
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

8

Defect Prediction for Object Oriented Software using
Support Vector based Fuzzy Classification Model

Bharavi Mishra

Department of Comp. Engg.
 IIT (B.H.U.) Varanasi, 221005

K.K. Shukla
Department of Comp. Engg.

 IIT (B.H.U.) Varanasi, 221005

ABSTRACT

 In software development research, early prediction of

defective software modules always attracts the developers

because it can reduces the overall requirements of software

development such as time and budgets and increases the

customer satisfaction. In the current context, with constantly

increasing constraints like requirement ambiguity and

complex development process, developing fault free reliable

software is a daunting task. To deliver reliable software, it is

essential to execute exhaustive number of test cases which

may become tedious and costly for software enterprises. To

ameliorate the testing process, a defect prediction model can

be used which enables the developers to distribute their

quality assurance activity on defect prone modules. However,

a defect prediction models requires empirical validation to

ensure their relevance to a software enterprises. In recent past,

several classification and prediction models, based on

historical defect data sets, have been used for early prediction

of error-prone modules. Considering these facts, in this paper,

a new Support Vector based Fuzzy Classification System

(SVFCS) has been proposed for defective module prediction.

In the proposed model an initial rule set is constructed using

support vectors and Fuzzy logic. Rule set optimization is done

using Genetic algorithm. The new method has been compared

against two other models reported in recent literature viz.

Naive Bayes and Support Vector Machine by using several

measures, precision and probability of detection and it is

found that the prediction performance of SVFCS approach is

generally better than other prediction approaches. Our

approach achieved 76.5 mean recall and 34.65 mean false

alarm rate on three versions of Eclipse (Eclipse (2.0, 2.1, 3.0)

and Equinox software bug data sets which strongly endorse

the significance of proposed model in defect prediction

research.

Keywords

Software Fault, Fault Prediction, Fuzzy Rule Base, Support

Vector Machine, Genetic Algorithm, ROC.

1. INTRODUCTION
As our dependency on software is increasing, software quality

is becoming gradually more and more important in present

era. Software used almost everywhere and in every tread of

life. Software consequences such as fault and failures may

diminish the quality of software which leads to customer

dissatisfaction [1]. A software failure is the departure of the

system from its required behavior; error is the incongruity

between the required and actual functionality; whereas

adjudged or hypothesized cause of an error is a fault [2],

which is also known as a defect (or as a bug) among software

professionals [3]. Due to the increasing of complexity and the

constraints under which the software is developed, it is too

difficult to produce quality software. On the other hand, the

software development companies cannot risk their business by

shipping poor quality software [4] as it results in customer

dissatisfaction. Bugs in software product cause much loss of

time and money. However, learning from past experience, it

would be possible to predict bugs in advance for new software

products. To achieve this, we must first know which programs

are more failure-prone than others. With this knowledge, we

can search for properties of the program or its development

process that commonly correlate with causes of bugs.

Previous studies have shown that, of the overall development

process 27% man hour is consumed by testing [5]. To

ameliorate the testing process we can use the defect prediction

models. These models can be used in defect prediction, risk

analysis, effort estimation, software testability and

maintainability, and reliability analysis during early phases of

software development. It can also be used in business risk

minimization by predicting the quality of the software in the

early stages of the software development lifecycle (SDLC).

This would not only help in increasing client’s satisfaction but

also trim down the cost of correction of defects. It has been

reported in [4] that the cost of defect correction is

significantly high after software testing. An additional

advantage of early defect prediction is better resource

planning [7] and test planning [6], [7]. Therefore, the key of

developing reliable quality software within time and budget is

to identify defect prone modules at an early SDLC stage by

using defect prediction models. The importance of defect

prediction is evident from the research work conducted in this

regard. The rest of the paper is organized as follows. In

section 2 we briefly discuss the previous work. In section 3,

information regarding data sets is presented. Working

methodology and performance evaluation are presented in

section 4. In section 5, different types of learners are

presented. SVFCS model generation process is presented in

section 6. Result and discussion are presented in section 7.

Section 8 identifies the future directions and concludes the

paper.

2. PREVIOUS STUDIES

As our dependency on software is increasing, software quality

is becoming gradually more and more important in present

era. Software used almost everywhere and in every tread of

life. Software consequences such as fault and failures may

diminish the quality of software which leads to customer

dissatisfaction [1]. A software failure is the departure of the

system from its required behavior; error is the incongruity

between the required and actual functionality; whereas

adjudged or hypothesized cause of an error is a fault [2],

which is also known as a defect (or as a bug) among software

professionals [3]. Due to the increasing of complexity and the

constraints under which the software is developed, it is too

difficult to produce quality software. On the other hand, the

software development companies cannot risk their business by

shipping poor quality software [4] as it results in customer

dissatisfaction. Bugs in software product cause much loss of

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

9

time and money. However, learning from past experience, it

would be possible to predict bugs in advance for new software

products. To achieve this, we must first know which programs

are more failure-prone than others. With this knowledge, we

can search for properties of the program or its development

process that commonly correlate with causes of bugs.

Previous studies have shown that, of the overall development

process 27% man hour is consumed by testing [5]. To

ameliorate the testing process we can use the defect prediction

models. These models can be used in defect prediction, risk

analysis, effort estimation, software testability and

maintainability, and reliability analysis during early phases of

software development. It can also be used in business risk

minimization by predicting the quality of the software in the

early stages of the software development lifecycle (SDLC).

This would not only help in increasing client’s satisfaction but

also trim down the cost of correction of defects. It has been

reported in [4] that the cost of defect correction is

significantly high after software testing. An additional

advantage of early defect prediction is better resource

planning [7] and test planning [6], [7]. Therefore, the key of

developing reliable quality software within time and budget is

to identify defect prone modules at an early SDLC stage by

using defect prediction models. The importance of defect

prediction is evident from the research work conducted in this

regard. The rest of the paper is organized as follows. In

section 2 we briefly discuss the previous work. Section 3

gives basics of the proposed algorithm SVFCS. Thereafter, in

section 4, information regarding the data sets and evaluation

strategy are presented. Result and discussion are presented in

section 5. Section 6 identifies the future directions and

concludes the paper.

3. DATA SETS
In this section we briefly discuss the data sets that are used for

experiments. Data set used in this study come from three

different sources UCI machine learning data base [23],

Promise data repository [20] and Bug Prediction data set [24]

and are listed in Table 1. We used six data sets for

experimental purpose. Iris and Pima Indians Diabetes

database (from UCI) are used to validate the working of

proposed model. Iris data set contain three classes of 50

instances. Each class represents an Iris plant. However,

because SVM basically works on binary classification

problem we removed one class from the data set. Pima

Indians Diabetes database, Table 1, contains the information

regarding the diabetes test in Indian women. It contains eight

attribute and 768 instances with one class attribute denoting

diabetes test positive or negative. Eclipse data sets (from

promise data) are used to build software defect prediction

model using complexity metric. Eclipse data set consists of

two types of data group; file level (each row of the data set

corresponds to single file) and package level (each row of the

data set corresponds to single package). It contains overall

199 attributes which are the combination of class level,

method level, package level, file level and abstract syntax tree

(AST) based attributes. It also contains two types of defects,

pre release defects (Number of non trivial defects reported

before six months of product deployment.) and post release

defects (Number of non trivial defects reported after six

month of product deployment). The entire attributes can be

categorized into two groups:

Table 1. Data Sets.

(NB = Non byggy modules, B = Buggy modules, N= Diabetes

tested negative and P= Diabetes tested positive.)

3.1 Complexity Metrics

Several complexity metrics (like FOUT, MLOC, and NBD)

are included in the data set. Attributes that are reported are

also aggregated using average, sum, and maximum value.

3.2 Abstract Syntax Tree Based Metrics

 These metrics are based on the abstract syntax tree of each

file or package. It includes the type of each node (Annotation

type declaration, modifiers…), size of AST and the frequency

of nodes in AST. This information can be used to calculate

other software metrics without reanalyzing the source code.

Eclipse bug data set is publically available on Promise data

repository [20]. All experiments are performed on complexity

metrics of eclipse data set of version 2.0, 2.1, and 3.0 at

package level. Information regarding attributes used in this

research work is given in Table 2.

In addition, we used Equinox design metrics. Equinox data set

have overall 18 features and 5 bug related attributes which

denotes the severity of bugs with the number of occurrences.

From the 18 features we select 8 design level metrics which

available at the end of design phase of SDLC. Instead of using

bug severity level information we use a binary class attribute

which only represents buggy or non buggy modules which

listed in Table 2.

4. WORKING METHODOLOGY

The objective of this research is to build an efficient Fuzzy

inference system that can learn and predict bugs in software

products. Here, we have applied SVM, a supervised training

algorithm for classification of data into two sets, buggy and

non-buggy. Then various rules are generated inferred from the

support vectors. The final set of the rules is chosen from the

given set of rules using genetic algorithm optimization. The

experiments were performed on Eclipse bug data on package

level. Data contains the bugs reported before and after the

release of product, called pre and post defects. Using the post

defects as class labels for buggy and non buggy, rule base is

prepared.

4.1 Performance Measurements

The performance of SVFCS is evaluated through the measures

based on confusion matrix. The confusion matrix (also called

a contingency table) is a measurement table which relates the

Data set No. of

attributes

Class distribution No. of

instances

Iris 4 33.33% 150

Diabetes 8 N (65%), P

(35%)

768

Eclipse 2.0 199 NB (49%),

B (51%)

377

Eclipse 2.1 199 NB (55%),

 B (45%)

434

Eclipse 3.0 199 NB (52%),

B (48%)

661

Equinox 8 NB (60%),

B (40%)

324

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

10

Table 2. Attributes Information.

predicted results with the real values of the dataset, and

therefore, it makes possible to obtain measures about the hit

and miss of the classifier. For a given model and set of

instances, there are four possible outcomes associated with it.

If the instance is defective (in fault prediction approach) and it

is predicted as defective, it is counted as a true positive; if it is

predicted as non-defective, it is counted as a false negative. If

the instance is non-defective and it is predicted as non-

defective, it is counted as a true negative; if it is predicted as

defective, it is counted as a false positive. This two-by-two

confusion matrix, Fig.1, (for binary class problem) forms the

basis for many common metrics. The measurements based on

confusion matrix include accuracy, precision, recall, and F-

measure. In literature these measures are widely used to

evaluate the prediction results of a classifier. Next we

explained all these measures.

Accuracy
In a binary class problem, accuracy is the ratio of the correctly

classified instances to the total number of instances. It

measures the hit and miss of the classifier and measures as

follows:

Accuracy=

 Predicted

 Buggy Non-Buggy

Original Buggy TP= True Positive
Rate

FN=False Negative
Rate

 Non-

Buggy

FP=False Positive

Rate

TN=True Negative

Rate

Figure 1. Confusion Matrix.

Precision
It denotes the correctness of the predicted results and

measures the miss classification rate. It is defined as the ratio

of the total number of correctly detected instances to the total

number of detected instances for particular class (buggy or

non-buggy). It can be calculated as:

Precision=

Recall
The recall measures the ratio of correctly classified instances,

for one class (buggy or non-buggy), to the total number of

instances that really belongs to the class. It counts the number

of hits of the classifier for the class. It is also known as

probability of detection and can be calculated as:

Recall=

However, there is a significant trade-off between recall and

precision[28,29]. For instance, if model predicts only one

module and it belongs to the desired class than the model’s

precision will be 1 but, the recall will be low if the desired

class contains more than one modules. In contrast, if model

predicts all the defective modules correctly along with some

non-defective modules incorrectly, it results in high recall and

low precision. Therefore, there is a need of a combined

measurement strategy such as F-measure, which efficiently

combines the recall and precision in a single efficient

measure.

F-measure
The F-measure combines the values of precision and recall for

a classifier, for one class (faulty or not-faulty). It considers the

measurements, recall, and precision, equally important and is

calculated by taking their harmonic mean.

F-measure=

ROC
Receiver operating characteristics graph are well known

technique for assessing the classifiers performance. It is a two

dimensional graph in which abscissa represent the probability

Eclipse[20] Component Attributes Description

File ACD

NOI

NOT

TLLOC

Number of anonymous type declarations

Number of interfaces

Number of classes

Total lines of code

Class NOF

NOM

NSF

NSM

Number of fields

Number of methods

Number of static fields

Number of static methods

Method FOUT

MLOC

PAR

VG

FAN_IN

Number of method calls

Method lines of code

Number of parameters

Cyclomatic complexity

Count of calls of higher modules

Equinox[24] CBO

DEPTH

LCOM

NOC

DOC

RFC

WMC

Coupling between objects

Depth of inheritance

Lack of cohesion

Number of children

Dependence on a descendent

Response for a class

Weighted method per class

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

11

of false alarm or cost and ordinate represent the probability of

detection or benefit. It can handle both discrete and

continuous classifiers. Discrete classifiers output only the

class level, where as continuous classifier output a curve.

Each discrete classifier produces a pair of PF and PD that

represent a point on ROC graph. Definition of ROC curve

contains some interesting points:

(a) Point (0, 0) denotes that it would never trigger a

false alarm and also never issue a positive

classification.

(b) Any point situated on the line that is drawn in

between (0, 0) to (1, 1) contains no information.

(c) Point (0, 1) denotes the ideal position .But it’s never
achieved by any classifier. So any classifier situated

close to this point, is always preferable.

5. LEARNERS

This section contains the information regarding the

classification and optimization algorithms used in this study.

5.1. SUPPORT VECTOR MACHINE
Support vector machines (SVM) are Kernel based

classification approach proposed by Vapanic [25]. It works on

the concept of decision planes which defines the decision

boundaries between the objects of different classes. Basically

SVM is designed for two class problems in which it defines

an optimal decision hyperplane based on number of support

vectors to classify the data objects however; it can be

extended for multiclass problems. Support vectors are the

subset of initial data set which is used to define a decision

boundary between the classes. Some basic characteristics of

SVM are

1. It can be generalized for high dimensional data sets.

2. SVM is formulated as quadratic programming

problem; therefore it provides a global optimal

solution.

3. It is robust to outliers because it uses a margin

parameter ∆c to control the misclassification error.

Figure 2. Non Linear SVM

Figure 3. Linear SVM

In the rest of the section we briefly discuss the SVM for both

linearly and non- linearly separable data.

5.1.1. LINEAR SVM
For linearly separable data, SVM attempts to draw a decision

line (hyperplanes, in high dimension) between two classes in

such a way that the distance between the support vectors of

two classes and the decision line is maximized. Fig. 2 shows

the linear separation of two classes in two dimensional space.

Mathematically, for a binary class problem we have to

approximate a function ₣: Rd→ {±1} using training data in the

d dimensional space. Let we have two classes C1 and C2

represented as x C1 when y= +1 and x C2 when y= -1; (xi,yi)

 Rd × {±1}. For a linearly separable data there exists a pair

of (w, b) such that

 C1 (1)

 C2 (2)

For all i = (1…….n); where w is the weight vector which

represents the vector orthogonal to d dimensional space and b

is the bias term. We can recombine the inequality constraints

as

 C1 C2 (3)

 This learning problem can be reformulated as

 (4)

Subject to
 ,

where (xi, yi) to training set and n is the number of

instances. The quadratic optimization theory can be used to

solve this problem. The dual form of the above optimization

problem is obtained using Lagrangian duality technique which

is shown in the following equations:

Maximize

 (5)

Subject to ,

and i=1,2,……n.

The solution of this optimization problem is found in the form

of vector α =(.An input pattern is classified

according to the sign of decision function as

₣
 (6)

 ₣
 ₣

5.1.2. NON-LINEAR SVM

In cases where SVM cannot classify the data objects using

liner formulation, it extends its capability by mapping the data

objects into the higher dimension feature space using the non-

linear mapping, such that x→£(x) where £: Rd→Rs is the

feature map. According to the Burge (Burges et. al, 1998), a

transformation can be used for linear separation of data in

high dimensional feature space. It creates a hyperplane which

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

12

correspond to the curved surface in lower dimensional space.

This transformation can be done using the Kernel function

which is defined as:

K ()= £
 £ (7)

Therefore, the optimization problem of linearly separable

case, equation 5, can be reformulated to handle the non linear

data objects as:

Maximize

 (8)

Subject to ,

and i = 1,2,……n (9)

where K() is the kernel function which is used for

nonlinear mapping of the data objects into the high

dimensional feature space. The classification decision can be

constructed as

₣ (10)

 ₣
 ₣

 (11)

The most common kernel functions used in literature are

Linear: K()=
 .

Polynomial: K()=
 d

Gaussian (RBF) K()=

Sigmoid (MLP) K()=tanh(

We have tried all the three nonlinear kernel functions for our

experiments. The Gaussian (RBF) yielded the best

performance result, therefore we have used RBF kernel for

further experiments.

5.2 NAIVE BAYES
Naïve Bayes (NB) [28] classifier is the statistical classifier

which uses the Bayes posterior probability theorem. The

primary axiom of NB classifier is “All attributes are

uncorrelated”. Posterior probability of each class (defective

or non defective) is calculated on each attribute of each data

instance and data is assigned to class with the highest

posterior probability. It can handle both continuous as well as

discrete attributes efficiently. For a given dataset of size D

with N attributes and M classes NB classifier computes the

posterior probability for vector X by equation 12 and assigns

X to the class for which it possess maximum posterior

probability.

 (12)

For continuous attributes (13) and (14) are used.

 (13)

 (14)

Here C is the class variable, X is a random vector which

represents attribute values and represents the mean and

the standard deviation of the attributes.

5.3 FUZZY INFERENCE SYSTEM
Fuzzy inference is the process of mapping from given input to

an output using fuzzy logic. Mapping provides the

information regarding decision making. Several methods have

been used for fuzzy classification [22]. For n training patterns

(X11……..Xnm) with m features and C classes we can inferred

fuzzy if then rules using support vectors as given below.

Rule : If X1 is A11 and … and Xm is A2m then class of X = Ci

Where Xj is jth feature of the input X, and each of Aij

represents membership grade with Gaussian membership

function with center Vij and standard deviation one.

Membership of Xj is defined as

 (15)

To calculate the firing strength of each rule we used product

operation between each antecedent for given input pattern and

classification decision is made according to the rule which

have maximum firing strength. Firing strength of Vi (vector i)

for input X is

 (16)

For this study we inferred “Sugeno type zero” fuzzy rules in

which consequent part is constant (defective or non-

defective). For a training patterns (support vector)

(X11……..Xnm) with m features and c classes we can construct

fuzzy if then rules as given below for classification.

Rule : If X1 is A11 and … and Xm is A2m then class of X = Ci

 An example of fuzzy expert system is presented in Fig. 4.

5.4 GENETIC ALGORITHM
Genetic algorithm [29] is the process of global search and

optimization, modeled from natural genetics inspired by the

biological evolution process, which explore the search space

by incorporating a set of candidate solution in parallel, Fig. 5.

It maintained a set of candidate solution and evolves it by

applying a set of stochastic operations. Stochastic operations

are:

 Reproduction: - Reuse the existing

solution by copying it into the new

population with the reproduction

probability.

 Crossover: - New solutions are generated

by recombining the randomly selected

part of the selected solution on the basis

of crossover probability.

 Mutation: - New solutions are generated

by mutating the randomly selected part of

selected solution with mutation

probability.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

13

5.4.1 GENETIC REPRESENTATION AND FITNESS

EVOLUTION
In this work a chromosome is represented by a rule vector as

V = (v1 v2 ... vn), where n is the number of the fuzzy rules

which are generated and Vk is the boolean value representing

whether the k’th rule is selected in the rule vector V or not.

Vk={0 if rule is not selected and 1 if rule is selected}. Each

rule vector V is obtained by randomly assigning 1 or 0 to each

parameter of V. The length of V is same as number of rules.

Consider the set of Chromosomes V = (v1 v2 ... vn). The

fitness score of the rule vector is determined by [27]:

Eval (Vt) = w1・f1(Vt) − w2・f2(Vt), (16)

Where w1 and w2 are non-negative constant weights assigned

to the two kinds of objectives, f1 (Vt) is the classification

performance determined by the measurements (accuracy,

recall and precision) and f2(Vt) is the number of the fuzzy

rules in fuzzy rule set.

6. MODEL GENERATION
Our prediction model is generated through three phases.

Initially, the first set of IF-THEN rules is obtained through an

equivalence of the SVM training. Attribute values of each

support vectors combined with AND (connective) treated as

antecedent part and class value work as consequent part of the

rule; which is further used for classification. The second set of

rules is generated by combining the first set based on strength

of firing signals of support vectors using Gaussian kernel. The

main advantage of this method is that, it guarantees that the

number of final fuzzy IF THEN rules is not more than the

number of support vectors in the trained SVM. Genetic

algorithm is applied for rule set optimization which

simultaneously enhances or maintains the performance of the

model and minimizing the number of rules used for

classification. In other words, the optimization is performed

while considering both the minimization of the number of the

extracted fuzzy rules and the maximization of the

performance of the fuzzy classification system, i.e., the

number of correctly classified training patterns with the less

fuzzy rules. Basically the model work as zero order Sugeno

type fuzzy inference system [22]. Basic steps of model

generation are:

1. Data sampling is done using stratified sampling. Partition

the selected data set in training and testing set

maintaining the same ratio of both classes in each set.

2. Normalize the test and train dataset such that they have

zero mean and unit variance.

3. Perform SVM classification on training data set using the

box constraint value as per number of rules desired and

‘RBF’ kernel function.

4. Construct the if then else rule for each support vector like

Rule Rq: If X1 is Vq1 and … and Xm is Vqm then class of

X = Class of V.

5. Calculate the membership degree of each feature of a

data point using Gaussian membership function.

6. Calculate the firing strength for each rule using

multiplication T-norm operation.

7. Assess the performance of rule set using accuracy,

precision, and recall.

8. Apply Genetic algorithm for rule set optimization by

using fitness evolution function.

Block diagram of model generation process is shown in Fig.6.

7. RESULT AND DISCUSSION

Experiments were conducted by splitting the overall data set

into training with 67% and testing with 33%. We repeated our

experiments 10 times and randomize the input each time. This

repletion is required to mitigate the impact of order effect.

Results of experiments are given in Table 3 and 4 which

contain the Recall (PD), Precision, Probability of false alarm

(PF), Accuracy, and F-score of experiments on different data

sets. We compare our results with two other model based on

two well known classifiers NB and SVM. Iris and Pima

Indians Diabetes data set are used for model validation. On

iris data set our model gives 100% recall (Probability of

detection also denoted as PD) and 0% false alarm rate (PF)

with 100% accuracy where as on Pima Indians Diabetes data

set it gives 68.6% and 29.5% PD and PF respectively which is

better than previous known result (60% and 19%[23]) except

in PF which should be low. Validation results using these two

datasets suggest that we can use this model in software defect

prediction.

Experimental results on Eclipse packages and Equinox are

listed in Table 4. The results show that our model

outperformed other two classifier based models. On Eclipse

packages 2.0, 2.1, and 3.0 the proposed model outperformed

others by achieving the best recall value. For accuracy it has

very competitive value however on precision SVM based

model outperformed others by achieving slightly high

precision value which indicates that some of the non-buggy

modules classified are misclassified as a buggy modules.

However, this required some extra testing time only. On the

other hand, in recall, NB and SVM have very low value which

indicates the inability of these models in detecting the faulty

modules. On Equinox data set same trade is followed. So the

experimental results strongly endorse to use this model in

early phase of SDLC for predicting defect prone modules for

latter stage of development. As we know recall and false

alarm rate are the most valuable measurement criteria for

defect prediction research. Any classifier should give high

recall and low false alarm rate. According to this scenario our

model outperforms other two classifiers. Last column of the

tables represent the number of rules generated by the

proposed model. This rule set is the most important part of the

results. It denotes how actual classification process takes

place. ROC graph of experiments are shown in Fig. 7, 8, 9,

and 10. All the curves based on our model situated near to the

ideal point in ROC graph where as curve based on NB and

SVM are far away from the ideal point. The proposed model

gives high probability of detection (PD), and low false alarm

rate (PF). So in case of detecting fault prone module it gives

high performance with low overhead of false alarm rate which

is an essential quality of any good classifier.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

14

 Figure 4. Fuzzy Expert System.

 Figure 5. Rule Set Optimization Using Genetic Algorithm.

 Figure 6. Defect Prediction Model Generation.

Input

Data Fuzzyfication

Knowledgebase

Fuzzy Inference Engine Defuzzyfication

Feedback

Initial

Rule Set

Best Offspring

Selection Discard Remaining Rule Sets

 Population

Generation

Performance Assessment of Rule Sets

Rule Set Modification Using GA

Operators
Selection

Defect

Database

Data Sampling Data

Normalization

SVM Training

Support Vector

Extraction

Fuzzy IF THEN

Rule Generation

Using Gaussian

Function

GA Based

Optimization

Rule Testing and

Performance Assessment Fuzzy

Rulebase

Fitness Criteria is Satisfied

or Number of Epoch is Reached

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

15

Table 3. Results on Validation Data.

Table 4. Classification Results of Eclipse and Equinox Data Sets

 SVM 71.5 89.7 39.7 2.4 55.5 No

Eclipse

3.0

SVFCS 70.4 66.8 76.4 34.2 50.2 18.1

NB 68.1 82.3 40.8 7.8 54.4 No

SVM 68.2 81.7 40.3 8.2 53.1 No

Equinox SVFCS 68.5 56.5 77.7 38.7 43.1 11.9

NB 72.1 80.8 39.6 6.3 54.9 No

 SVM 73.2 75 47.7 10.1 57.5 No

8. CONCLUSION AND FUTURE

DIRECTIONS

In this paper a novel approach, SVFCS, for fault prediction is

presented. SVM, FIS, and Genetic algorithm are well known

methods and are used for classification in every branch of

engineering and science. In this work first time we combined

the advantages of these three learners to get better prediction

model. Performance of the model is checked against the open

source data project where as in previous studies [10]

assessment has been done on historical data sets which are

publically available but could not ease the testing task in real

development due to technology changes. The result of SVFIS

is confronted with other two well-known algorithms used in

the fault-proneness problem. The experimental results reveal

the effectiveness of SVFIS in fault prone module prediction,

and endorse that it can be useful and practical addition to the

framework of software quality prediction. Moreover, the

superior performance of SVFIS, especially in recall of faulty

modules, can have a practical implication in the context of

software testing by mitigating the risks of miss detection of

fault prone in early stage of development. By using this

model we extract more knowledge and ease the testing task in

early phase of software development life cycle.

This study need to be extended for validation purpose.

Initially it works on binary classification problem we plan to

generalize this model for multi class problem. We also plan to

investigate the impact of support vectors on other classifier’s

performances.

9. ACKNOWLEDGMENTS
The authors gratefully acknowledge the valuable comments

by the anonymous reviewers. These comments have greatly

helped in improving the quality of the revised paper.

Figure 7. ROC Graph for Eclipse 2.0.

Figure 8. ROC Graph for Eclipse 2.1.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
D

PF

ROC

SVFCS

NB

SVM

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
D

PF

ROC

SVFCS

NB

SVM

 Data Set Accuracy Precision Recall Probability of

False alarm

F-Score Number

of Rules

Eclipse

2.0

SVFCS 72.5 70.5 78.6 34.2 55.3 11.9

NB 66 83.8 39.8 7.35 53.9 No

SVM 68.9 84.8 46.3 8.1 60.2 No

Eclipse

2.1

SVFCS 70 66.2 73.3 31.5 48.6 16

NB 71.3 83.7 44.2 6.8 57.8 No

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.15, December 2012

16

Figure 9. ROC Graph for Eclipse 3.0.

Figure 10. ROC Graph for Equinox.

10. REFERENCES
[1] Tian, J., “Software Quality Engineering: Testing, Quality

Assurance, and Quantifiable Improvement” John Wiley

& Sons, (2005).

[2] Laprie, J.C., and Kanoon, K.,” Software Reliability and

System Reliability, Handbook of Software Reliability

Engineering”. M.R. Lyu, 1,27-69, IEEE CS Press-

McGraw Hill, (1996).

[3] Emam, K.,El., “The ROI from Software Quality”.

Auerbach Publications, Taylor and Francis Group, LLC,

(2005).

[4] Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S.,

Goel, N., “Early Quality Prediction: A Case Studv in

Telecommunications”. 2006, IEEE Software.

[5] http://www.softwaretestingtimes.com/2010/04/softwarete

sting- effort-estimation.htm.

[6] Khosgoftaar, T.M., Munson, J.C.,”Predicting Software

Development Errors Using Software Complexity

Metrics”. IEEE Journal On Selected Areas In

Communications1990, 8(2).

[7] Yuan, X., Khoshgoftaar, T.M., Allen, E.B., Ganesan, K.,

“ An Application of Fuzzy Clustering to Software

Quality Prediction.2000 In: Proceedings of The 3rd IEEE

Symposium on Application-Specific Systems and

Software Engineering Technology

[8] Jiang, Y., Cukic, B., Menzies, T.,”Fault Prediction Using

Early Lifecycle Data”. 2007 In: Proceedings of ISSRE ,

TBF

[9] Basili, V., R., Briand, L., C., Melo, W., L, “ A validation

of object-oriented design metrics as quality

indicators”.1996, IEEE Trans. on Software Engineering.

22, 751-761.

[10] Menzies, T., Greenwald, J., Frank, A., “Data Mining

Static Code Attributes to Learn Defect Predictors.” 2007

IEEE Trans. Software Eng. 33, 2-13.

[11] Subramanyam, R., Krishnan, M.,S., “Empirical analysis

of ck metrics for object-oriented design complexity:

Implications for software defects”.(2003) IEEE Trans.

Software Eng.29, 297-310.

[12] Binkley, A., B., Schach, S., R., “Validation of the
coupling dependency metric as a predictor of run-time

failures and maintenance measures”.1998 In:

International Conference on Software Engineering, pp.

452-455.

[13] Schröter, A., Zimmermann, T., Zeller, A., “Predicting
failure-prone components at design time”.2006, In: 5th

International Symposium on Empirical Software, Rio de

Janeiro, Brazil,

[14] Nagappan, N., Ball, T. “Explaining failures using

software dependences and churn Metrics”.

2006,Microsoft Research, Redmond, WA.

[15] Xing, F., Guo, P., Lyu, M. R. “A Novel Method for Early

Software Quality Prediction Based on Support Vector

Machine”.2005,In: Proceedings of The 16th IEEE

International Symposium on Software Reliability

Engineering

[16] Jiang, Y., Cukic, B., Menzies, T., Bartlow, N.,

“Comparing Design and Code Metrics for Software

Quality Prediction”2008. In: PROMISE 2008, ACM,

New York

[17] Yang, B., Yao, L., Huang, H.Z., “Early Software Quality

Prediction Based on a Fuzzy Neural Network

Model”.2007, In: Proceedings of Third International

Conference on Natural Computation.

[18] Quah, T.S., Thwin, M.M.T. “Application of Neural

Network for Predicting Software Development Faults

Using Object-Oriented Design Metrics”.2003,In: 19th

International Conference on Software Maintenance.

IEEE Computer Society, Los Alamitos.

[19] Wang, Q., Yu, B., Zhu, J. “Extract Rules from Software

Quality Prediction Model Based on Neural

Network”.2004, In: Proceedings of The 16th IEEE

International Conference on Tools with Artificial

Intelligence, ICTAI

[20] Promise. http://promisedata.org/repository/.

[21] Zimmermann, T., Premraj, R., Zeller, A., “Predicting
Defects for Eclipse”.2007, In: Third International

Workshop on Predictor Models in Software Engineering.

Promise.

[22] Pitiranggon, P., Beenjathepanun, N., Banditvilai, S.,

Boonjing,V. “Fuzzy Rule Generation and Extraction

from Support Vector Machine based on Kernel Function

Firing Signal”.2010, International journal of Engineering

and applied sciences. 6,244-251

[23] UCI machine learning http://archive.ics.uci.edu/ml/.

[24] Bug Prediction data set http://bug.inf.usi.ch/.

[25] Fawcett, T., “ROC Graph: Notes and Practial

Consideration for Data Mining Researches”. 2003

Intelligent Enterprise Technology Laboratory.

[26] Vapnik,V. “The nature of Statistical learning theory”.
1995,Springer, New York

[27] Burges, C.,”A tutorial on support vector machines for

pattern recognition”.1998 Data mining and knowledge

discovery 2,121-167.

[28] Witten I., andFrank E. “Data mining”. 2nd edition. Los

Altos, US: Morgan Kaufmann, (2005).

[29] Koru A .G, Liu H. “An Investigation of the Effect of
Module Size on Defect Prediction Using Static

Measures.” Proc. Workshop Predictor Models in

Software Engg, (2005).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
D

PF

ROC

SVFCS

NB

SVM

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
D

PF

ROC

SVFCS

NB

SVM

