’ kernel function. 

4. Construct the if then else rule for each support vector like 

Rule Rq: If X1 is Vq1 and … and Xm is Vqm then class of 

X = Class of V. 

5. Calculate the membership degree of each feature of a 

data point using Gaussian membership function. 

6. Calculate the firing strength for each rule using 

multiplication T-norm operation. 

7. Assess the performance of rule set using accuracy, 

precision, and recall. 

8. Apply Genetic algorithm for rule set optimization by 

using fitness evolution function. 

 

Block diagram of model generation process is shown in Fig.6.  

 

7. RESULT AND DISCUSSION 

Experiments were conducted by splitting the overall data set 

into training with 67% and testing with 33%. We repeated our 

experiments 10 times and randomize the input each time. This 

repletion is required to mitigate the impact of order effect.  

Results of experiments are given in Table 3 and 4 which 

contain the Recall (PD), Precision, Probability of false alarm 

(PF), Accuracy, and F-score of experiments on different data 

sets.  We compare our results with two other model based on 

two well known classifiers NB and SVM. Iris and Pima 

Indians Diabetes data set are used for model validation. On 

iris data set our model gives 100% recall (Probability of 

detection also denoted as PD) and 0% false alarm rate (PF) 

with 100% accuracy where as on Pima Indians Diabetes data 

set it gives 68.6% and 29.5% PD and PF respectively which is 

better than previous known result (60% and 19%[23]) except 

in PF which should be low. Validation results using these two 

datasets suggest that we can use this model in software defect 

prediction.  

 

Experimental results on Eclipse packages and Equinox are 

listed in Table 4. The results show that our model 

outperformed other two classifier based models. On Eclipse 

packages 2.0, 2.1, and 3.0 the proposed model outperformed 

others by achieving the best recall value. For accuracy it has 

very competitive value however on precision SVM based 

model outperformed others by achieving slightly high 

precision value which indicates that some of the non-buggy 

modules classified are misclassified as a buggy modules. 

However, this required some extra testing time only. On the 

other hand, in recall, NB and SVM have very low value which 

indicates the inability of these models in detecting the faulty 

modules. On Equinox data set same trade is followed.  So the 

experimental results strongly endorse to use this model in 

early phase of SDLC for predicting defect prone modules for 

latter stage of development. As we know recall and false 

alarm rate are the most valuable measurement criteria for 

defect prediction research. Any classifier should give high 

recall and low false alarm rate. According to this scenario our 

model outperforms other two classifiers. Last column of the 

tables represent the number of rules generated by the 

proposed model. This rule set is the most important part of the 

results. It denotes how actual classification process takes 

place. ROC graph of experiments are shown in Fig. 7, 8, 9, 

and 10.  All the curves based on our model situated near to the 

ideal point in ROC graph where as curve based on NB and 

SVM are far away from the ideal point. The proposed model 

gives high probability of detection (PD), and low false alarm 

rate (PF). So in case of detecting fault prone module it gives 

high performance with low overhead of false alarm rate which 

is an essential quality of any good classifier.  
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                      Figure 4.  Fuzzy Expert System. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure 5. Rule Set Optimization Using Genetic Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             Figure 6.  Defect Prediction Model Generation. 
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Table 3.    Results on Validation Data. 

 

Table 4. Classification Results of Eclipse and Equinox Data Sets 
 

 SVM 71.5 89.7 39.7 2.4 55.5 No 

Eclipse 

3.0 

SVFCS 70.4 66.8 76.4 34.2 50.2 18.1 

NB 68.1 82.3 40.8 7.8 54.4 No 

SVM 68.2 81.7 40.3 8.2 53.1 No 

Equinox SVFCS 68.5 56.5 77.7 38.7 43.1 11.9 

NB 72.1 80.8 39.6 6.3 54.9 No 

 SVM 73.2 75 47.7 10.1 57.5 No 

 

 

8. CONCLUSION AND FUTURE 

DIRECTIONS 

In this paper a novel approach, SVFCS, for fault prediction is 

presented. SVM, FIS, and Genetic algorithm are well known 

methods and are used for classification in every branch of 

engineering and science. In this work first time we combined 

the advantages of these three learners to get better prediction 

model. Performance of the model is checked against the open 

source data project where as in previous studies [10] 

assessment has been done on historical data sets which are 

publically available but could not ease the testing task in real 

development due to technology changes. The result of SVFIS 

is confronted with other two well-known algorithms used in 

the fault-proneness problem.  The experimental results reveal 

the effectiveness of SVFIS in fault prone module prediction, 

and endorse that it can be useful and practical addition to the 

framework of software quality prediction.  Moreover, the 

superior performance of SVFIS, especially in recall of faulty 

modules, can have a practical implication in the context of 

software testing by mitigating the risks of miss detection of 

fault prone in early stage of development.  By using this 

model we extract more knowledge and ease the testing task in 

early phase of software development life cycle. 

 

This study need to be extended for validation purpose. 

Initially it works on binary classification problem we plan to 

generalize this model for multi class problem. We also plan to 

investigate the impact of support vectors on other classifier’s 

performances.  
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Figure 7. ROC Graph for Eclipse 2.0. 

 

 
 

Figure 8. ROC Graph for Eclipse 2.1. 
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 Data Set Accuracy Precision Recall Probability of 

False alarm 

F-Score Number 

of Rules 

Eclipse 

2.0 

SVFCS 72.5 70.5 78.6 34.2 55.3 11.9 

NB 66 83.8 39.8 7.35 53.9 No 

SVM 68.9 84.8 46.3 8.1 60.2 No 

Eclipse 

2.1 

SVFCS 70 66.2 73.3 31.5 48.6 16 

NB 71.3 83.7 44.2 6.8 57.8 No 
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Figure 9. ROC Graph for Eclipse 3.0. 

 

 
Figure 10. ROC Graph for Equinox. 
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