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ABSTRACT 

Among the various clustering algorithms, DBSCAN is an 

effective clustering algorithm used in many applications. It 

has various advantages like no a priori assumption needed 

about the number of clusters, can find arbitrarily shaped 

clusters and can perform well even in the presence of outliers. 

However, the performance is seriously affected when the 

dataset size becomes large. Moreover, the selection of the two 

input parameters, Eps and MinPts, has a great impact on the 

clustering performance. To solve these two problems, this 

paper modifies the traditional DBSCAN algorithm in two 

manners. The first method uses K-dimensional tree instead of 

the traditional R-tree algorithm while the second method 

includes a locally sensitive hash procedure to speed up the 

process of clustering and increase the efficiency of clustering.  

The algorithms use a k-distance graph method to 

automatically calculate Eps and MinPts. Experimental results 

show that both the algorithms are efficient in terms of 

scalability and speeds up the clustering process in an efficient 

manner. 

Keywords: DBSCAN, Speed Optimization, Nearest 

Neighbour Search, KD-Tree, Locally Sensitive Hashing. 

1. INTRODUCTION 

The beginning of the twenty first century has brought 

considerable advances in the field of computer-based 

information retrieval systems, where data with “hidden asset” 

called “knowledge” is quickly becoming the most valuable 

resource. The current era of information explosion utilizes 

powerful data mining techniques that can efficiently analyze, 

interpret and extract valuable knowledge. The rapid growth in 

the number and size of databases, dimension and complexity 

of data has made it necessary to automate the analysis 

process, whose results can then be used by decision-making 

processes. Data mining is a multi-faceted area which uses a 

variety of data analysis tools to discover patterns and 

relationships in data. 

Clustering and classification are two popular data mining 

techniques [14]. The popularity is behind the fact that they are 

the first data mining techniques to examine the structure and 

patterns in data. 

Clustering analysis partition data objects objectively based on 

measuring the mutual similarity between data objects. It is a 

method that divides a set of objects into subsets, called 

clusters, such that the objects in any cluster are similar to 

those inside it and different from those outside it 

[13].Clustering has a long and rich history in a variety of 

scientific fields like image segmentation, information retrieval 

and web data mining. Clustering algorithms can be 

categorized into partition-based algorithms [16], hierarchical-

based algorithms  spectral algorithms, density-based 

algorithms [8]and grid-based algorithms [3] These methods 

vary in (i) the procedures used for measuring the similarity 

(within and between clusters) (ii) the use of thresholds in 

constructing clusters (iii) the manner of clustering, that is, 

whether they allow objects to belong to strictly to one cluster 

or can belong to more clusters in different degrees and the 

structure of the algorithm. Irrespective of the method used, the 

resulting cluster structure is used as a result in itself, for 

inspection by a user, or to support retrieval of objects 

Among these, density-based algorithms have gained much 

interest in the research community; [10] DBSCAN (Density-

Based Spatial Clustering of Applications with Noise), a 

density based clustering algorithm  is an effective clustering 

algorithm for Spatial Database Systems. It has the following 

advantages.  

1. DBSCAN does not require knowing the number of 

clusters in the data a priori, as opposed to k-means. 

2. DBSCAN can find arbitrarily shaped clusters.  

3. Performance does not degrade with the presence of 

outliers 

DBSCAN requires just two parameters and is mostly 

insensitive to the ordering of the points in the database. 

However, the algorithm also has some issues with regard to 

execution time and its time complexity is O(n log n) The 

algorithm fails to scale well to large dimensions because of 

this complexity that mainly arises because of the searching the 

neighbourhood process. In this paper, two techniques are 

proposed to solve this problem and improve the speed of 

DBSCAN clustering. The first method aims to reduce the time 

required to search the neighbourhood by using an efficient 

tree called kd-tree. The second uses a Locally-Sensitive 

Hashing method to reduce the neighbourhood search time and 

thus reduce the overall time requirement for DBSCAN 

algorithm. The rest of the paper is organized as follows. A 

brief study of the existing solutions is given in Section 2. 

Section 3 presents the traditional DBSCA algorithm along 

with the two proposed time-efficient fast DBSCAN variants. 

The experimental results are discussed in Section 4 while 

Section 5 concludes the research work with future research 

directions.  

2. LITERATURE STUDY   

Several researchers have used different methods to improve 

the time complexity problem of DBSCAN algorithm. These 

methods can be loosely categorized as space partitioning, 

sampling and methods that reduce the number of core points 

(pruning).  Space partitioning is the most frequently used 
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technique that reduces the search space and thus indirectly 

reduces the time required by DBSCAN. Several partitioning 

algorithms like CLARANS [6], K-Means  simple one-pass 

clustering [15] have been used for this purpose. Space 

indexing techniques such as R-tree or X-tree have also been 

used for fast retrieval of an object’s neighbors in a data set, 

where indexing techniques can be classified as space 

partitioning methods. In partition based DBSCAN algorithm, 

partition is considered as a pre-processing step and normally 

comes with its overheads like requiring extra memory, extra 

computations and determining the correct values for input 

parameters. The second method ‘sampling’ involves selecting 

only a subset of the data set and using DBSCAN on randomly 

selected subsets to form clusters. Examples include 

SDBSCAN  and Rough-DBSCAN. In these techniques, a 

tradeoff between sampling rates and speed exists. That is, low 

sampling rates decreases the time requirement but degrade the 

clustering accuracy. Reducing the time requirement through 

smart core detection methods was used by FDBSCANand 

IDBSCAN [4]. Combining k-means and core point detection 

methods was performed by KIDBSCAN. 

 This method first located the high-density areas 

using k-means algorithm and then introduced core points with 

respect to density rankings. Similarly core point detection and 

sampling method was combined by [20] to improve the time 

requirement of DBSCAN. SPARROW [9] reduces the number 

of core points using a method that is inspired by the flocking 

mechanism of birds. Smart detection of core points and 

sampling on the core points may result in anomalies such as 

falsely dividing the original clusters and false identification of 

border points as noise. Parallel approaches of DBSCAN are 

introduced in [19];[11]. Although parallel implementations 

may improve the execution time performance locally at each 

processor, combining the results into the final output is not 

trivial. 

3. PROPOSED FAST VARIANTS OF 

DBSCAN 

Dbscan algorithm has its own definition. The 

definition defines that point p is reachable from point p when 

both the points are falls in the given distance. And point p is 

consider only when p1,p2,p3 points are so close to it. So a 

cluster should have the property like density connected points 

should be part of cluster and all the points should mutually 

density connected. Dbscan needs two input parameters 

namely eps and minpts. Eps is the radius of the cluster and 

minpts is minimum number of points in that cluster. Normally 

Dbscan starts its journey from arbitrary starting point x which 

is not visited already. If x has n number of neighbor then each 

point will be visited and labeled as visited and that points will 

be accumulated in the clusters. If but x does not have neighbor 

point and it is not fll in given radius the that particular point 

will be marked as noise. This is process will continue up to 

the unvisited point in given distance. 

Hence, all points that are found within the ε-

neighborhood are added, as is their own ε-neighborhood. This 

process continues until the cluster is completely found. Then, 

a new unvisited point is retrieved and processed, leading to 

the discovery of a further cluster or noise. However, the 

algorithm also has some major drawbacks which are as 

follows:  

The algorithm has two global parameters “ε” and 

“MinPts”, estimation of which is difficult for an arbitrary 

dataset.   

The algorithm fails to scale well to large dimensions 

because of the complexity of searching the neighbourhood in 

large dimensions 

3.1.KD Tree based DBSCAN (KDT-

DBSCAN) 

Both the problems are solved in the present work by 

using an automated process for identifying  and MinPts 

values and using KD-Tree to solve the problem search 

complexity. The use of kd tree is to segment the data structure 

for aligning points in k-dimensional space. When there is need 

to use multidimensional key, there the kd tree plays its role. 

Kd tree has two nodes and k dimensional points so it called as 

binary tree. 

 Every non-leaf node can be thought of as implicitly 

generating a splitting hyperplane that divides the space into 

two parts, right and left subspaces. Every node in the tree is 

associated with one of the k-dimensions, with the hyperplane 

perpendicular to that dimension's axis. So, for example, if for 

a particular split the "x" axis is chosen, all points in the 

subtree with a smaller "x" value than the node will appear in 

the left subtree and all points with larger "x" value will be in 

the right sub tree. In such a case, the hyperplane would be set 

by the x-value of the point, and its normal would be the unit 

x-axis [2] Given a list of n points, the algorithm given in 

Figure 2 constructs a balanced k-d tree containing those 

points. 

 

 

 

 

 

 

DBSCAN(D, eps, MinPts) 

   C = 0 

   for each unvisited point P in dataset D 
      mark P as visited 

      N = getNeighbors (P, eps) 

      if sizeof(N) < MinPts 
         mark P as NOISE 

      else 

         C = next cluster 
         expandCluster(P, N, C, eps, MinPts) 

           

expandCluster(P, N, C, eps, MinPts) 
   add P to cluster C 

   for each point P' in N  

      if P' is not visited 
         mark P' as visited 

         N' = getNeighbors(P', eps) 

         if sizeof(N') >= MinPts 
            N = N joined with N' 

      if P' is not yet member of any cluster 

         add P' to cluster C 
  

FIGURE 1 : DBSCAN ALGORITHM 
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The NN (nearest neighbor) algorithm is used to find 

the points in the tree which is nearest to a point given. This 

algorithm is very useful because easily it can avoid large 

search space. Searching for a nearest neighbour in a k-d tree 

proceeds is given in Figure 3.  

 

In order to automatically detect the two parameters 

epsilon and min-pts required by DBSCAN, this section 

proposed the use of k-distance graph. Let ‘d’ be the distance 

of a point ‘p’ to its kth nearest neighbor, then the d-

neighborhood of ‘p’ contains exactly k+1 points for almost all 

points ‘p’. The d-neighborhood of ‘p’ contains more than k+1 

points only if several points have exactly the same distance 

‘d’ from ‘p’ which is quite unlikely. Furthermore, changing 

‘k’ for a point in a cluster does not result in large changes of 

‘d’. This only happens if the kth nearest neighbors of p for k = 

1, 2, 3,  are located  approximately on a straight line which in 

general is not true for a point in a cluster.  

For a given k, a function k-dist from the database D 

is defined by mapping each point to the distance from its kth 

nearest neighbor. When sorting the points of the database in 

descending order of their k-dist values, the graph of this 

function gives some hints concerning the density distribution 

in the database. This graph is called the sorted k-dist graph. If 

an arbitrary point ‘p’ is chosen, set the parameter Eps to k-

dist(p) and set the parameter MinPts to k, all points with an 

equal or smaller k-dist value will be core points. However, as 

indicated by Ester et al. (1996), the k-dist graphs for k > 4 do 

not significantly differ from the 4-dist graph and they need 

considerably more computations. The applicability of value 4 

to MinPts was further proved by several proposals [17]; [18]. 

Therefore, the parameter MinPts is set to 4 during 

experimentations. The 4-dist value of the threshold point is 

used as the Eps value for DBSCAN. These estimated values 

were given as input to the DBSCAN algorithm given in 

Figure 2 

The time requirement of DBSCAN algorithm is O(n 

log n) where n is the size of the dataset. This when combined 

with k-distance graph to automatically select MinPts and Eps 

values, increases to O(n2 log n). Usage of KD Tree (space 

partitioning tree) reduced the time complexity to O(log n). 

While using KD-Tree finding k nearest neighbours for each n 

data point the complexity is O(kn log n). The k value is very 

negligible and therefore does not make much different and 

hence the time complexity becomes O(log n).  

3.2.LSH-based DBSCAN (LSH-DBSCAN) 

Locally Sensitive Hashing (LSH) is an efficient 

randomized search technique proposed by The k-dist function 

used to find the kth nearest neighbor of given point. In the k-

dist function there is graph called k-graph which has the 

purpose of finding density distribution of given set of points.. 

The principle of hash function is to collect the items in the 

same bucket which are uniform and with high probability.  

LSH (Locality sensitive hashing ) is method which 

accumulate the group of points into a same bucket based on 

the distance metric.  The algorithm is popular in similarity 

searching [5], malware clustering [1] and hierarchical 

clustering. An LSH F is defined for a metric space M = (M, 

d), a threshold R>0 and an approximation factor c > 1. An 

LSH family  F is a family of functions h : m  S satisfying 

1. Starting with the root node, the algorithm moves down the 
tree recursively, in the same way that it would if the search 

point were being inserted (i.e. it goes left or right depending 

on whether the point is less than or greater than the current 
node in the split dimension). 

2. Once the algorithm reaches a leaf node, it saves that node 

point as the "current best" 

3. The algorithm unwinds the recursion of the tree, performing 

the following steps at each node:  

1. If the current node is closer than the current best, 
then it becomes the current best. 

2. The algorithm checks whether there could be any 

points on the other side of the splitting plane that are 
closer to the search point than the current best. In 

concept, this is done by intersecting the splitting 

hyperplane with a hypersphere around the search 
point that has a radius equal to the current nearest 

distance. Since the hyperplanes are all axis-aligned 

this is implemented as a simple comparison to see 
whether the difference between the splitting 

coordinate of the search point and current node is 

less than the distance (overall coordinates) from the 
search point to the current best.  

1. If the hypersphere crosses the plane, 

there could be nearer points on the 
other side of the plane, so the 

algorithm must move down the other 
branch of the tree from the current 

node looking for closer points, 

following the same recursive process 
as the entire search. 

2. If the hypersphere doesn't intersect 

the splitting plane, then the algorithm 
continues walking up the tree, and 

the entire branch on the other side of 

that node is eliminated. 

4. When the algorithm finishes this process for the root node, 

then the search is complete. 

Figure 3 : Search Algorithm Using KD-Tree 

Input  : List of points pointList and depth 

Output  : KD Tree 

Function kdtree(pointList, depth)  

Step 1 : Select axis based on depth so that axis cycles 

through all valid values (axis = depth mod k) 

Step 2 : Sort point list and choose median as pivot 
element 

Step 3 : Create node and construct subtrees 

  node location := median; 

        leftChild := kdtree(points in pointList before 

median, depth+1); 

        rightChild := kdtree(points in pointList after 
median, depth+1); 

Step 4 : Repeat Steps 1 - 3 till pointList in empty. 

Figure 2 : KD Tree Algorithm 
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the following conditions for any two points p, q M and a 

function h chosen uniformly at random from F: 

if  d(p, q)  R, then h(p) = h(q) (i.e, p and q collide) with 

probability at least P1. 

If d(p, q)  cR, then h(p) = h(q) with probability at most P2. 

A family is said to be interesting when P1 > P2 and such a 

family F is called (R, cR, P1, P2)-sensitive. 

One of the easiest ways to construct an LSH family 

is by bit sampling. This approach works for the Hamming 

distance over d-dimensional vectors {0, 1}d. Here, the family 

F of hash functions is simply the family of all the projections 

of points on one of the d coordinates, i.e., F = {h : {0, 1}d   

{0, 1} | h(x) = xi, i = 1 .. d}, where xi is the ith coordinate of 

z. A random function h from F simply selects a random bit 

from the input point. This family has the following parameters 

P1 = 1- R/d and P2 = 1-cR/d. 

In the proposed method is used to reduce the 

neighbourhood search time. In DBSCAN, the nearest 

neighbour point search returns all those points inside a circle 

with center ‘Ce’ and radius ‘ra’. While using with LSH, the 

nearest neighbour search (NNS) returns only approximate 

points, that is, it returns only those points of ‘Ce’ with radius 

(1+)d, where  is a user defined value and is > 0. For each 

point, its retrieval time complexity is                  O(d log C), 

where d and C are independent to N and LSH guarantees that 

the query time is O(D*N1/1+) for approximate nearest 

neighbor query over an n-point database . The differences 

between DBSCAN based on the LSH algorithm and the 

original DBSCAN are as follows.  

The LSH algorithm enhances original DBSCAN by 

substituting its retrieval technique for LSH, improves NNS of 

DBSCAN by hashing and decreasing time complexity 

Being different from original LSH, after obtaining 

the points retrieved by LSH, wrong points which are far from 

the center point are removed and thus the scale of the data is 

reduced.  

The algorithm works in two steps. The first step 

constructs the LSH hash index and the second step uses 

DBSCAN to cluster the dataset using the index created in the 

previous step. Let the LSH family be F, the algorithm has two 

parameters, width (k) and number of hash functions (L). In  

the first step, a new family G of hash function g is defined, 

where each function g is obtained by concatenating k 

randomly chosen hash function from F, i.e., g(p)=[h1(p), …, 

hk(p)]. In other words, a random hash function g is obtained 

by concatenating k randomly chosen hash functions from F. 

The algorithm then constructs L hash tables, each 

corresponding to a different randomly chosen hash function g. 

Initially all n points from a dataset S is hashed into 

each of the L hash tables. The hashing function is chosen in 

such a way that it results with hashing tables that has only n 

non-zero entries and can reduce the amount of memory used 

per hash table to O(n). The hash function used in the study is 

described below. Given an input data X, the hash function 

selects a random integer d from [1, D], where D is the number 

of attributes in the dataset and selects random Vid from [a, b] 

(Equation 1).  

  








idVdX0

idVdX1
)dX(F

   
    (1) 

Using the above equation, for each input data, a k length 

string which is composed of 0 and 1 can thus be obtained. The 

hash function exhibits an important property required by NSS 

algorithms  That is, when two data are very similar then the 

probability of them falling into the same hash table is  high 

and vice versa.   

The main concern of using LSH algorithm in NNS is the 

parameter selection L and K. In this study, an automatic 

estimation process is used. Given two probabilities, P1 and 

P2, k and L can be calculated using Equation (2). 

21/P log

n log
K 

 and L =n where  = 2P log

1P log

  

   (2) 

The method used to estimate the two parameters 

Eps and MinPts is the same as the method described in 

Section 3.1. The proposed LSH-DBSCAN algorithm is 

described in Figure 4. 

 

Input: M - the dataset  

Output: Clusters 

Step 1 : Estimate parameters Eps, MinPts, K and L 

Step 2 : Initialization   

Begin  
 for i from 1 to K do  

  randomly generate hashing function gi
 
(·)  

  for i from 1 to L do  
   generate hashing tables Ti

  
// result of Step 2 

Step 3  : Clustering Procedure */  

 Repeat  
  while not end of the dataset do  

   Take out object p in turn from the dataset  
   Validate a query point p using Figure 5 with hash 

table T, Eps  

   if p is approximate core object then  

    Take the approximate core point p as the 

center 

    Find all approximate density-connected 
points and group them into a 

cluster 

    Completely deletes them from M.   
 For all appropriate core points in M  

 Mark the remaining points as noisy clusters (outliers) 

End  

Figure 4 : Proposed LSH-DBSCAN 

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance
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In the above procedure, the valid(p) function is used 

to remove all dissimilar points and restricts all approximately 

nearest neighbour points with the Eps radius circle.  The 

procedure is given in Figure 5. 

 

The time and space complexities of the proposed 

LSH-DBSCAN algorithm depends on the size of dataset (n), 

the dimension of hash table (K), the number of hash tables (L) 

and the number of attributes (D). From Step 2 of Figure 4, the 

time complexity is O(L*K). In the Clustering procedure (Step 

3), the time of searching a point p is O(K log C) where log C 

is a constant. According to Aristides’ experiment, the value of 

C can be made very small  and can be ignored. Thus, the time 

complexity of this step becomes O(K). For the whole dataset, 

the time complexity is then O(N*K).  

During clustering, the algorithm needs to store L 

hash tables and the dataset in the main memory, so the space 

complexity of the proposed LSH-DBSCAN is O(K*L+N*D), 

while the traditional algorithm required O(N*D). Obviously, 

the space complexity of both algorithms can be deemed as 

O(N). The above analysis shows that, comparing with the 

former algorithms, the improved DBSCAN algorithm can 

reduce the time complexity without increasing the space 

complexity. 

4.EXPERIMENTAL RESULTS 

The effectiveness of the proposed clustering 

algorithms was evaluated using various datasets and 

performance metrics. Both small and large sized real-life 

datasets were used during experimentation. The real-life 

datasets were obtained from UCI Machine Learning 

Repository[12] and the numeric attributes were normalized 

according to a normal distribution and categorical values were 

converted to an integer representation. All the experiments 

were conducted in Windows environment on a Pentium IV 

machine with 2 GB RAM. All the algorithms were coded 

using Matlab 2009. The experiments were conducted in two 

stages. The first stage used real-time datasets during 

experimentation and the second stage used synthetic dataset 

for evaluation. Stage 1 experiments used two small sized 

datasets (Iris and bupa) and one large dataset (KDD Cup99).  

In Stage 2 a synthetic dataset was created according to the 

procedure given by (Wei et al. 2003)[21] and experiments 

were conducted to evaluate the performance of the proposed 

algorithms on their impact on dataset size and attribute size.  

Two performance metrics, namely silhouette measure and 

speed of clustering were used during evaluation. To obtain 

unbiased estimates, each experiment was performed 30 times 

and an overall performance estimate was calculated by 

averaging the performance of the 30 individual runs.  

4.1.Stage 1 Results 

Table 1shows the silhouette measure of the three selected real 

time datasets. 

Table 1 : Silhouette Measure 

Dataset DBSCA

N 

KD-

DBSCAN 

LSH-

DBSCAN 

IRIS 0.6403 0.6620 0.6584 

BUPA 0.6095 0.6317 0.6269 

KDD 

CUP99 

0.6681 0.7809 0.7796 

 

It is evident that both the proposed algorithms the clustering 

efficiency of the proposed algorithm is efficient and is in par 

with the traditional DBSCAN algorithm. The KD-DBSCAN 

and LSH-DBSCAN on average showed a performance 

efficiency of 6.54% and 2.35% respectively over traditional 

DBSCAN algorithm. While comparing between KD and LSH 

variants, the KD algorithm improved the clustering efficiency 

by 4.29%. Further, it is also interesting to note that while the 

dataset size increases, the clustering efficiency also increases, 

which shows that the proposed algorithms can also handle 

large-sized datasets in efficient manner. 

Table 2  shows the time required by the three algorithms in 

seconds to complete the clustering process.  

Table 2 : Execution Speed (Seconds) 

Dataset DBSCAN KD-DBSCAN LSH-DBSCAN 

IRIS 
5.23 3.65 3.61 

BUPA 
8.49 5.91 5.88 

KDD CUP99 
1245 966 1017 

 

Input: Hash table Ti , i=1,﹍,L, Eps, query point q   

Output: effective approximate NNS Points of q  

 
Begin  

 C ← ø  

 Obtain aggregation S as a cluster of the approximate Nearest 
Neighbor Points of q  

Repeat  

  For each point p in S  
   if dist(p,q) ≤ Eps do  

    C ← C  p (where p is an effective approximate 

NNS point) 
   Delete p from S  

 Until S is NULL  

End  

Figure 5 : Validated a Query Point Procedure 
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The execution speed results show that the inclusion 

of the two speed-up algorithms and automatic estimation of 

Eps and MinPts parameters in traditional DBSCAN have 

lowered the time required of DBSCAN algorithm. On 

average, the KD-DBSCAN algorithm took only 4.11 seconds 

and LSH-DBScan algorithm took 4.76 seconds when 

compared to 7.36 seconds of DBSCAN. Similar trend is also 

seen with KDD Cup99 also. This shows that the speed up 

procedures have a positive impact on speed of clustering.  

4.2.Stage 2 Results 

Figures 6 and 7 show the effect of varying dataset 

size on clustering efficiency and speed of clustering while 

using synthetic dataset. The speed efficiency was calculated 

as the ratio of time taken by DBSCAN algorithm to the time 

taken by the proposed KD/LSH algorithm.  

 

Figure 6 : Dataset Size and Clustering Efficiency 

 

 

Figure 7 : Dataset Size and Time Efficiency  

Careful scrutiny of the silhouette measure results 

show that the proposed algorithms are efficient in terms of 

scalability. This is evident from the increased silhouette width 

obtained by both KD-DBSCAN and LSH-DBSCAN 

algorithms. The performance of the traditional DBSCAN 

algorithm goes down for large-sized datasets. Thus, the speed 

optimizes KD-Tree and LSH have encouraging results with 

respect to clustering efficiency.  From figures 6 and 7, it is 

clear that the time efficiency gained by the proposed 

algorithm is high. The speed up ration obtained by KD-

DBSCAN was in the range 18-33, while it was in the range 1-

32 for LSH-DBSCAN. This shows that the KD-DBSCAN 

algorithm is more efficient than LSH-DBSCAN. 

5.CONCLUSION 

In this paper, the disadvantage that the traditional 

DBSCAN algorithm cannot handle large datasets in an 

efficient manner is solved by two algorithms. The first is the 

use of KD-Tree instead of the R-Tree algorithm used in 

traditional DBSCAN. 

 The second method included a Locally Sensitive 

Hashing algorithm to speed up the neighborhood search 

process. Both the algorithms were further enhanced by using 

an automated method using a k-distance graph method for 

calculating the input parameters, Eps and MinPts, of 

traditional DBSCAN. Experimental results proved that while 

both the algorithms improved the efficiency of DBSCAN with 

respect to clustering efficiency and speed, the KD-Tree based 

DBSCAN produced the best results. The main advantages of 

both the approaches are that they are unsupervised methods 

(which means new data can be added to the database can be 

clustered in future in an efficient manner) and are fully 

automatic and require no input from the users. Thus, the 

proposed algorithms are suitable for clustering both small and 

large sized datasets. Future work includes further research to 

find out reasons for the small degradation shown by LSH 

algorithm. Plans are also made to include pruning techniques 

and change of Hamming distance measure to a more efficient 

measure with which further speed gain can be achieved.   
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