
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

40

Performance Analysis of MPI (mpi4py) on Diskless

Cluster Environment in Ubuntu

Sayma Sultana

Chowdhury
Department of Computer
Science and Engineering

Shahjalal University of Science
and Technology

Sylhet, Bangladesh.

Marium-E-Jannat
Department of Computer
Science and Engineering

Shahjalal University of Science
and Technology

Sylhet, Bangladesh.

Abu Awal Md. Shoeb
Department of Computer
Science and Engineering

Shahjalal University of Science
and Technology

Sylhet, Bangladesh.

ABSTRACT

Now-a-days Cluster computing has become a crying need for

the processing of large scale data. For computing large

amount of data, which need huge execution time, the run time

can be reduced using multiple processors and task distribution

through cluster computing. It is the technique of sharing two

or more computers’ resources through a network (usually

through a local area network) in order to take advantage of the

parallel processing power of those computers. Clusters of

computers are usually deployed to improve processing speed

and/or reliability and scalability over that provided by a single

computer. In this paper we proposed a High Performance

computing approach on Linux platform (Ubuntu) using

Parallel Programming environment with the collaboration of

multiple nodes for large scale computational work.

General Terms

Performance analysis, Comparative Study.

Keywords

MPI, Cluster, Diskless Cluster, Ubuntu, mpi4py performance

analysis etc.

1 INTRODUCTION
Cluster computing is very useful not only in the large

scientific and engineering projects but also in various business

and commercial use. A large number of research organization

and communities using cluster computing environment to

carry out their sheared data resource out come. Clustered

computer is a set of computers dedicated to a network

designed to capture their cumulative processing power for

running parallel-processing applications.

In cluster system there is a server node and one or more client

nodes. Clustered computers are specifically designed to take

large programs and sets of data and subdivide them into

component parts, thereby allowing the individual nodes of the

cluster to process their own individual chunks of the program

and finally collecting the result as a whole. However the use

of the processing power of clustered computers remains to be

as a challenge for the users due to the complexity involved in

the creation of the application and deployment of distributed

computational resources.

Here we present a computational environment, where we can

use any number of processing resource extensively and thus

can improve the performance. Since we are talking about the

speed and scalability, we can use a diskless clustered

environment with the collaboration of message passing

interface (MPI) through which we can add as many diskless

node (a computer with no hard disk) as we can and maintain

them centrally through a root node for getting more

processing speed. Hence we can improve processing speed as

well as scalability and have the parallel programming scope

with the use of MPI.

This paper is organized as follows: section 2 discusses the

related works and section 3 shortly discusses Diskless Cluster

architecture, section 4 describes the problem scope of

programs that require huge computational power, section 5

discusses the proposed solution, section 6 illustrates the

experimental evaluation and performance analysis with some

examples. We conclude in section 7.

2 RELATED WORKS
In our short survey we found several projects that are related

to the work described in this paper. The Kerrighed[14] Cluster,

Mosix[13] cluster, Beowulf[14] cluster, Clustermatic[15] efforts,

Warewulf[20] project and so on.

In the online documentation of Kerrighed cluster they showed

the way to build a diskless environment in Linux. But it does

not include any way to parallel processing.

On the other hand in the online documentation of Warewulf

project they showed how to best build a disk-less cluster. But

it also does not include any documentation or experiment

done with parallel programming.

The Clustermatic efforts, at Los Alamos National Labs

(LANL) showed a way of minimizing the system environment

that runs on the compute nodes. It requires kernel

modifications and uses a static ram-disk for shared libraries.

Beowulf is a programming model for parallel computation. It

needs distributed application programming environments such

as PVM (Parallel Virtual Machine) or MPI (Message Passing

Interface).

MOSIX is a software package that was specifically designed

to enhance the Linux kernel with cluster computing

capabilities. It is a kernel implementation of process

migration. It runs best when running plenty of separate CPU

intensive tasks. But its big drawback is shared memory, like

Beowulf. For applications running they use shared memory.

So there will not be any benefit from Mosix and Beowulf

because all processes accessing said shared memory must

resided on the same node.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

41

Clusters are used where tremendous raw processing power is.

Clusters use parallel computing to reduce the time required

for a CPU intensive job. The workload is distributed among

the nodes that make up the clusters and the instructions are

executed in parallel. More nodes mean faster execution and

less time taken. But no one projects that we found during our

survey shows an experimental results of MPI implementation

on a diskless cluster. They didn’t show how to combine a

parallel processing implementation to a diskless cluster server

to gain processing in parallel and what is the result or

performance of those. In our work we tried to give an

overview of how a high performance diskless cluster system

works with an MPI implementation on Linux (Ubuntu) by

showing the comparisons of execution times with different

numbers of processes on different number of nodes.

3 DISKLESS CLUSTER OVERVIEW
The architecture of the cluster computing system is shown in

Figure 1. A cluster consists of a collection of interconnected

stand-alone computers working together as a single, integrated

computing resource. A computer node can be a single or

multiprocessor system PCs, workstations, I/O facilities, and

an operating system. A cluster generally refers to two or more

computers nodes connected together. The nodes can exist in a

single cabinet or be physically separated and connected via a

LAN. An interconnected LAN-based cluster of computers can

appear as a single system to users and applications.

 Fig 1: Cluster computing architecture

Such a system can provide a cost effective way to gain

features and benefits fast and reliable services that have

historically been found only on more expensive proprietary

shared memory systems.

In Diskless cluster system client systems do not need a local

file system or any storage device to boot and run. This system

consists of a cluster server and one or more cluster clients all

attached to a network. Each computer in the cluster is referred

to as a cluster node or cluster member. The client nodes boot

and load their operating system from the cluster server and

obtain their root file systems from their server. Figure 2 shows

a diskless cluster system scenario.

Fig 2: Diskless cluster system

The simplest way to achieve this is to use a NFS server with

the collaboration of PXE, DHCP, TFTP and SSH server

configured to host the generic boot image for the single

system image cluster nodes.

NFS (Network File Sharing) is a distributed file system

protocol allowing a user on a client computer to access files

over a network in a manner similar to how local storage is

accessed. Since it is completely diskless boot, the client

computer must have a network-bootable (PXE) network card.

Wireless will not work, with exception of a wireless-to-

Ethernet external bridge. Many motherboards have a PXE-

compatible Ethernet card built in, but you will need to enable

support in the BIOS.

PXE (Preboot Execution Environment) allows computers to

boot up remotely through a network interface. PXE enables a

client machine to boot from a server independent of the hard

disks and installed operating system.

TFTP (Trivial File Transfer Protocol) is intended to be used

when bootstrapping diskless systems. The virtual machine

running Linux listens on TFTP and NFS servers to provide a

bootable kernel image and a mounted root file system

respectively for the diskless client. The development time is

reduced as we need not reinstall the kernel and/or root file

system every time on the target. We develop device drivers

and kernel code on the host and simply reboot the target to

load and test. To allow multiple clients to bootstrap at the

same time, a TFTP server needs to provide some form of

concurrency. Because UDP does not provide a unique

connection between a client and server (as does TCP), the

TFTP server provides concurrency by creating a new UDP

port for each client. This allows different client input

datagram to be demultiplexed by the server's UDP module,

based on destination port numbers, instead of doing this in the

server itself.

DHCP (Dynamic Host Configuration Protocol) is a network

configuration protocol for hosts on Internet Protocol (IP)

networks. Computers that are connected to IP networks must

be configured before they can communicate with other hosts.

The most essential information needed is an IP address, and a

default route and routing prefix. DHCP eliminates the manual

task by a network administrator. It also provides a central

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

42

database of devices that are connected to the network and

eliminates duplicate resource assignments.

SSH (Secure Shell) is a protocol for conducting a secure

session over a non-secure network. It is a network protocol for

secure data communication, remote shell services or

command execution and other secure network services

between two networked computers that it connects via a

secure channel over an insecure network: a server and a client

(running SSH server and SSH client programs, respectively).

Diskless client systems can still have disks and other

peripherals directly attached to them.

4 PROBLEM SCOPE OF PROGRAMS

THAT REQUIRE HUGE

COMPUTATIONAL POWER
Now a day, for research purpose and providing upgraded

technology we need high computing performance. For various

scientific calculations and bioinformatics research, we need

high performance computing system.

Bioinformatics is a great upcoming research area which needs

a huge processing of data. In this field of computation

researchers take a very large sequence of data like gene

sequence or other features of any species or organ as input.

Then process them and have the desired output, which takes a

long time to execute and give the total result.

On the other hand in case of security issue prime numbers are

used in a large scale. But producing a random prime number

of a large length is very time consuming through a single

computer.

For searching a data in a huge database, it takes huge time for

executing a single query while traversing through the whole

large database.

For various scientific research issues, huge calculation is

needed. These types of calculation needs large scale data

processing which leads to the need for large amount of

processing power.

The above computation programs don’t need huge storage

capacity. It only needs a large and fast processing of data. A

Diskless cluster computing environment can give one the

facility of having the above types of computation. The

advantages of this type of system are: ease of administration,

efficient sharing of resources, power saving and so on.

Physically-unsecured systems contain no data after they are

powered off. Diskless operation ensures this element of

security. Diskless computer's booting from the same file

system makes homogenous computing environment which is

suitable for cooperative computation. It has centralized

storage and control. It is easy to install, update and

reconfigure. Diskless nodes are typically ordinary personal

computers or workstations with no hard drives supplied,

which means the usual large variety of peripherals can be

added. For distributed load and peripheral support this system

is very comfortable.

5 PROPOSED SOLUTION
Among many parallel computational models, message-passing

has proven to be an effective one. This approach is used in

today’s most demanding scientific and engineering

application related to modeling, simulation, design, and signal

processing, bioinformatics and many more scientific research

works. Message Passing Interface is a standardized and

portable message-passing system designed to function on a

wide variety of parallel computers. The standard defines the

syntax and semantics of library routines and allows users to

write portable programs in various programming languages

like C, C++, Perl, Python etc.

MPI provides a simple-to-use portable interface for the user. It

is a communication protocol used to program parallel

computations on different computers. It is a message-

passing application programmer interface, together with

protocol and semantic specifications for how its features must

behave in any implementation. MPI's goals are high

performance, scalability, and portability. MPI remains the

dominant model used in high-performance computing today.

So we can use MPI implementation for distributed parallel

programming on two or more diskless nodes. We can use it

for dividing the computational task or data or program into

different chunks called process and collecting the results from

those processes and finally having the total desired result.

MPI does the inter communication among various processes

and combine the outcome from different processes running on

different nodes.

So the combination of Diskless cluster computer and MPI

gives us the opportunity to have the high performance

computing environment. Diskless cluster system provides two

or more processors with centralized file system booted from

the root or cluster server to have large processing power and

MPI gives the facility to have the parallel programming

capacity to use the processing power of those attached nodes

by dividing the task into different processors. Diskless cluster

server allows us to add as many nodes as we wish since the

boot file system is centralized on the server and nodes are

being booted from that file system. Hence we can have the

high performance computing system with speed-up and

scalability option.

6 EXPERIMENTAL RESULT AND

PERFORMANCE ANALYSIS
An experiment environment has been setup with 16 nodes.

The configuration of the server computer is given in Figure 3

and the configuration of connected nodes is given in Figure 4.

Three different application programs written in python have

been used to evaluate the performance comparison. In our

implementation, all the applications take an integer as input

and give a number of integers as output. At first, we

developed each program with normal syntax of python. Then

we apply MPI with every program. We use mpi4py-1.3 with

the collaboration of openmpi-1.4.3(a MPI2 implementation)

to make a normal python program MPI enabled.

In all applications, same input is used to compare between

them. We will show the performance comparisons in the

context of a multiple process and also in the context of

multiple nodes. These cases will give us an overview of how

diskless cluster with parallel processing approach effects in

case of a process and in case of nodes. Here we have shown

different performance comparisons where our proposed

approach gives fruitful performance in almost every case.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

43

 Fig 3: Server computer

 Figure 4: Connected node

6.1 In the context of Multiple Process
This section gives an overview how the MPI improves

performance by decomposing a task into several small

segments. Here we give the comparisons between the

performance of a normal application program with no MPI

enabled and the modified MPI enabled implementation with

various numbers of processes.

Message Passing Interface (MPI) divides the computational

task into several chunks called process so that the total

computation can be divided into several segments and each

process can be computed independently and at last MPI

collects the results from different processes and give the

outcome as a whole.

6.1.1 Test case 1
 In this test module we used our first program. We showed

how much time our first normal regular syntax program with

no MPI enabled takes to finish in the Server computer and

how much time that program with MPI enabled takes to finish

in the same Server computer. This section also shows the

comparisons between the times taken by the MPI

implementation with multiple processes.

The normal syntax MPI disable program takes 20.382060051

seconds to accomplish the task. The following table shows

comparison of execution times for different number of

processes.

Table 1. Data Sheet for Test Case 1

No. of Process Execution time(seconds)

1 21.4745261669

2 17.7691469193

3 11.1424319744

4 8.95005784035

5 8.60596203804

6 8.92707180977

7 8.86440896988

8 9.00355291367

9 9.00034999847

10 9.06372880936

11 8.88456916809

12 8.92707180977

13 9.39892196655

14 9.02412104607

15 9.17201113701

16 8.91704487801

17 9.20024704933

18 9.02293586731

19 9.21808195114

20 8.86900401115

21 9.12131094933

22 9.16933393478

23 9.05712008476

24 9.28680014613

25 9.07506990433

26 9.23475599289

27 9.12313318253

28 9.19380187988

29 9.36317300797

30 9.24970197678

Fig 5: No. of process vs. Execution time (1st program)

`

Processor: Intel(R) Core(TM) i3-2100 CPU 3.10GHz

Ram: 4 GB DDR2

OS: Ubuntu10.10

`

Processor: Intel(R) Core(TM)2 Duo CPU 1.18GHz

Ram: 2 GB DDR2

OS: none

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

44

6.1.2 Test case 2
In this test module we used our second program and do the

same as Test case 1.

The normal syntax MPI disable 2nd program takes

20.3069760799 seconds to accomplish the task. The

following table shows comparison of execution times for

different number of processes for 2nd program.

Table 2. Data Sheet for Test Case 2

No. of process Execution time(seconds)

1 21.4272689819

2 17.8335881233

3 12.0140181065

4 9.85466599464

5 9.24217700958

6 9.07933688164

7 9.02370095253

8 8.87904500961

9 9.21515703201

10 9.01245093346

11 9.46864199638

12 8.88917493802

13 9.63691496849

14 9.07993102074

15 9.06729006767

16 8.93704390526

17 9.34647893906

18 9.06111311913

19 9.00326609612

20 9.31683707237

21 9.16021901925

22 9.06684589386

23 9.14765787125

24 8.86730003357

25 9.02105410099

26 9.10720307827

27 9.07207107544

28 9.22094583511

29 9.15287804604

30 9.17227101326

Fig 6: No. of process vs. Execution time (2nd program)

6.1.3 Test case 3
 In this test module we used our third program and do the

same as above Test case 1.

The normal syntax MPI disable 3rd program takes

141.114938974 seconds to accomplish the task. The

following table shows comparison of execution times for

different number of processes for 3rd program.

Table 3. Data Sheet for Test Case 3

No. of process Execution time(seconds)

1 141.382604122

2 105.773243904

3 92.3824980260

4 80.3803570271

5 78.2872718334

6 75.7585599422

7 72.7426919937

8 72.3323883605

9 72.1017578125

10 71.8621147156

11 72.1569843292

12 71.6311168671

13 73.2939510345

14 74.3767967224

15 72.0735118866

16 72.7691612244

17 74.0880203247

18 73.3069419861

19 71.9958248138

20 72.3030853271

21 71.6330032349

22 74.1029167175

23 75.0380022049

24 73.9989967346

25 71.8399429321

26 71.5238189697

27 72.7839641571

28 72.6795129776

29 72.1450138092

30 72.1558971405

Fig 7: No. of process vs. Execution time (3rd program)

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

45

6.2 In the context of Multiple Nodes
This section gives an overview how multiple nodes improve

performance with the collaboration of MPI. Here we give the

comparisons among the performance of a modified MPI

enabled program implementation with various numbers of

processes on various numbers of nodes. Here we use number

of node=number of process and “Head node” to indicate the

server node.

Message Passing Interface (MPI) divides processes into

different nodes so that the total computation can be divided

into several processors. Here our nodes are different CPU

with no storage system attached.

6.2.1 Test case 1
 In this test module we used our first program. The following

table shows comparison of execution times for different

numbers of processes being processed on different processors.

Table 2. Data Sheet for Test Case 1

Machine No. of

process

Execution time

(seconds)

Only 1 node 1 24.5755219001

Head node + 1node 1 21.7996483687

Head node + 2nodes 2 12.1023389700

Head node + 3nodes 3 8.95005784035

Head node + 4nodes 4 6.60596203804

Head node + 5nodes 5 5.92770770718

Head node + 6nodes 6 4.86486984089

Head node + 7nodes 7 3.84765208439

Head node + 8nodes 8 3.00403499987

Head node + 9nodes 9 2.86348747653

Head node + 10nodes 10 2.08050900801

Head node + 11nodes 11 1.99892969695

Head node + 12nodes 12 1.99758973807

Head node + 13nodes 13 1.90200321720

Head node + 14nodes 14 1.71855797732

Head node + 15nodes 15 1.00023793780

Fig 8:No. of node vs. Execution time (program 1)

6.2.2 Test case 2
 In this test module we used our second program and do the

same as Test case 1.

Table 2. Data Sheet for Test Case 2

Machine No. of

process

Execution time

(seconds)

Only 1 node 1 24.8610630035

Head node + 1node 1 22.5589540005

Head node + 2nodes 2 11.8765909672

Head node + 3nodes 3 8.9438710213

Head node + 4nodes 4 6.2204985619

Head node + 5nodes 5 5.8132009506

Head node + 6nodes 6 4.4078810215

Head node + 7nodes 7 3.7399802208

Head node + 8nodes 8 3.4490003586

Head node + 9nodes 9 2.9340898514

Head node + 10nodes 10 2.8918004036

Head node + 11nodes 11 2.8610630035

Head node + 12nodes 12 1.9589540005

Head node + 13nodes 13 1.8765909672

Head node + 14nodes 14 1.7438710213

Head node + 15nodes 15 1.3204985619

Fig 9:No. of node vs. Execution time (program 2)

6.2.3 Test case 3
This test module uses third program.

Table 2. Data Sheet for Test Case 2

Machine No. of

process

Execution time

(seconds)

Only 1 node 1 143.745227499

Head node + 1nodes 1 140.779079794

Head node + 2nodes 2 104.824980260

Head node + 3nodes 3 91.343035496

Head node + 4nodes 4 82. 833872714

Head node + 5nodes 5 73.742285599

Head node + 6nodes 6 62.229369197

Head node + 7nodes 7 48. 883682305

Head node + 8nodes 8 32.581217575

Head node + 9nodes 9 21. 568821471

Head node + 10nodes 10 11. 832991692

Head node + 11nodes 11 7. 671611161

Head node + 12nodes 12 5. 345023951

Head node + 13nodes 13 4.972436796

Head node + 14nodes 14 3.986693511

Head node + 15nodes 15 3.0074 97292

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

46

Fig 10:No. of node vs. Execution time (program 3)

7 CONCLUSION
This paper focused on the high performance computing

architecture of the Diskless Cluster system. It also focused on

the parallel processing on multiple processors/nodes via the

master node and ability to have higher performance through

MPI. This paper shows the comparison of execution times

taken to execute a program between a single computer and

multiple nodes attached, through parallel processing. It

focused to the easy way to do the parallel computing of large

scale data with diskless cluster computing environment.

As we get better performance by using diskless approach with

the collaboration of MPI, so we can propose that this

mechanism can be used to compute large scale data which

needs huge processing power. Thus it can push the Cluster

computing one step further.

Our future plan is to modify this high performance system to a

high availability cluster system, so that power failure to any of

the node or any kind of hardware failure can be recovered and

the other nodes can complete the incomplete task of the dead

node.

8 REFERENCES
[1] A Proposal for Creating a Computing Research

Repository (CoRR,http://www.arXiv.org/) on Cluster

Computing

[http://www.buyya.com/papers/ClusterRepository.pdf]

Rajkumar Buyya, Monash University, Melbourne,

Australia.

[2] Linux HPC Cluster Installation by International

Technical Support Organization

[http://mmc.geofisica.unam.mx/femp/HPC/redbook.pdf]

Counting Polyamines: A Parallel implementation for

Cluster Computing Iwan Jensen, Department of

Mathematics and Statistics, The University of

Melbourne, Victoria3010, Australia

[http://www.ms.unimelb.edu.au/~iwan/Publications/2003

/LNCS_2659_203.pdf]

[3] Cluster Algebras, Invariants, Jacobians, and Tropical

Curves

Gregg Musiker’s Research Statement

[http://www.math.umn.edu/~musiker/ResState.pdf]

[4] Cluster Computing at a Glance

Mark Bakery and Rajkumar Buyyaz

Division of Computer Science, University of Ports mouth

South sea, Hants, UK

School of Computer Science and Software Engineering,

Monash University, Melbourne, Australia

[5] Microwulf Software and Network Configuration Notes,

Tim Brom.

[http://www.calvin.edu/~adams/research/microwulf/sys/

microwulf_notes.pdf]

[6] CentOS Cluster Server , Ryan Matteson

[http://prefetch.net/presentations/CentosClusterServer.pd

f]

[7] Cluster Computing R&D in Australia, by the Asian

Technology Information Program (ATIP)

[8] [http://www.buyya.com/papers/ClusterComputingAU.pd

f]

[9] Cluster Computing White Paper, Mark Baker, University

of Portsmouth, UK

[http://arxiv.org/ftp/cs/papers/0004/0004014.pdf]

[10] MPI/Python | James Noble

[11] A STUDY IN CLUSTERING, Prof. Nathan Linial

[http://www.cs.huji.ac.il/~nati/PAPERS/THESIS/ori.pdf]

[12] http://www.kerrighed.org/wiki/index.php/Main_Page

[13] http://www.mosix.cs.huji.ac.il/

[14] http://www.beowulf.org/

[15] www.linux-mag.com/id/1916/

[16] http://www.ks.uiuc.edu/Training/Workshop/Cluster/files/

clustermatic.html

[17] Red Hat Enterprise Linux 5 Cluster Administration,

Configuring and Managing a Red Hat Cluster , Redhat.

[18] Cluster Computing, Kick-start seminar,16

December,2009, High Performance Cluster Computing

Centre(HPCCC) Faculty of Science, Hong Kong Baptist

University

[19] Evaluating the Shared Root FileSystem Approach for

Diskless High-Performance Computing Systems

Christian Engelmann, Hong Ong, and Stephen L. Scott

Computer Science and Mathematics Division,

Oak Ridge National Laboratory, OakRidge, TN37831,

USA; {fengelmannc,hongong,scottsl}@ornl.gov

[20] A Performance Comparison of Linux and a Light weight

Kernel

Ron Brightwell, Rolf Riesen, Keith Underwood

Sandia National Laboratories PO Box 5800

Albuquerque, NM87185-1110

{rbbrigh,rolf,kdunder}@sandia.gov Trammell B. Hudson

Operating Systems Research, Inc. Albuquerque, NM

hudson@osresearch.net Patrick Bridges, Arthur B.

Maccabe Computer Science Department, University of

New Mexico Albuquerque, NM87131

{bridges,maccabe}@cs.unm.edu

[21] Implementing Scalable Disk-less Clusters using the

Network File System (NFS) James H. LarosIII, Lee H.

Ward Sandia National Labs, 30th October, 2003

[22] NPACI Rocks: Tools and Techniques for Easily

Deploying Manageable Linux Clusters

Philip M. Papadopoulos, Mason J. Katz, Greg Bruno

The San Diego Supercomputer Center, University of

California San Diego, La Jolla, CA 92093-0505

[23] A Minimal Linux Environment for HighPerformance

Computing Systems

James H. Laros III ;Sandia National Laboratories

Albuquerque, NM 87123 Cynthia Segura, Nathan

Dauchy High Performance Technologies, Inc.

Reston, Virginia 20190

[24] Warewulf - http://www.warewulf-cluster.org/cgi-

bin/trac.cgi

