
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

1

A Fast Approach to Clustering Datasets using DBSCAN
and Pruning Algorithms

S.Vijayalaksmi
Research and development centre,

 Bharathiar University,
Coimbatore

M Punithavalli, PhD.

Director, MCA Dept.
Sri Ramakrishna Engg.Collelge

Coimbatore

ABSTRACT

Among the various clustering algorithms, DBSCAN is an

effective clustering algorithm used in many applications. It

has various advantages like no a priori assumption needed

about the number of clusters, can find arbitrarily shaped

clusters and can perform well even in the presence of outliers.

However, the performance is seriously affected when the

dataset size becomes large. Moreover, the selection of the two

input parameters, Eps and MinPts, has a great impact on the

clustering performance. To solve these two problems, this

paper modifies the traditional DBSCAN algorithm in two

manners. The first method uses K-dimensional tree instead of

the traditional R-tree algorithm while the second method

includes a locally sensitive hash procedure to speed up the

process of clustering and increase the efficiency of clustering.

The algorithms use a k-distance graph method to

automatically calculate Eps and MinPts. Experimental results

show that both the algorithms are efficient in terms of

scalability and speeds up the clustering process in an efficient

manner.

Keywords: DBSCAN, Speed Optimization, Nearest

Neighbour Search, KD-Tree, Locally Sensitive Hashing.

1. INTRODUCTION

The beginning of the twenty first century has brought

considerable advances in the field of computer-based

information retrieval systems, where data with “hidden asset”

called “knowledge” is quickly becoming the most valuable

resource. The current era of information explosion utilizes

powerful data mining techniques that can efficiently analyze,

interpret and extract valuable knowledge. The rapid growth in

the number and size of databases, dimension and complexity

of data has made it necessary to automate the analysis

process, whose results can then be used by decision-making

processes. Data mining is a multi-faceted area which uses a

variety of data analysis tools to discover patterns and

relationships in data.

Clustering and classification are two popular data mining

techniques [14]. The popularity is behind the fact that they are

the first data mining techniques to examine the structure and

patterns in data.

Clustering analysis partition data objects objectively based on

measuring the mutual similarity between data objects. It is a

method that divides a set of objects into subsets, called

clusters, such that the objects in any cluster are similar to

those inside it and different from those outside it

[13].Clustering has a long and rich history in a variety of

scientific fields like image segmentation, information retrieval

and web data mining. Clustering algorithms can be

categorized into partition-based algorithms [16], hierarchical-

based algorithms spectral algorithms, density-based

algorithms [8]and grid-based algorithms [3] These methods

vary in (i) the procedures used for measuring the similarity

(within and between clusters) (ii) the use of thresholds in

constructing clusters (iii) the manner of clustering, that is,

whether they allow objects to belong to strictly to one cluster

or can belong to more clusters in different degrees and the

structure of the algorithm. Irrespective of the method used, the

resulting cluster structure is used as a result in itself, for

inspection by a user, or to support retrieval of objects

Among these, density-based algorithms have gained much

interest in the research community; [10] DBSCAN (Density-

Based Spatial Clustering of Applications with Noise), a

density based clustering algorithm is an effective clustering

algorithm for Spatial Database Systems. It has the following

advantages.

1. DBSCAN does not require knowing the number of

clusters in the data a priori, as opposed to k-means.

2. DBSCAN can find arbitrarily shaped clusters.

3. Performance does not degrade with the presence of

outliers

DBSCAN requires just two parameters and is mostly

insensitive to the ordering of the points in the database.

However, the algorithm also has some issues with regard to

execution time and its time complexity is O(n log n) The

algorithm fails to scale well to large dimensions because of

this complexity that mainly arises because of the searching the

neighbourhood process. In this paper, two techniques are

proposed to solve this problem and improve the speed of

DBSCAN clustering. The first method aims to reduce the time

required to search the neighbourhood by using an efficient

tree called kd-tree. The second uses a Locally-Sensitive

Hashing method to reduce the neighbourhood search time and

thus reduce the overall time requirement for DBSCAN

algorithm. The rest of the paper is organized as follows. A

brief study of the existing solutions is given in Section 2.

Section 3 presents the traditional DBSCA algorithm along

with the two proposed time-efficient fast DBSCAN variants.

The experimental results are discussed in Section 4 while

Section 5 concludes the research work with future research

directions.

2. LITERATURE STUDY

Several researchers have used different methods to improve

the time complexity problem of DBSCAN algorithm. These

methods can be loosely categorized as space partitioning,

sampling and methods that reduce the number of core points

(pruning). Space partitioning is the most frequently used

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

2

technique that reduces the search space and thus indirectly

reduces the time required by DBSCAN. Several partitioning

algorithms like CLARANS [6], K-Means simple one-pass

clustering [15] have been used for this purpose. Space

indexing techniques such as R-tree or X-tree have also been

used for fast retrieval of an object’s neighbors in a data set,

where indexing techniques can be classified as space

partitioning methods. In partition based DBSCAN algorithm,

partition is considered as a pre-processing step and normally

comes with its overheads like requiring extra memory, extra

computations and determining the correct values for input

parameters. The second method ‘sampling’ involves selecting

only a subset of the data set and using DBSCAN on randomly

selected subsets to form clusters. Examples include

SDBSCAN and Rough-DBSCAN. In these techniques, a

tradeoff between sampling rates and speed exists. That is, low

sampling rates decreases the time requirement but degrade the

clustering accuracy. Reducing the time requirement through

smart core detection methods was used by FDBSCANand

IDBSCAN [4]. Combining k-means and core point detection

methods was performed by KIDBSCAN.

 This method first located the high-density areas

using k-means algorithm and then introduced core points with

respect to density rankings. Similarly core point detection and

sampling method was combined by [20] to improve the time

requirement of DBSCAN. SPARROW [9] reduces the number

of core points using a method that is inspired by the flocking

mechanism of birds. Smart detection of core points and

sampling on the core points may result in anomalies such as

falsely dividing the original clusters and false identification of

border points as noise. Parallel approaches of DBSCAN are

introduced in [19];[11]. Although parallel implementations

may improve the execution time performance locally at each

processor, combining the results into the final output is not

trivial.

3. PROPOSED FAST VARIANTS OF

DBSCAN

Dbscan algorithm has its own definition. The

definition defines that point p is reachable from point p when

both the points are falls in the given distance. And point p is

consider only when p1,p2,p3 points are so close to it. So a

cluster should have the property like density connected points

should be part of cluster and all the points should mutually

density connected. Dbscan needs two input parameters

namely eps and minpts. Eps is the radius of the cluster and

minpts is minimum number of points in that cluster. Normally

Dbscan starts its journey from arbitrary starting point x which

is not visited already. If x has n number of neighbor then each

point will be visited and labeled as visited and that points will

be accumulated in the clusters. If but x does not have neighbor

point and it is not fll in given radius the that particular point

will be marked as noise. This is process will continue up to

the unvisited point in given distance.

Hence, all points that are found within the ε-

neighborhood are added, as is their own ε-neighborhood. This

process continues until the cluster is completely found. Then,

a new unvisited point is retrieved and processed, leading to

the discovery of a further cluster or noise. However, the

algorithm also has some major drawbacks which are as

follows:

The algorithm has two global parameters “ε” and

“MinPts”, estimation of which is difficult for an arbitrary

dataset.

The algorithm fails to scale well to large dimensions

because of the complexity of searching the neighbourhood in

large dimensions

3.1.KD Tree based DBSCAN (KDT-

DBSCAN)

Both the problems are solved in the present work by

using an automated process for identifying  and MinPts

values and using KD-Tree to solve the problem search

complexity. The use of kd tree is to segment the data structure

for aligning points in k-dimensional space. When there is need

to use multidimensional key, there the kd tree plays its role.

Kd tree has two nodes and k dimensional points so it called as

binary tree.

 Every non-leaf node can be thought of as implicitly

generating a splitting hyperplane that divides the space into

two parts, right and left subspaces. Every node in the tree is

associated with one of the k-dimensions, with the hyperplane

perpendicular to that dimension's axis. So, for example, if for

a particular split the "x" axis is chosen, all points in the

subtree with a smaller "x" value than the node will appear in

the left subtree and all points with larger "x" value will be in

the right sub tree. In such a case, the hyperplane would be set

by the x-value of the point, and its normal would be the unit

x-axis [2] Given a list of n points, the algorithm given in

Figure 2 constructs a balanced k-d tree containing those

points.

DBSCAN(D, eps, MinPts)

 C = 0

 for each unvisited point P in dataset D
 mark P as visited

 N = getNeighbors (P, eps)

 if sizeof(N) < MinPts
 mark P as NOISE

 else

 C = next cluster
 expandCluster(P, N, C, eps, MinPts)

expandCluster(P, N, C, eps, MinPts)
 add P to cluster C

 for each point P' in N

 if P' is not visited
 mark P' as visited

 N' = getNeighbors(P', eps)

 if sizeof(N') >= MinPts
 N = N joined with N'

 if P' is not yet member of any cluster

 add P' to cluster C

FIGURE 1 : DBSCAN ALGORITHM

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

3

The NN (nearest neighbor) algorithm is used to find

the points in the tree which is nearest to a point given. This

algorithm is very useful because easily it can avoid large

search space. Searching for a nearest neighbour in a k-d tree

proceeds is given in Figure 3.

In order to automatically detect the two parameters

epsilon and min-pts required by DBSCAN, this section

proposed the use of k-distance graph. Let ‘d’ be the distance

of a point ‘p’ to its kth nearest neighbor, then the d-

neighborhood of ‘p’ contains exactly k+1 points for almost all

points ‘p’. The d-neighborhood of ‘p’ contains more than k+1

points only if several points have exactly the same distance

‘d’ from ‘p’ which is quite unlikely. Furthermore, changing

‘k’ for a point in a cluster does not result in large changes of

‘d’. This only happens if the kth nearest neighbors of p for k =

1, 2, 3, are located approximately on a straight line which in

general is not true for a point in a cluster.

For a given k, a function k-dist from the database D

is defined by mapping each point to the distance from its kth

nearest neighbor. When sorting the points of the database in

descending order of their k-dist values, the graph of this

function gives some hints concerning the density distribution

in the database. This graph is called the sorted k-dist graph. If

an arbitrary point ‘p’ is chosen, set the parameter Eps to k-

dist(p) and set the parameter MinPts to k, all points with an

equal or smaller k-dist value will be core points. However, as

indicated by Ester et al. (1996), the k-dist graphs for k > 4 do

not significantly differ from the 4-dist graph and they need

considerably more computations. The applicability of value 4

to MinPts was further proved by several proposals [17]; [18].

Therefore, the parameter MinPts is set to 4 during

experimentations. The 4-dist value of the threshold point is

used as the Eps value for DBSCAN. These estimated values

were given as input to the DBSCAN algorithm given in

Figure 2

The time requirement of DBSCAN algorithm is O(n

log n) where n is the size of the dataset. This when combined

with k-distance graph to automatically select MinPts and Eps

values, increases to O(n2 log n). Usage of KD Tree (space

partitioning tree) reduced the time complexity to O(log n).

While using KD-Tree finding k nearest neighbours for each n

data point the complexity is O(kn log n). The k value is very

negligible and therefore does not make much different and

hence the time complexity becomes O(log n).

3.2.LSH-based DBSCAN (LSH-DBSCAN)

Locally Sensitive Hashing (LSH) is an efficient

randomized search technique proposed by The k-dist function

used to find the kth nearest neighbor of given point. In the k-

dist function there is graph called k-graph which has the

purpose of finding density distribution of given set of points..

The principle of hash function is to collect the items in the

same bucket which are uniform and with high probability.

LSH (Locality sensitive hashing) is method which

accumulate the group of points into a same bucket based on

the distance metric. The algorithm is popular in similarity

searching [5], malware clustering [1] and hierarchical

clustering. An LSH F is defined for a metric space M = (M,

d), a threshold R>0 and an approximation factor c > 1. An

LSH family F is a family of functions h : m  S satisfying

1. Starting with the root node, the algorithm moves down the
tree recursively, in the same way that it would if the search

point were being inserted (i.e. it goes left or right depending

on whether the point is less than or greater than the current
node in the split dimension).

2. Once the algorithm reaches a leaf node, it saves that node

point as the "current best"

3. The algorithm unwinds the recursion of the tree, performing

the following steps at each node:

1. If the current node is closer than the current best,
then it becomes the current best.

2. The algorithm checks whether there could be any

points on the other side of the splitting plane that are
closer to the search point than the current best. In

concept, this is done by intersecting the splitting

hyperplane with a hypersphere around the search
point that has a radius equal to the current nearest

distance. Since the hyperplanes are all axis-aligned

this is implemented as a simple comparison to see
whether the difference between the splitting

coordinate of the search point and current node is

less than the distance (overall coordinates) from the
search point to the current best.

1. If the hypersphere crosses the plane,

there could be nearer points on the
other side of the plane, so the

algorithm must move down the other
branch of the tree from the current

node looking for closer points,

following the same recursive process
as the entire search.

2. If the hypersphere doesn't intersect

the splitting plane, then the algorithm
continues walking up the tree, and

the entire branch on the other side of

that node is eliminated.

4. When the algorithm finishes this process for the root node,

then the search is complete.

Figure 3 : Search Algorithm Using KD-Tree

Input : List of points pointList and depth

Output : KD Tree

Function kdtree(pointList, depth)

Step 1 : Select axis based on depth so that axis cycles

through all valid values (axis = depth mod k)

Step 2 : Sort point list and choose median as pivot
element

Step 3 : Create node and construct subtrees

 node location := median;

 leftChild := kdtree(points in pointList before

median, depth+1);

 rightChild := kdtree(points in pointList after
median, depth+1);

Step 4 : Repeat Steps 1 - 3 till pointList in empty.

Figure 2 : KD Tree Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

4

the following conditions for any two points p, q M and a

function h chosen uniformly at random from F:

if d(p, q)  R, then h(p) = h(q) (i.e, p and q collide) with

probability at least P1.

If d(p, q)  cR, then h(p) = h(q) with probability at most P2.

A family is said to be interesting when P1 > P2 and such a

family F is called (R, cR, P1, P2)-sensitive.

One of the easiest ways to construct an LSH family

is by bit sampling. This approach works for the Hamming

distance over d-dimensional vectors {0, 1}d. Here, the family

F of hash functions is simply the family of all the projections

of points on one of the d coordinates, i.e., F = {h : {0, 1}d 

{0, 1} | h(x) = xi, i = 1 .. d}, where xi is the ith coordinate of

z. A random function h from F simply selects a random bit

from the input point. This family has the following parameters

P1 = 1- R/d and P2 = 1-cR/d.

In the proposed method is used to reduce the

neighbourhood search time. In DBSCAN, the nearest

neighbour point search returns all those points inside a circle

with center ‘Ce’ and radius ‘ra’. While using with LSH, the

nearest neighbour search (NNS) returns only approximate

points, that is, it returns only those points of ‘Ce’ with radius

(1+)d, where  is a user defined value and is > 0. For each

point, its retrieval time complexity is O(d log C),

where d and C are independent to N and LSH guarantees that

the query time is O(D*N1/1+) for approximate nearest

neighbor query over an n-point database . The differences

between DBSCAN based on the LSH algorithm and the

original DBSCAN are as follows.

The LSH algorithm enhances original DBSCAN by

substituting its retrieval technique for LSH, improves NNS of

DBSCAN by hashing and decreasing time complexity

Being different from original LSH, after obtaining

the points retrieved by LSH, wrong points which are far from

the center point are removed and thus the scale of the data is

reduced.

The algorithm works in two steps. The first step

constructs the LSH hash index and the second step uses

DBSCAN to cluster the dataset using the index created in the

previous step. Let the LSH family be F, the algorithm has two

parameters, width (k) and number of hash functions (L). In

the first step, a new family G of hash function g is defined,

where each function g is obtained by concatenating k

randomly chosen hash function from F, i.e., g(p)=[h1(p), …,

hk(p)]. In other words, a random hash function g is obtained

by concatenating k randomly chosen hash functions from F.

The algorithm then constructs L hash tables, each

corresponding to a different randomly chosen hash function g.

Initially all n points from a dataset S is hashed into

each of the L hash tables. The hashing function is chosen in

such a way that it results with hashing tables that has only n

non-zero entries and can reduce the amount of memory used

per hash table to O(n). The hash function used in the study is

described below. Given an input data X, the hash function

selects a random integer d from [1, D], where D is the number

of attributes in the dataset and selects random Vid from [a, b]

(Equation 1).

 








idVdX0

idVdX1
)dX(F

 (1)

Using the above equation, for each input data, a k length

string which is composed of 0 and 1 can thus be obtained. The

hash function exhibits an important property required by NSS

algorithms That is, when two data are very similar then the

probability of them falling into the same hash table is high

and vice versa.

The main concern of using LSH algorithm in NNS is the

parameter selection L and K. In this study, an automatic

estimation process is used. Given two probabilities, P1 and

P2, k and L can be calculated using Equation (2).

21/P log

n log
K 

 and L =n where  = 2P log

1P log

 (2)

The method used to estimate the two parameters

Eps and MinPts is the same as the method described in

Section 3.1. The proposed LSH-DBSCAN algorithm is

described in Figure 4.

Input: M - the dataset

Output: Clusters

Step 1 : Estimate parameters Eps, MinPts, K and L

Step 2 : Initialization

Begin
 for i from 1 to K do

 randomly generate hashing function gi

(·)

 for i from 1 to L do
 generate hashing tables Ti

// result of Step 2

Step 3 : Clustering Procedure */

 Repeat
 while not end of the dataset do

 Take out object p in turn from the dataset
 Validate a query point p using Figure 5 with hash

table T, Eps

 if p is approximate core object then

 Take the approximate core point p as the

center

 Find all approximate density-connected
points and group them into a

cluster

 Completely deletes them from M.
 For all appropriate core points in M

 Mark the remaining points as noisy clusters (outliers)

End

Figure 4 : Proposed LSH-DBSCAN

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

5

In the above procedure, the valid(p) function is used

to remove all dissimilar points and restricts all approximately

nearest neighbour points with the Eps radius circle. The

procedure is given in Figure 5.

The time and space complexities of the proposed

LSH-DBSCAN algorithm depends on the size of dataset (n),

the dimension of hash table (K), the number of hash tables (L)

and the number of attributes (D). From Step 2 of Figure 4, the

time complexity is O(L*K). In the Clustering procedure (Step

3), the time of searching a point p is O(K log C) where log C

is a constant. According to Aristides’ experiment, the value of

C can be made very small and can be ignored. Thus, the time

complexity of this step becomes O(K). For the whole dataset,

the time complexity is then O(N*K).

During clustering, the algorithm needs to store L

hash tables and the dataset in the main memory, so the space

complexity of the proposed LSH-DBSCAN is O(K*L+N*D),

while the traditional algorithm required O(N*D). Obviously,

the space complexity of both algorithms can be deemed as

O(N). The above analysis shows that, comparing with the

former algorithms, the improved DBSCAN algorithm can

reduce the time complexity without increasing the space

complexity.

4.EXPERIMENTAL RESULTS

The effectiveness of the proposed clustering

algorithms was evaluated using various datasets and

performance metrics. Both small and large sized real-life

datasets were used during experimentation. The real-life

datasets were obtained from UCI Machine Learning

Repository[12] and the numeric attributes were normalized

according to a normal distribution and categorical values were

converted to an integer representation. All the experiments

were conducted in Windows environment on a Pentium IV

machine with 2 GB RAM. All the algorithms were coded

using Matlab 2009. The experiments were conducted in two

stages. The first stage used real-time datasets during

experimentation and the second stage used synthetic dataset

for evaluation. Stage 1 experiments used two small sized

datasets (Iris and bupa) and one large dataset (KDD Cup99).

In Stage 2 a synthetic dataset was created according to the

procedure given by (Wei et al. 2003)[21] and experiments

were conducted to evaluate the performance of the proposed

algorithms on their impact on dataset size and attribute size.

Two performance metrics, namely silhouette measure and

speed of clustering were used during evaluation. To obtain

unbiased estimates, each experiment was performed 30 times

and an overall performance estimate was calculated by

averaging the performance of the 30 individual runs.

4.1.Stage 1 Results

Table 1shows the silhouette measure of the three selected real

time datasets.

Table 1 : Silhouette Measure

Dataset DBSCA

N

KD-

DBSCAN

LSH-

DBSCAN

IRIS 0.6403 0.6620 0.6584

BUPA 0.6095 0.6317 0.6269

KDD

CUP99

0.6681 0.7809 0.7796

It is evident that both the proposed algorithms the clustering

efficiency of the proposed algorithm is efficient and is in par

with the traditional DBSCAN algorithm. The KD-DBSCAN

and LSH-DBSCAN on average showed a performance

efficiency of 6.54% and 2.35% respectively over traditional

DBSCAN algorithm. While comparing between KD and LSH

variants, the KD algorithm improved the clustering efficiency

by 4.29%. Further, it is also interesting to note that while the

dataset size increases, the clustering efficiency also increases,

which shows that the proposed algorithms can also handle

large-sized datasets in efficient manner.

Table 2 shows the time required by the three algorithms in

seconds to complete the clustering process.

Table 2 : Execution Speed (Seconds)

Dataset DBSCAN KD-DBSCAN LSH-DBSCAN

IRIS
5.23 3.65 3.61

BUPA
8.49 5.91 5.88

KDD CUP99
1245 966 1017

Input: Hash table Ti , i=1,﹍,L, Eps, query point q

Output: effective approximate NNS Points of q

Begin

 C ← ø

 Obtain aggregation S as a cluster of the approximate Nearest
Neighbor Points of q

Repeat

 For each point p in S
 if dist(p,q) ≤ Eps do

 C ← C  p (where p is an effective approximate

NNS point)
 Delete p from S

 Until S is NULL

End

Figure 5 : Validated a Query Point Procedure

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

6

The execution speed results show that the inclusion

of the two speed-up algorithms and automatic estimation of

Eps and MinPts parameters in traditional DBSCAN have

lowered the time required of DBSCAN algorithm. On

average, the KD-DBSCAN algorithm took only 4.11 seconds

and LSH-DBScan algorithm took 4.76 seconds when

compared to 7.36 seconds of DBSCAN. Similar trend is also

seen with KDD Cup99 also. This shows that the speed up

procedures have a positive impact on speed of clustering.

4.2.Stage 2 Results

Figures 6 and 7 show the effect of varying dataset

size on clustering efficiency and speed of clustering while

using synthetic dataset. The speed efficiency was calculated

as the ratio of time taken by DBSCAN algorithm to the time

taken by the proposed KD/LSH algorithm.

Figure 6 : Dataset Size and Clustering Efficiency

Figure 7 : Dataset Size and Time Efficiency

Careful scrutiny of the silhouette measure results

show that the proposed algorithms are efficient in terms of

scalability. This is evident from the increased silhouette width

obtained by both KD-DBSCAN and LSH-DBSCAN

algorithms. The performance of the traditional DBSCAN

algorithm goes down for large-sized datasets. Thus, the speed

optimizes KD-Tree and LSH have encouraging results with

respect to clustering efficiency. From figures 6 and 7, it is

clear that the time efficiency gained by the proposed

algorithm is high. The speed up ration obtained by KD-

DBSCAN was in the range 18-33, while it was in the range 1-

32 for LSH-DBSCAN. This shows that the KD-DBSCAN

algorithm is more efficient than LSH-DBSCAN.

5.CONCLUSION

In this paper, the disadvantage that the traditional

DBSCAN algorithm cannot handle large datasets in an

efficient manner is solved by two algorithms. The first is the

use of KD-Tree instead of the R-Tree algorithm used in

traditional DBSCAN.

 The second method included a Locally Sensitive

Hashing algorithm to speed up the neighborhood search

process. Both the algorithms were further enhanced by using

an automated method using a k-distance graph method for

calculating the input parameters, Eps and MinPts, of

traditional DBSCAN. Experimental results proved that while

both the algorithms improved the efficiency of DBSCAN with

respect to clustering efficiency and speed, the KD-Tree based

DBSCAN produced the best results. The main advantages of

both the approaches are that they are unsupervised methods

(which means new data can be added to the database can be

clustered in future in an efficient manner) and are fully

automatic and require no input from the users. Thus, the

proposed algorithms are suitable for clustering both small and

large sized datasets. Future work includes further research to

find out reasons for the small degradation shown by LSH

algorithm. Plans are also made to include pruning techniques

and change of Hamming distance measure to a more efficient

measure with which further speed gain can be achieved.

REFERENCES

[1] Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C.

and Kirda, E. (2009) Scalable, behavior-based malware

clustering, Proceedings of the 16th Annual Network and

Distributed System Security Symposium (NDSS 2009),

Pp. 1-18.

[2] Bentley, J.L. (1975) Multidimensional binary search

trees used for associative searching, Communications of

the ACM, Vol.18, No.9, Pp.509-517.

[3] Bhakare, K.R., Krishna, R.K. and Bhakare, S. (2012) An

Energy-Efficient Grid based Clustering Topology for a

Wireless Sensor Network, International Journal of

Computer Applications, Vol. 39, No.14, Pp.24-28.

[4] Borah, B. and Bhattacharyya, D. (2004) An improved

sampling-based DBSCAN for large spatial databases,

Proceedings of International Conference on Intelligent

Sensing and Information Processing, Pp. 92–96.

[5] Cao, Y., Jiang, T. and Girke, T. (2010) Accelerated

similarity searching and clustering of large compound

sets by geometric embedding and locality sensitive

hashing. Bioinformatics, Vol. 26, No. 7, Pp. 953-959.

[6] El-Sonbaty, Y., Ismail, M. and Farouk, M. (2004) An

efficient density based clustering algorithm for large

10.0

15.0

20.0

25.0

30.0

35.0

40.0

10000 20000 30000 40000 50000

S
p

ee
d

 U
p

 R
a

ti
o

KD-DBSCAN LSH-DBSCAN

Dataset Size

0.5

0.6

0.7

0.8

0.9

10000 20000 30000 40000 50000 S
il

h
o

u
et

te

W

id
th

DBSCAN KD-DBSCAN LSH-DBSCAN

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.14, December 2012

7

databases, 16th IEEE International Conference on Tools

with Artificial Intelligence, ICTAI, Pp. 673–677.

[7] Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996) A

density-based algorithm for discovering clusters in large

spatial databases with noise, Proc. KDD 96, Pp. 226–

231.

[8] Fan, Y. and Yuta, R. (2011) A Density-based Path

Clustering Algorithm, International Conference on

Intelligent Computation and Bio-Medical

Instrumentation (ICBMI), Hubei, Pp. 224-227.

[9] Folino, G., Forestiero, A., Spezzano, G., 2009. An

adaptive flocking algorithm for performing approximate

clustering. Inform. Sci. 179 (18), 3059–3078.

[10] Garai, G. and Chaudhuri, B.B. (2004) A novel genetic

algorithm for automatic clustering, Pattern Recognition

Letters, Vol. 25, No.2, Pp. 173–187.

[11] Guo, Y., Grossman, R., Xu, X., Jäger, J. and Kriegel, H.

(2002) A fast parallel clustering algorithm for large

spatial databases, High Performance Data Mining,

Springer, US, Pp. 263–290.

[12] http://archive.ics.uci.edu/ml/datasets.html

[13] Ivancsy, R. and Kovacs, F. (2006) Clustering techniques

utilized in web usage mining, Proceedings of the 5th

WSEAS International Conference on Artificial

Intelligence, World Scientific and Engineering Academy

and Society (WSEAS), Knowledge Engineering and Data

Bases, Pp. 237-242.

[14] Jain, A.K., Mutry, M.N. and Flynn, P.J. (1999) Data

Clustering: A Review, ACM Computing Surveys, Vol.

31, No. 3, Pp. 264-323.

[15] Jiang, S. and Li, X. (2009) A hybrid clustering algorithm,

Fourth International Conference on Fuzzy Systems and

Knowledge Discovery, Vol. 1. IEEE Computer Society,

Los Alamitos, CA, USA, Pp. 366–370.

[16] Li, J., Yi, S., Wang, X., Hu, X. and Jiang, H. (2011) A

new hybrid method based on partitioning-based

DBSCAN and ant clustering, Expert Systems with

Applications, Elsevier, Vol. 38, Issue 8, Pp.9373-9381.

[17] Phung, D., Adams, B., Tran, K., Venkatesh, S. and

Kumar, M. (2009) High Accuracy Context Recovery

using Clustering Mechanisms, In proceedings of the

seventh international conference on Pervasive

Computing and Communications, PerCom Galveston,

USA, Pp. 122-130.

[18] Raiser, S., Lughofer, E., Eitzinger, C. and Smith, J.E.

(2010) Impact of object extraction methods on

classification performance in surface inspection systems,

Special Issue Paper, Machine Vision and Applications,

Springer-Verlag, PP. 627~641.

[19] Sakellariou, R., Gurd, J., Freeman, L., Keane, J., Arlia,

D. and Coppola, M. (2001) Experiments in parallel

clustering with DBSCAN, Euro-Par 2001 Parallel

Processing, CASES’04, Springer, Berlin/Heidelberg,

Vol. 2150, Pp. 26–331.

[20] Tsai, C. and Sung, C. (2010) EIDBSCAN: An extended

improving DBSCAN algorithm with sampling

techniques. International Journal of Business Intelligence

and Data Mining, Vol. 5, No. 1, Pp.94–111.

[21] Wei, C.P., Lee, Y.H. and Hsu, C.M. (2000) Empirical

comparison of fast clustering algorithms for large data

sets, Proceedings of the 33rd Hawaii International

Conference on System Sciences, IEEE Explore Digital

Library, Pp.1-10.

