
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.13, December 2012

21

FPGA based High Speed Double Precision Floating
Point Divider

Addanki Purna Ramesh

Department of ECE,
Sri Vasavi Engineering College, Pedatadepalli,

Tadepalligudem, India.

Dhanalakshmi Balusu
Department of ECE,

Sri Vasavi Engineering College, Pedatadepalli,
Tadepalligudem, India.

ABSTRACT
Floating point arithmetic is widely used in many areas,

especially scientific computation and signal processing.

For many signal processing, and graphics applications, it is

acceptable to trade off some accuracy (in the least

significant bit positions) for faster and better

implementations. Division is the third basic operation of

arithmetic. However, most of these modern applications

need higher frequency or low latency of operations with

minimal area occupancy. In this paper we describe an

implementation of high speed IEEE 754 double precision

floating point divider using digit recurrence algorithm and

targeted for Xilinx Virtex-6 Field Programmable Gate

Array. Verilog is used to implement the design. The

implemented design achieves 344.89 MFlops and this

design occupies 653 slices. It handles the overflow,

underflow and rounding mode.

Keywords

Double precision, Floating point, Divider, FPGA, IEEE-

754, and Virtex6

1. INTRODUCTION
Floating point numbers are one possible way of

representing real numbers in binary format. The IEEE 754

standard presents two different floating point formats,

Binary interchange format and Decimal interchange

format. Multiplying floating point numbers is a critical

requirement for DSP applications involving large dynamic

range. This paper focuses on double precision floating

point binary interchange format. Figure.1 shows the IEEE

754 double precision floating point binary format

representation. It consists of a one bit sign (S), an eleven

bits exponent (E), and a fifty two bits fraction (M or

Mantissa). An extra bit is added to the fraction to form

what is called the significand1. If the exponent is greater

than 0 and smaller than 2047, and there is 1 in the MSB of

the significand then the number is said to be a normalized

number, Significand is the mantissa with an extra MSB bit.

Z = (-1S) * 2 (E - Bias) * (1.M)

Where M = m51 2
-1 + m50 2

-2 + m49 2
-3+…+ m1 2

-51+ m0 2
-

52

 Bias = 1023.

 Figure 1: IEEE Double precision floating point format

2. IMPLEMENTATION OF HIGH

SPEED DOUBLE PRECISION

FLOATING POINT DIVIDER

.The double precision floating point divider performs

operation such as division. The Black box view of double

precision floating point divider is shown in figure2.

The input signals to the top level module are

1. Clk

2. Rst

3. Enable

4. Rmode (Rounding mode)

Rounding Modes selected for various bit combinations

of rmode

Bit

combination

Rounding Mode

00 round_nearest_even

01 round_to_zero

10 round_up

11 round_down

5. Opa (64 bits)

6. Opb (64 bits)

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.13, December 2012

22

The output signals from the module are

1. Out (output from operation, 64 bits)

2. Ready

3. Underflow

4. Overflow

5. Inexact

6. Exception

7. Invalid

The block diagram and inter-connections of the three sub-

modules of the double precision floating point divider is

shown in figure 3 and 4 respectively. The sub modules of

double precision floating point divider are listed below.

1. Fp_div_int

2. Fp_round

3.Fp_exception

.

Figure 2: Black box view of High Speed double precision floating point divider

Figure 3: Block diagram of High Speed double precision floating point divider

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.13, December 2012

23

 fp_div_int

 Mantissa_7(55:0)

 Sign

 Exponent_out(11:0)

Op a(63:0)

Op b(63:0)

 Rmode(1:0)

 Clk

 Enable

 Rst

Fp_round

Fp_exception

 Exponent_term(11:0)

 Mantissa_term(55:0)

 Round_mode(1:0)

 Enable

 Rst

Sign_term

 Exponent_final(11:0)

Round_out(63:0)

 Exponent_in(11:0)

 Clk

 In_except(63:0)

 Mantissa_in(1:0)

 Op a(63:0)

Op b(63:0)

 Rmode(1:0)

 Clk

 Enable

 Rst

 Out(63:0)

 Exception

 En_enable

Inexact

Invalid

 Overflow

 Underflow

Op a(63:0)

Op b(63:0)

 Rmode(1:0)

 Clk

 Enable

 Rst

Out(63:0)

 Exception

 Inexact

 Invalid

 Ready

 Overflow

 Underflow

Fp_double_div

Figure 4: Inter-connection of sub modules of High Speed double precision floating point divider

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.13, December 2012

24

The divide operation is performed in the module

(fp_div_int). The leading ‘1’ (if normalized) and mantissa

of operand A is the dividend, and the leading ‘1’ (if

normalized) and mantissa of operand B is the divisor. The

divide is executed long hand style, with one bit of the

quotient calculated each clock cycle based on a

comparison between the dividend register (dividend_reg)

and the divisor register (divisor_reg). If the dividend is

greater than the divisor, the quotient bit is ‘1’, and then the

divisor is subtracted from the dividend, this difference is

shifted one bit to the left, and it becomes the dividend for

the next clock cycle. If the dividend is less than the divisor,

the dividend is shifted one bit to the left, and then this

shifted value becomes the dividend for the next clock

cycle.

The exponent for the divide operation is calculated from

the exponent fields of operands A and B. The exponent of

operand A is added to 1023, and then the exponent of

operand B is subtracted from this sum. The result is the

exponent value of the output of the divide operation. If the

result is less than 0, the quotient will be right shifted by the

amount. The divide operation takes 54 clock cycles to

complete, as it takes 1 clock cycle to calculate each of the

54 bits of the quotient. The register (count_out) counts

down from 53 to 0, and when it reaches 0, the 54-bit

quotient register has its final value. The value that is

passed on to the rounding module is stored in the 56-bit

register (mantissa_7). The first most significant bit is a ‘0’

to hold a value in case of overflow in the rounding stage,

the next bit is the leading ‘1’ for normalized numbers, and

the next 52 bits are the mantissa bits. The remaining 2 bits

are extra bits for rounding purposes. The first extra bit is

the last bit that was calculated in the quotient. The quotient

has 54 bits, while the mantissa and leading ‘1’ are only 53

bits, so the extra bit is saved and passed on to the rounding

stage. The second extra bit is calculated by performing an

OR on all of the remainder bits that were leftover after the

last compare between the dividend and divisor registers.

3. SIMULATION RESULTS

The simulation results of double precision floating point

divider are shown in figure 5. Here the inputs opa, opb and

the outputs for addition and subtraction as shown in below.

Input A: 5.0000000000e+000

Input B: 2.5000000000e+000

Enable = 1'b1;

Opa =

64'b01000000000101000000000000000000000000000000

00000000000000000000;

Opb =

64'b01000000000001000000000000000000000000000000

00000000000000000000;

Output:

The Device utilization summery of high speed double

precision floating point divider is shown in figure 6. Table

1 and 2 shows the Timing Summary and Area and

Frequency Comparison between the High Speed Double

Precision Floating Point divider and reference paper [1]

.The high speed double precision floating point divider

targeting on Virtex-6 xc6vlx75t-3ff484 with a Frequency

of 344.89 MHz, it required area is 653 slices.

Figure 5: Simulation Results for High Speed double precision floating point divider

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.13, December 2012

25

Figure 6 : Device utilization summery of High Speed double precision floating point divider

Table 1 : Timing summary for High Speed double precision floating point divider

Sl. No Parameter

1 Minimum period (ns) 2.899

2 Max Frequency (MHz) 344.89

3 Minimum input arrival time before clock (ns) 1.520

4 Maximum output required time after clock (ns) 0.562

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.13, December 2012

26

Table 2: Area and Frequency Comparison between the High Speed Double Precision Floating Point divider and reference

paper in [1]

Device parameters Our Floating Point divider

(Virtex-6)

In [1]

No of slices 653

265 MHz No of Flip flops 1980

Max Frequency (MHz) 344.89

4 CONCLUSIONS

The high speed double precision floating point divider

supports the IEEE 754 binary interchange format, targeted on

a Xilinx Virtex-6 xc6vlx75t-3ff484 FPGA. It achieved 344.89

MFLOPs which is 30% fast compared to reference paper [1].

This design occupies 653 slices which is less area compared

to reference paper [1]. In view of used flip flops this design

uses 1980 flip flops. This design handles the overflow,

underflow and rounding mode.

5 REFERENCES
[1] Shamna.K, and S.R Ramesh,” Design and

Implementation of an Optimized Double Precision

Floating Point Divider on FPGA” International Journal

of Advanced Science and Technology Vol. 18, pp.41-48,

May, 2010.

[2] K. Scott Hemmert and Keith D. Underwood “Floating

Point Divider Design for FPGAs”, IEEE Transaction on

very large scale integration systems,vol. 15, No. 1, pp.

115-118,Jan 2007.

[3] Anuja Jayraj Thakkar and Abdel Ejnioui “Design and

Implementation of Double Precision Floating Point

Divider and Square Root Operations on FPGAs,”IEEE

Conference on field programmable technology, 2006.

[4] X .Wang and B.E Nelson, "Tradeoffs of designing

floating point division and square root on virtex fpgas”,

International Conference on engineering of

reconfigurable systems and algorithms, 2004.

[5] S. Paschalakis and P. Lee,”Double precision Floating

point arithmetic on fpgas "IEEE Conference on field

programmable technology, 2003.

[6] S.F. Oberman and M.J. Flynn, “Division Algorithms and

Implementations,” IEEE Trans. Computers, vol. 46, no.

8, pp. 833-854, Aug. 1997

[7] Peter Soderquist, Miriam Leeser, "Division and Square

Root: Choosing the Right Implementation,"IEEE Micro,

vol. 17, no. 4, pp. 56-66, July/Aug. 1997

[8] S.F. Oberman and M.J. Flynn, “Design Issues in Division

and Other Floating-Point Operations,” IEEE Trans.

Computers, vol. 46, no. 2, pp. 154-161, Feb. 1997

