International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 12, December 2012

Performance Analysis of Mobile Memory with
Optimization

Rohit Maurya Ajay Shankar Shukla Manish Kumar Sharma
Gameloft India Pvt. Ltd ABV-IIITM GNIT
Hydrabad Gwalior Greater Noida

ABSTRACT

As it known that mobile phones has low end configuration so
we need memory optimization and network bandwidth reduction.
These are very important factor for mobile developer because stor-
age memory is very limited ranging from 64K to 200K bytes and
the heap memory is ranging from 200K to500K bytes. The maxi-
mum size of application is fixed so we cannot run the application
which exceeds that maximum size. Computing power is also lim-
ited so only few instructions can be processed per unit time. The
problem is, unlike the PC platform where hardware can be easily
upgraded whenever required; in mobile it is almost impossible to
update the hardware requirement dynamically. Games developed
for a particular mobile platform may or may not run on the other
mobile platform due to difference of hardware capability. So in mo-
bile platform only chance is to play with the source code, it is devel-
oper who has to write the code in such a way that will consume less
resource and run faster.In this paper we present various techniques
to optimize mobile memory for mobile games.

Keywords:

Optimization, Games, Mobile, Memoryifx

1. INTRODUCTION

The evolution of mobile phones is very rapid and the use of mo-
bile phones increases ranging from communication to entertain-
ment especially in gaming. The mobile has now become more
than the medium of communication. It is now equipped with
more multimedia and gaming capability. The hardware capabil-
ity is also increasing but less rapid than the usage of broad range
of multimedia application like 3D gaming, social networking etc.
So mobile phones are needed to perform more and faster compu-
tation than its predecessors. In PC environment hardware can be
upgraded easily as the requirement changes but it is not practical
for the mobile platform so instead of changing the hardware re-
quirement we have to change or optimize our algorithms to meet
the requirement. The paper is organized as follows, mobile plat-
form constraints Section II, followed various optimization tech-
niques in Section III , Section IV shows simulated results and
finally Section V presents the conclusion.

2. MOBILE PLATFORM CONSTRAINTS

When we are developing or porting games from PC platform to
mobile platform, special care has to be taken because of limita-
tion of mobile platform because in case of porting the game from
PC environment to mobile environment the hardware capability
will not be the same as the PC platform[4].

It will be less as compared to PC platform so chances are very
few to run the same game on mobile platform without optimiza-
tion. So first we discuss in this section what the constraints of
mobile platform are and then we will discuss how to optimize
the game to fit in those constraints in the next section. The limi-
tation of mobile platform can be given as follows.

2.1 Memory Limitation

Memory limitation is a major issue with the mobile game
developer. This is no longer a critical issue for developer due
to falling price of flash memory. But it still needs to handle
carefully to avoid memory leaks, crashes and fragmentation.
There are three types of memory in typical java games:-
Storage Memory: Storage memory is the memory where
jar application is stored. Every mobile platform has a fixed
maximum jar size so if our jar application has a size greater than
this maximum size, we need to minimize it. By doing this we
also reduce the storage size as well as the download time and
cost charged by the network [2].

Stack and Heap:Stack stores primitive data types such as int,
long and Boolean. Heap stores the runtime objects. The heap
size is lesser than the stack so we should avoid creating runtime
objects unless it is necessary.

Persistent Storage: Persistent Storage is a non-volatile storage
for data. J2ME applications use the Record Management System
to store the persistent data.

2.2 Control Processing Units

Most of the phone will have very slow clock speed. So complex
calculation like 3d graphics calculations are limited in the speed
with which they can be performed. Size of cache is also limited
which will put extra burden on the processor due to excessive
data demand.

2.3 Low Bus Bandwidth

In mobile phones the data flow between CPU, memory and I/O
devices is limited due to low bus bandwidth. So developers have
to be careful while programming and try not to flood the data
flow because it will affect the throughput and efficiency.

3. TECHNIQUES FOR OPTIMIZATION

Optimization is required to make the application run within the
constraints. In case we are short of memory and our application
is larger than the maximum size we have to reduce it to lower
than the maximum allowed size. Most useful and effective ap-
proach is to compress or reduce the graphics and jar size. If we
are short of heap memory or device cannot allocate the suffi-
cient memory to run the application, we have to optimize our
source code as well as graphics also because a bad source code
can cause the heap problem. Example of heap crisis is loading
of unnecessary data at one time which is larger than the heap
memory. So we discuss two main optimization techniques: first
is memory optimization and another is source code optimization
in the following optimization techniques.

3.1 Memory Optimization

Mobile platform faces two types of memory optimization issues
first jar size optimization and another is heap memory issue.

3.1.1 Jar Size Optimization. A mobile application consists of
class files and resources so jar size greatly depends on the size
of these resources and class files. Jar uses zip compression to
reduce the size of jar. Sometimes it is not sufficient we need to
further reduce the size of jar. The method of jar optimization is
discussed in the following sections.

3.1.1.1 Graphics Optimization

1 Combine small images into big image:
In mobile games graphics consume lots of spaces. So graph-
ics size can be reduced by combining the lots of small im-
ages into single image. By doing this we can eliminate the
header from the small images and size will be reduced.
If there are various avatar of the actor or hero in the game,
we do not take separate images for the different avatar we
only save the difference between two avatars because it will
reduce the graphics size. Consider the following 7 avatars
first two avatar is almost same except the change in leg
movements and avatar 3 to 6 has difference in only hand
and leg movements. So by saving the avatar 1, 2, 3, 4, 5, 6
we are saving their common parts too which is obviously in-
crease the size of graphics. But if we store only the changes
in the avatar as shown in 1.A, 1.B, 1.C we can eliminate the
duplication and able to reduce the size graphics.
As shown in the figure 1 first we combine the different im-
age in one single image and draw the avatars using that sin-
gle image. For example if we want to draw avatar, we select
the face from the image and then the hair and other parts
according the type of avatar. By doing this we only need to
store those parts which are changing. We can see from the
above figure if we store different avatar as a single image
how much space can be saved.
As we see in figure 2 we can draw the avatar by taking the
different required part from the single image which is de-
noted in rectangle.
This concept also applied in the different levels because the
different levels differ by only a slight graphics change and
we dont need to store the common parts again and again.
By reducing the graphics we can also optimize the heap

fer2TRe

(The above images is not three separate images its same
as shown in 1.D, its shown in three separate part only for
better visibility)

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 12, December 2012

Fig. 1.

(Image 1.D is a big single image consists of several
small images)

Fig. 2.

2 Using Optimization Tools
We can compress the graphics using graphics optimization
tools like punyPNG, WebP and etc which will reduce the
graphics size to a great extent.

3 Combine Image Files into a Data File
We can combine the all the images of our games in to sin-
gle data file to reduce the jar size because compressing the
bigger file will give the better compression than compress-
ing small files separately. In this way we can also hide the
images used from the decompression of the jar.

3.1.2 Heap Memory Optimization. In J2me application
memory management like garbage collection and allocation is
handled by JVM itself. Whenever we want to free the memory
we can do it by using Runtime.getRuntime().freeMemory() and
System.gc() [3].But it is not necessary that every time we use
System.gc() it will free the memory because its jvm who decides
when to actually free the memory. The implementation ofJ2ME
VM is differ in the different handset models, due to differences
in low level I/O and memory management of different hardware.
The same application that runs in two different handsets and
emulator may have a big difference in memory consumption.
Memory measurement in emulator is easy, but memory measure
is very difficult in real handsets [3].

One solution to this problem is given as following code.

static int[] allocMemory = null;
staticintminHeap=1024 * 200;

static void GC()

if (Runtime.getRuntime().freeMemory() <minHeap)

if(allocMemory == null)

allocMemory = new int[250000];
if(allocMemory != null)

allocMemory = null;
System.gc();
}

Instead of using System.gc() we will call the above GC() func-
tion. In the above code minHeap is the size of heap which can
vary from device to device. What the above code is doing that
whenever the available memory is less than the heap memory it
will allot the large value to the integer array allocate Memory
and then set it to null and then call the actual System.gc(). After
calling this jvm thinks that there is some huge memory is being
allocated and deallocated so it will free the garbage memory
Another approach of heap memory optimization is to handle the
game data carefully. Suppose there is five levels of game so a
nice way of heap optimization is not to load all the data at first
level because at start we dont need the graphics and other data of
another level. After a level ends and data belonging to particular
level is not required anymore, must be freed.

3.2 Source code optimization

Our games performance depends on how we code so by opti-
mizing our coding style we improve the performance of mobile
game

3.2.1 Initialize objects at declaration time. Performing the
declaration and initialization on separate lines it will take two
operation one invoking the objects default constructor and
another is assignment operator.

UserClassobj = data; (one operation)

UserClassobj;
(Two Operation)
Obj = data;

First code is taking one operation where second code is taking
two operations so obviously first one will be faster.

3.2.2 Avoid unnecessary declaration. For Example
for(int i = COUNT; i>=0; —i)

{

Int a = 2*COUNT //unnecessary here
/>l<

Some code here

*/

}

In the above code the declaration, initialization and calculation
is unnecessary because every time loop executes these operation
will be performed and processor cycle will be wasted.

3.2.3 For loop optimization. Use following code
for(i=n-1;i>=0;-) { }

instead of

fori=0;i< n; ++i) { }

Because post increment/decrement operators are more expensive
than the pre increment/ decrement operators[1].

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 12, December 2012

Testing against O is always faster than testing against any other
value [3]..

3.2.4 Do not load the data until its required. Never load the
data until its required because it will consume unnecessary heap
memory. So only load the data when its required.

3.2.5 Do not create unnecessary runtime objects. As we
know runtime objects are stored in heap. So never create unnec-
essary runtime object because it will consume heap memory. Its
better to declare the object before we use it.

public String OutString = "Game Update™;
Public void game_update()

{

/11l some code

System.out.println(Game Update called);
g.drawString(OutString + called ,0,0,0);

// some code

}

In the above code the System.out.println is printing the tem-
porary string object and g.drawstring is also uses the called as
temporary object. Which is taking unnecessary heap space.

We should better use the following code instead of above code

public String OutString = "Game Update called”;
Public void game_update()

//// some code

System.out.println(+OutString);
g.drawString(OutString ,0,0,0);
/l some code

}

3.2.6 Switch versus if-else. In general switch is faster than
the if-else. “switch” uses two different byte code instructions
named “tableswitch” and “’lookup switch”. ”table switch” is used
for contiguous cases, while the slower "lookup switch” is used
for more spread-out values. In case of table switch the compiler
translates them into a jump table instead of a comparison chain.
A jump table improves performance because it reduces the num-
ber of branches to a single procedure call and reduces the size of
the control-flow code [[1]].

3.2.7 Declare functions as static. Always declare local and
member functions that are not to be used outside the file they
are defined in as static. Static functions are faster than non-static
function. Unlike the non-static function there is only one copy of
the static function in memory and compiler doesnt have to worry
which copy to call.

3.2.8 Declare local variables as static. It is good to declare
static local variables in the routines that are called frequently.
This will remove the overhead of declaring and initializing them
every time the function executes. It also helps to solve memory
fragmentation problem.

3.2.9 Avoid synchronization when possible. Synchronization
makes code run slower than the ordinary code. A lock must be
acquired and released upon an object every time a synchronized
context is entered and exit. Thread which cannot acquire the lock

must have to wait until lock is released. This makes slow execu-
tion of code.

3.2.10 Look-Up Table. Use of look-up table which is an array
of pre computed values makes code run faster because we do not
have to compute the required expression every time. So, if we
have a function whose values can be pre-computed and stored in
a table, we can trade memory for speed by using values stored
in that table.

// pre computed array
double My_SIN[360];
for (i = 0; i< 360; i++)

{
My_SIN[i] = Math.sin(i);

/* we simply use My_SIN pre-computed array instead of
Math.sin(angle) for faster execution */
result = My_SIN[angle];

3.2.11 Use of array. Optimize multi-dimensional array by
making them uni-dimensional.

Use int [] array; // 1X16
Instead of int [] [] array; // 4X4

3.2.12 For-Loop Unrolling. For loop is very convenient but if
it is not used properly it will make the execution worse.
For(i=0;i<10;i++)

Syste.out.println(For Loop Optimization);
Is equivalent to

i=0;

Syste.out.println(For Loop Optimization);
If(i>=10)

........... 1st time Return;

Syste.out.println(For Loop Optimization);
If(i>=10)

return;

10th time i++;

The above code is doing unnecessary 10 increment and 11
comparison which waste CPU cycle. The above can be written
as 10 times println statement.

Syste.out.println(For Loop Optimization); 1st

Syste.out.println(For Loop Optimization); 10th

Or

For (i=0;i<10;i+=5)

Syste.out.println(For Loop Optimization);

Which includes only 2 increment and 3 comparison operations.

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 12, December 2012

3.2.13 Use of Mathematical Operator. Addition and subtrac-
tion are faster than the multiplication, division and modulus op-
erators. Also use of bitwise operator can make operations faster.
intvar = 10*2; // slowest

intvar = 10+10; // slow

intvar = 10 <<1; // faster

intvar = 20; // do not compute anything which is already known
as design time

4. RESULTS

The results are based on different game developed and played by
Game tester and comparison results are shown in table 1.

Table 1. Comparison Results

Feature Without With Opti-
Optimiza- mization
tion

Cost(memory) High Medium, Low

Processing High Low

Time

Game More Less

Startup

Time

Game High Good, More

graphics likely

Quality to be low

Crash High Low

Rate

Frame High Low

Rate

issue

Storage More Less

Size

Network More Less

transfer

time

Start Up More failure Less failure

at

low end

devices

5. CONCLUSION

The optimization techniques do not guarantee that our applica-
tion will be always optimized. It is depend on the programmer
how he chooses those techniques to optimize the program. It may
happen that optimizing one thing will affect the other like if we
are compressing the graphics, we have to be sure that it does not
affect the quality. Another example is case of heap optimization
in which we are restricting our application to use lesser heaps to
avoid out of memory exception but we have not implemented it
properly. This may create a frame rate or lag issue throughout the
games because we may have restricted some graphics and other
resources to load into memory. So in this case the data is loaded
before we use it which will create the lag and frame rate issue.
So optimization should be done very carefully because it might
make the performance worse.

6. REFERENCES

[1] F. Chehimi, P. Coulton, and R. Edwards. C++ optimizations
for mobile applications. In Consumer Electronics, 2006.
ISCE °06. 2006 IEEE Tenth International Symposium on,
pages 1 -6, 0-0 2006.

(2]

(3]

V.-M. Hartikainen, P.P. Liimatainen, and T. Mikkonen. On
mobile java memory consumption. In Parallel, Distributed,
and Network-Based Processing, 2006. PDP 2006. 14th Eu-
romicro International Conference on, page 7 pp., feb. 2006.

Wang Jianmin, Zheng Zibin, Peter Tam, and Liu Jianping.
Optimization technique for commercial mobile mmorpg.
In Xiaopeng Zhang, Shaochun Zhong, Zhigeng Pan, Kevin
Wong, and Ruwei Yun, editors, Entertainment for Educa-
tion. Digital Techniques and Systems, volume 6249 of Lec-
ture Notes in Computer Science, pages 34-45. Springer
Berlin Heidelberg, 2010.

International Journal of Computer Applications (0975 - 8887)

Volume 60 - No. 12, December 2012

[4] Bailin Yang and Zhiyong Zhang. Design and implementa-

[5

—

tion of high performance mobile game on embedded device.
In Computer Application and System Modeling (ICCASM),
2010 International Conference on, volume 8, pages V8—196
-V8-199, oct. 2010.

Weishan Zhang, Dong Han, T. Kunz, and K.M. Hansen. Mo-
bile game development: Object-orientation or not. In Com-
puter Software and Applications Conference, 2007. COMP-
SAC 2007. 31st Annual International, volume 1, pages 601
—608, july 2007.

	Introduction
	MOBILE PLATFORM CONSTRAINTS
	Memory Limitation
	 Control Processing Units
	Low Bus Bandwidth

	TECHNIQUES FOR OPTIMIZATION
	Memory Optimization
	Jar Size Optimization
	Heap Memory Optimization

	Source code optimization
	Initialize objects at declaration time
	Avoid unnecessary declaration
	For loop optimization
	Do not load the data until it™s required
	 Do not create unnecessary runtime objects
	 Switch versus if-else
	 Declare functions as static
	 Declare local variables as static
	 Avoid synchronization when possible
	 Look-Up Table
	 Use of array
	 For-Loop Unrolling
	Use of Mathematical Operator

	Results
	 CONCLUSION
	REFERENCES

