
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

28

Exploitation of Cross-Site Scripting (XSS) Vulnerability

on Real World Web Applications and its Defense

Shashank Gupta

Lecturer in Department of Information Technology,
Model Institute of Engineering and Technology,

Jammu

Lalitsen Sharma
Associate Professor in Department of Computer

Science and I.T., University of Jammu

ABSTRACT

Attacks on web applications are growing rapidly with the

opening of new technologies, HTML tags and JavaScript

functions. Cross-Site Scripting (XSS) vulnerabilities are being

exploited by the attackers to steal web browser’s resources

(cookies, credentials etc.) by injecting the malicious

JavaScript code on the victim’s web applications. The existing

techniques like filtering of tags and special characters,

maintaining a list of vulnerable sites etc. cannot eliminate the

XSS vulnerabilities completely. In this paper, initially we

have tried out the experiments on the exploitation of XSS

vulnerabilities using local host server (i.e. XAMPP). After

this, we have investigated for the XSS vulnerabilities on

social networking sites (like Facebook, Orkut, Blogs, Twitter

etc.) and tried to exploit the same on blogs. Finally, on the

basis of some analysis and results, we have discussed a novel

technique of mitigating this XSS vulnerability by introducing

a Sandbox environment on the web browser.

Keywords

Keywords are your own designated keywords which can be

used for easy location of the manuscript using any search

engines.

1. INTRODUCTION
 Now-a-days Cross-Site Scripting (XSS) attack is a common

vulnerability which is being exploited in web applications

through the injection of HTML tags and malicious Java Script

code. A weak input validation on the web application causes

the stealing of cookies from the victim’s web browser.

Cookies are the most general way to identify and authenticate

the users and it is being supported by almost all the web

browsers [1]. Therefore, they are an attractive target for the

attackers. Nearly all the web browsers support cookies and

therefore allow a greater flexibility that how user sessions are

maintained by the web applications. If an attacker can steal

the valid cookies of a victim’s session, then the attacker can

hijack the victim’s session. Cross-Site scripting continuously

leads the most wide spread web application vulnerabilities

lists (e.g. OWASP [2], WhiteHat Website Security Statistics

Report [3]). Recent survey has shown that almost 67% of

websites are vulnerable to XSS attacks [3]. XSS are broadly

classified as two main attacks which are Persistent and Non-

Persistent Attacks [4] [5].

Persistent attack (also called as stored attack) holes exist when

an attacker post the malicious code on the vulnerable web

application’s repository. As a result, if the stored malicious

code gets executed by the victim’s browser, then stored attack

gets exploited on the victim’s web browser. Secondly non-

persistent attack (also called as reflected attack) means that

the vulnerable malicious code is not persistently stored on a

web server but it is immediately displayed by the vulnerable

web application back to the victim’s browser. If so, then the

malicious code gets executed on the victim’s browser and

finally the victim has to compromise its browser’s resources

(e.g. cookies).

The rest of the paper is organized as follows: Section 2

describes the background and related work on XSS attacks.

Section 3 describes the architecture of exploitation of XSS

attack. Section 4 describes the proposed technique of

exploiting the XSS attack on Local Host Server and Blogs.

Section 5 discusses the mitigation technique of XSS

technique. Section 6 concludes the proposed work and

discusses some ideas of future work.

We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.

2. BACKGROUND AND RELATED

WORK
The related work has been surveyed focussing on some issues

related to XSS attacks. The survey has been divided into three

categories namely Exploitation, Detection and Prevention of

XSS attacks.

2.1 Exploitation of XSS Vulnerability
Recently, researchers have shown some basic ways to

demonstrate how XSS attacks can be used to control and

modify the functionality of a web page. Various types of

platforms (like Web Goat [6], Acunetix [7]) are available

online to test or exploit some vulnerabilities of XSS attack.

Web Goat is a deliberately insecure application maintained by

Open Web Application Security Project (OWASP) [2]. On the

other hand, Acunetix test website offers the platform to a user

who wants to exploit the vulnerabilities of XSS attack. It is a

way of limiting security testing to only systems that you own,

or have permission to work with.

2.2 Detection of XSS Vulnerability
In static detection of XSS, testing is generally performed

by source code analysis. On the other hand, in dynamic testing

of XSS, known attacks are executed against web applications.

Recently, researchers have proposed various detection

techniques to discover the XSS Attacks. In [8], a Webmail

XSS fuzzer called L-WMxD (Lexical based Webmail XSS

Discoverer), which works on a lexical based mutation engine

which is an active defence system to discover XSS before the

Webmail application is online for service. The researchers

have run L-WMxD on over 26 real-world Webmail

applications and found vulnerabilities in 21 Webmail services,

including some of the most widely used Yahoo-Mail. In [9], a

static analysis for finding XSS vulnerabilities has been put

forward that directly addresses weak input validation. This

approach combines work on tainted information flow with

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

29

string analysis. Pixy [10] is a tool that performs data flow

analysis on PHP code to detect reflected XSS vulnerabilities.

Various prototype tools which are based on Pixy have been

implemented by the researchers and test on the real world

PHP programs. Similar approaches have been adopted by

commercial products like AppScan [11], Acunetix [7],

Nessus[12] and so on.

2.3 Prevention of XSS Vulnerability
Cross-site Scripting (XSS), the top most vulnerability in the

web applications, demands an efficient approach on the server

side as well as client side to protect the users of the web

application. In [13], an application-level firewall is suggested,

which is located on a security gateway between client and

server and which applies all the security relevant checks and

transformations. Some server side prevention approaches

require the collaboration of web browsers. One such example

is BEEP (Browser-Enforced Embedded Policies) [14], a

mechanism that modifies the browser so that it cannot execute

the malicious scripts. Security policies dictate what the server

sends to BEEP-enabled-browsers. Apart from this, the

researchers developed the WebSSARI (Web Security via

Static Analysis and Runtime Inspection) tool [15], which per-

forms type-based static analysis to identify potentially

vulnerable code sections and instrument them with runtime

guards.

On the client side, researchers have developed the Noxes

[16] which acts as a personal firewall that allows or blocks

connections to websites on the basis of filter rules, which are

generally user-specified URL white-list and blacklist

websites. When the browser sends a HTTP request to an

unknown website, Noxes immediately alerts the client, who

chooses to permit or deny the connection, and remembers the

client’s action for future use. Another client side approach is

presented in [17], which aims to identify the information

leakage using tainting of input data in the browser. In [18], a

mechanism for detecting malicious java script is proposed.

The system consists of a browser-embedded script auditing

component, and IDS that processes the audit logs and

compares them to signatures of known malicious behavior or

attacks.

Several server-side countermeasures do exists, but such

techniques have not been universally applied because of their

deployment overhead. On the other hand, existing client side

solutions degrade the performance of client’s system resulting

in poor web surfing experience. The necessity to install

updates or additional components on each user’s web browser

or workstation also degrade the performance of client side

solutions.

3. ARCHITECTURE OF EXPLOITING

XSS VULNERABILITY

In this paper, we have exploited the vulnerabilities of XSS

attack on local host Server (XAMPP) and then we have tried

to exploit the same on Blogs by stealing the cookies of

victim’s session. Lastly, we have discussed a defensive

technique which generally bye-pass the XSS attack by

introducing a sandbox environment on the web browser. Web

applications frequently use cookies for retaining an

authentication state between users and web applications.

These cookies are usually sent to the users by the web

applications after the users have been successfully

authenticated. Every consequent request that contains the

legitimate cookies will be automatically approved by the web

applications without any further authentication. The cookies

are used to both identify and authenticate the users; therefore

they are an interesting target for potential attackers. The

following figure 1 is an architecture which shows the

sequence of steps of exploiting the XSS vulnerability by a

malicious attacker.

Fig 1: Architecture of Exploiting the XSS Vulnerability

The above architecture contains three useful commodities i.e.

Attacker Domain, Victim Domain and Vulnerable Web

Application. Here are some sequences of steps which will

explain the above architecture of exploiting the XSS attack:-

 Firstly the attacker has found that the corresponding

web application is vulnerable to Cross-Site

Scripting Attack. After this, attacker will post a

malicious Java Script Code on the Vulnerable Web

Application whose function is to steal cookies of the

victim’s account session.

 Secondly, the victim logs into the vulnerable web

application by giving the user-id and password. As a

result, the web server of web application will

generate and transfer the cookie of that particular

session to victim’s web browser.

 In the third step, the victim browses the malicious

Java Script Code and gets executed on its browser.

 In the fourth step, the Java Script Interpreter of the

victim’s browser gets invoked and transfers the

cookies of the victim’s session to the attacker’s

domain.

 Now lastly, these cookies will be utilized by the

attacker to get into the account of victim.

In this way, XSS attack gets exploited on the attacker’s

domain.

4. PROPOSED TECHNIQUE OF

EXPLOITING THE XSS ATTACK
One of the most common techniques requires that the

malicious code is stored into the repository of victim’s web

application which can be later executed by the victim’s

browser. The following figure is one of the malicious Java

Script codes which can be posted on the victim’s web

application repository. This malicious script provides a

hyperlink which will redirect the victim’s cookie to the

address (site) specified in the document. Location

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

30

Fig 2: Malicious Java Script Code for Stealing the Cookies

The following are the details of this malicious Java Script

code:

 On Click Event: This event executes the Java Script

function, which is embedded inside it.

 Document. Location: This function will store the

address or URL where the actual file has to be

transferred.

 Get Cookies.PHP: It is a cookie grabber file which

will store on the attacker site and steal the cookies

of the victim’s domain.

 Escape (document.cookie): Escape is a function call

which will pass the argument i.e. document. Cookie.

Document is an object and Cookie is a file in Java

Script which will capture the current cookies of any

particular session.

The get cookies.PHP file as shown in the fig.2 is a cookie

stealer file which is loaded on the attacker site and transfers

the current cookies to a blank cookie.txt file which is also

loaded on the attacker site. Following is the vulnerable PHP

code of a cookie stealer file.

Fig.3. Vulnerable PHP Code

In this paper, we have used both these vulnerable snippets as

shown in the figures 2 and 3 for the exploitation of XSS attack

on local host server and real time Google Blogs.

4.1 Exploitation of XSS Vulnerability on

Local Host Server
Firstly, we have tried to exploit the vulnerabilities of Cross-

Site Scripting attack on XAMPP Server. On XAMPP Server,

we have made two separate domains of attacker and victim.

The attacker domain has stored the cookie grabber file and

blank cookie.txt file. So, when the victim click on the

malicious link posted by the attacker, the cookie grabber file

gets executed on the victim’s domain and victim’s cookie will

get transfer to the blank cookie.txt file in which user-id,

password and session-id of victim’s account is stored clearly.

In this way XSS attack will get exploited on the XAMPP

server. Following fig. 4 shows some sequence of steps in the

form of flowchart which gives the detailed idea of exploiting

the XSS vulnerability on XAMPP server.

Fig.4. Flow Chart of Exploiting the XSS Attack on Local

Host Server

4.2 Exploitation of XSS Vulnerability on

Blogs
In real time scenario, we have tried to exploit the vulnerability

of XSS on the Blogs. For this purpose, we require following

three things:

 Attacker’s Account on the Blog

 Victim’s Account on the Blog

 Attacker’s Web Hosting Site

(http://www.shashankgupta.0fees.net)

On attacker’s Web Hosting Site, we have uploaded the cookie

grabber file and blank cookie.txt file. If the victim has clicked

on the malicious script which is loaded in its Blog account,

then the cookie of the victim’s session account will get

transfer to the attacker’s web hosting site. Following are some

sequence of steps of exploiting the XSS vulnerability on

Blogs:-

Step 1: Attacker enters the URL of Blog

(http://www.blogger.com) and submits its user-id and

password to web server. Now the attacker will post the

malicious java script code into its follower’s account and

simply logs out from its blogger account.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

31

Fig.5. Flow Chart for Posting Malicious Script on Victim’s

Blog Account

Step 2: Now the attacker simply enters the URL of its domain

and simply uploads the cookie grabber file code in PHP and

blank cookie. Text file. The attacker also changes the read and

writes permission of both these files.

Fig.6. Flow Chart for Uploading the Cookie Stealer file

Step 3: In this step, the victim enters into its blogger account

by giving the user-id and password to the web server. The

web server will generate and transfer the corresponding

cookie to the victim’s web browser repository. After this, the

victim executes the malicious script (posted by the attacker on

its account) on its web browser which in turn will transfer the

cookie of victim’s session to the blank text file in the

attacker’s domain. This XSS attack will get exploit only if the

java script interpreter gets invoked on the victim’s web

browser. The following figure 7 shows some sequence of

steps of exploiting the XSS attack on victim’s Blog account.

Fig.7. Flow Chart for Exploitation of XSS Attack on

Victim’s Blog

Step 4: : Now the attacker open his web hosting site and

checks whether any victim clicked has clicked on that

malicious link. The attacker will simply check its blank

cookie.txt file that whether any value has got append on it or

not. If yes, the attacker will simply utilize this information to

get into the victim’s blogger account. Here is the detailed flow

chart explaining the whole scenario as shown in fig. 8.

Fig.8. Flow Chart for Grabbing the Victim’s Cookie File

5. Cross-Site Scripting Defense
The goal of XSS attack is to break the Same Origin Policy

[30] of web browsers which guarantees that a file or a script

loaded from a given site ‘X’ is not allowed from reading or

modifying those browser’s resources belonging to site ‘Y’.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

32

The aim of the technique regarding XSS defence is to not only

address the attacks based on java script code embedded into

the HTML documents but also attacks against other web

application’s technologies such as Flash, ActiveX and so on.

Generally, XSS attacks are related to the stealing of victim’s

cookies. So, we are going to discuss an idea for the protection

of cookies against XSS attack by introducing a sandbox

environment on the web browser

Sandbox is a restricted environment which runs our programs

in an isolated space, which prevents them from making

permanent changes to other programs and data in the

computer. The following are some benefits of sandboxing

technique:-

 Secure Web Browsing: Running our Web browser

under the protection of Sandbox means that all

malicious software downloaded by the browser is

trapped in the sandbox and can be discarded

trivially.

 Enhanced Privacy: Browsing history, cookies, and

cached temporary files collected while Web

browsing stay in the sandbox and don't leak into

Windows.

 Secure E-mail: Viruses and other malicious

software that might be hiding in your email can't

break out of the sandbox and can't infect your real

system.

 Windows Stays Lean: It prevents wear-and-tear in

Windows by installing software into an isolated

sandbox.

The idea of protection of cookies can be achieved by

introducing a sandbox environment on the web browser which

is as shown in the figure 9.

Fig.9. Cross-Site Scripting Mitigation Technique

Client’s web browser under the protection of a sandbox

submits the user-id and password to a web server. Web server

will generate the cookie and send this cookie to client’s web

browser which is sandbox protected. Now this cookie value

will neither leak into the windows nor it can be grabbed by

any attacker. On the other hand, sandbox allows the execution

of malicious script on the client’s web browser but it cannot

give the authority to simply leak the cookie out of this

protected environment. So it can be concluded that sandbox

environment will simply bye-pass the XSS attack.

6. CONCLUSION AND FUTURE WORK
Based on the proposed methodology and its consequent

results, we have exploited the XSS intrusion by means of

HTTP and cross-platform properties to steal and misuse the

user's private information (cookies, session id’s etc.). We have

concluded that in order to bye-pass the vulnerabilities of XSS

attack, the subsequent three precautions should be followed:

Condition 1: We should be aware of vulnerable website

applications. There are lots of vulnerable web applications on

the internet. As long as there are functions intended for

editing HTML contents, it is likely to exploit the XSS attack.

We can test the web applications by executing various types

of experiments. We immediately need to put in some sentence

into <BODY></BODY> tag. For instance <SCRIPT> alert

("XSS Attack") </SCRIPT>. The subsequently next step is to

make use of web browser to surf this page. If our window

jumps the "XSS Attack", it means that we can be attacked.

Condition 2: We should make use of only those web

applications in which proper input validation has been done.

A weak input validation cannot bye-pass the XSS Attack.

Condition 3: We should maintain a blacklist of vulnerable

websites which are vulnerable to XSS attack. Apart from this,

we should also be aware of latest web technologies like

advanced java script functions etc.

In the future work, we would like to build up an investigation

for web browsers to find out the set of strings that can cause

their JavaScript interpreter to be invoked. Our own strategy

does not cover a few exploits particular to browsers other than

Firefox. Because of the complication of layout engine code,

we expect that such a testing will involve some

communication with the user.

7. REFERENCES
[1] D. Kristol, “HTTP State Management Mechanism” in

Internet Society, 2000. http://

www.ietf.org/rfc/rfc2965.txt

[2] Open Web Application Security Project:

https://www.owasp.org/index.php/Top_10

[3] White Hat Security. Website Security

StatisticsReporthttp://www.whitehatsec.com/home/

resource/stats.html, 2008.

[4] J. Garcia-Alfaro and G. Navarro-Arribas, “Prevention of

Cross-Site Scripting Attacks on Current Web

Applications,” Available: http://hacks-

galore.org/guille/pubs/is-otm-07.pdf

[5] S. Saha, “Consideration Points: Detecting Cross-Site

Scripting,” (IJCSIS) International Journal of Computer

Science and Information Security,Vol. 4, No. 1 & 2,

2009.

[6] Brian Blankenship, Introduction to Cross-Site Scripting

using WebGoat, The OWASP LiveCD Education Project,

2005.

[7] Acunetix, Vulnerability Scanner “http://

www.acunetix.com/vulnerability_scanner”.

[8] Zhushou Tang, Haojin Zhu, Zhenfu Cao, Shuai Zhao, L-

WMxD: Lexical Based Webmail XSS Discoverer, IEEE

Conference on Computer Communications Workshops

(INFOCOM WKSHPS), 2011, pp. 976-981.

http://www.whitehatsec.com/home/

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

33

[9] Gary Wassermann, Zhendong Su, Static Detection of

Cross-Site Scripting Vulnerabilities, ACM/IEEE 30th

International Conference on Software Engineering

(ICSE), 2008, pp. 171-180.

[10] N. Jovanovic, C. Kruegel and E. Kirda, Precise alias

analysis for static detection of web application

vulnerabilities. In: ACMSIGPLAN Workshop on

Programming languages and Analysis for Security,

Ottawa, Canada, 2006.

[11] AppScan,http://www01.ibm.com/software/awdtools/apps

can/.

[12] Nessus, http://www.nessus.org/.

[13] D. Scott and R. Sharp. Abstracting Application-level Web

Security. In 11th World Wide Web Conference, 2002.

[14] M. T. Louw and V. N. Venkatakrishnan, “Blueprint:

Robust Prevention of Cross-Site Scripting Attacks for

Existing Browsers”, Proc. 30th IEEE Symp. Security and

Privacy (SP 09), IEEE CS, 2009, pp. 331-346.

[15] W. Halfond, A. Orso, and P. Manolios, “WASP:

Protecting Web Applications Using Positive Tainting and

Syntax-Aware Evaluation”, IEEE Trans. Software Eng.,

Jan. 2008, pp. 65-81.

[16] E. Kirda et al., “Client-Side Cross-Site Scripting

Protection,” Computers & Security, Oct. 2009, pp. 592-

604.

[17] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda,

and G. Vigna. Cross site scripting prevention with

dynamic data tainting and static analysis. In 14th Annual

Network and Distributed System Security Symposium

(NDSS), 2007.

[18] O. Hallaraker and G. Vigna, Detecting Malicious

JavaScript Code in Mozilla. In Proceedings of the IEEE

International Conference on Engineering of Complex

Computer Systems (ICECCS), 2005.

