
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

32

Analysis of Reusability of Object-Oriented

System using CK Metrics

Brij Mohan Goel
Research Scholar,

Deptt. of CSE
SGVU, Jaipur-302025, India

Pradeep Kumar Bhatia
Deptt. of CSE.,

G J University of Science & Technology,
Hisar-125001 (Haryana), India

ABSTRACT

In the object-oriented environment, one of the most important

aspects having strong influence on the quality of resulting

software system is the design complexity. The OO model

offers the technology to create components that can be used

for general programming. Design complexity has been

imagining to play a strong role in the quality of the resulting

software system in OO development environments. This paper

gives the design of CK suit of metrics and evaluation to these

metrics so that these metrics should reflect accurate and

precise results for object oriented based systems. Moreover, a

set of new metrics are proposed that can find the impact on

reusability of a class by using the combination of one CK

metric with another metric.

Keywords

Reusability, CK Metric, Object - Oriented.

1. INTRODUCTION

Object oriented systems continue to share a major portion of

software development and customer base for these systems is

on the rise. This is because there are many advantages in

taking the object oriented concept. The weakness though is

that most object oriented systems tend to be quite complex.

Hence, the quality of such systems takes priority and lots of

time, money and effort is spent in ensuring it [1]. One such

method that predicts quality of a software system is by

evaluating impact on reusability of class of the software

through the use of metrics. The introduction and subsequent

use of metrics as a means to evaluate the software quality has

had deep and useful impact on the overall system.

In this paper, an attempt is made to use object oriented metrics

as a predictor for software complexity of the underlying

system. The study consists of calculating and analyzing object

oriented metrics on object oriented systems developed using

C++.

The following section represents a review of related work.

Section III discusses the brief description of the six class

based CK Metrics. Following that Section IV proposed a set

of three new metrics Metrics1, Metrics2, Metrics3. Following

that Section V describes the analysis of the results. Following

that summarizes the study undertaken and conclusions and

future work and references.

2. RELATED WORK

A significant number of object oriented metrics have been

developed. For example, metrics proposed by Abreu [2], CK

metrics [3], Li and Henry [4] metrics, MOOD metrics [5],

Lorenz and Kidd [6] metrics etc. CK metrics are the most

popular among them. Another comprehensive set of metrics is

MOOD metrics. Here one of the first suites of OO design

measure was proposed by Chidamber and Kemerer (CK) [7],

[8] will be discussed. The authors of this suite of metrics

claim that these measures can aid users in understanding

design complexity, in detecting design flaws and in predicting

certain project outcomes and external software qualities such

as reusability, software defects, testing, and maintenance

effort. Use of the CK set of metrics and other complementary

measures are gradually growing in industry acceptance [9].

CK metrics suite [8] is one of the object-oriented design

complexity measurement systems which support the

measurement of the external quality parameter which may

evolve in software package.

3. OVERVIEW OF CK METRICS

Brief description of the six CK metrics suite for OO Design

[10, 11] is the deepest research in OO metrics investigation:

3.1 Weighted Methods per Class (WMC)

It is defined as the sum of the complexities of all methods of a

class.

 The number of methods and the complexity of

methods involved is a predictor of how much time

and effort is required to develop and maintain the

class.

 The larger the number of methods in a class the

greater the potential impact on children, since

children will inherit all the methods defined in the

class.

 Classes with large numbers of methods are likely to

be more application specific, limiting the possibility

of reuse.

3.2 Depth of Inheritance Tree (DIT)

It is defined as the maximum length from the node to the root

of the tree.

 The deeper a class is in the hierarchy, the greater the

number of methods it is likely to inherit, making it

more complex to predict its behavior.

 Deeper trees constitute greater design complexity,

since more methods and classes are involved.

 The deeper a particular class is in the hierarchy, the

greater the potential reuse of inherited methods.

3.3 Number of Children (NOC)

It is defined as the number of immediate subclasses.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

33

 The greater the number of children, the greater the

reuse, since inheritance is a form of reuse.

 The greater the number of children, the greater the

likelihood of improper abstraction of the parent

class. If a class has a large number of children, it

may be a case of misuse of sub classing.

 The number of children gives an idea of the

potential influence a class has on the design. If a

class has a large number of children, it may require

more testing of the methods in that class.

3.4 Coupling between object classes (CBO)

It is defined as the count of the classes to which this class is

coupled. Coupling is defined as : Two classes are coupled

when methods declared in one class use methods or instance

variables of the other class. [Chidamber and Kemerer 1994]

 Excessive coupling between object classes is

detrimental to modular design and prevents reuse.

The more independent a class is, the easier it is to

reuse it in another application.

 In order to improve modularity and promote

encapsulation, inter-object class couples should be

kept to a minimum. The larger the number of

couples, the higher the sensitivity to changes in

other parts of the design, and therefore maintenance

is more difficult.

 A measure of coupling is useful to determine how

complex the testing of various parts of a design is

likely to be. The higher the inter-object class

coupling, the more rigorous the testing needs to be.

3.5 Response for a Class (RFC)

It is defined as number of methods in the set of all methods

that can be invoked in response to a message sent to an object

of a class.

 If a large number of methods can be invoked in

response to a message, the testing and debugging of

the class becomes more complicated since it

requires a greater level of understanding on the part

of the tester.

 The larger the number of methods that can be

invoked from a class, the greater the complexity of

the class.

 A worst case value for possible responses will assist

in appropriate allocation of testing time.

3.6 Lack of Cohesion in Methods (LCOM)

It is defined as the number of different methods within a class

that reference a given instance variable.

 A highly cohesive module should stand alone; high

cohesion indicates good class subdivision.

 High cohesion implies simplicity and high

reusability.

 Cohesiveness of methods within a class is desirable,

since it promotes encapsulation. As a drawback, a

highly cohesive class has high coupling between the

methods of class, which in turn indicates high

testing effort for that class.

 Lack of cohesion implies classes should probably be

split into two or more subclasses.

 Low cohesion increases complexity, thereby

increasing the likelihood of errors during the
development process.

Object-oriented methodologies require significant effort early

in project life cycle to identify objects and classes, attributes

and operations, relationships between objects and classes,

encapsulation, inheritance, and polymorphism require

designers to carefully structure the design and consider the

interaction between objects. Accordingly, much effort will be

saved rather than rewriting the code and helps producing high

quality software. In the current work, CK suite is utilized for

several reasons: CK suite covers all aspects of object oriented

(reusability, encapsulation and polymorphism). It was chosen

by SATC (Software Assurance Technology Center) at NASA

Goddard Space Flight Center [12], [13] and still used widely

till now. Much effort was devoted for empirically validating

[14], [15], [16] the original CK metrics and linking them to

Object Oriented Design (OOD) quality attributes. Most of the

other metrics are built upon the original CK metrics suite. It is

easy to lift CK metrics from the code level to the model level

[17]. CK suite could be kinked to economic variables

(productivity, rework effort, and design) to assess practicing

managers [18]. CK suite proves to be useful in predicting

class fault proneness [19]. CK metrics are the most referenced

among all other metrics [20].

4. PROPOSED METRICS

In this section, a set of new metrics are proposed to measure

reusability of an OO codes.

4.1 Metric1 (DIT+NOC)

 Deeper a particular class is in the hierarchy, the greater

the potential for reuse of inherited methods [21]. It states

that reusability of a class increases with increase in DIT

of a class. So DIT has positive impact on reusability of a

class.

 A moderate value for NOC indicates scope for reuse

[21]. Up to particular threshold value NOC has positive

impact on reusability of a class.

 Therefore the reusability of a class increases with the

increase in combination of DIT and NOC of a class. So

DIT + NOC have positive impact on reusability of a

class.

Let Metric1 = DIT (Depth of Inheritance) + NOC (Number of

Children) [22].

4.2 Metric2 (CBO+LCOM)

 Excessive coupling indicates weakness of class

encapsulation and may inhibit reuse [21]. It indicates that

coupling has negative impact on reusability of a class.

 High LCOM increases complexity, thereby increasing

likelihood of errors during the development process. The

class should probably split into two or more smaller

classes. It indicates that cohesion has negative impact on

reusability of a class.

http://yunus.hacettepe.edu.tr/~sencer/reference.html

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

34

 Therefore CBO +LCOM have negative impact on

reusability of a class.

Let Metric2 = CBO (Coupling between Objects) + LCOM

(Lack of Cohesion of Methods) [22].

4.3 Metric3 (WMC+RFC)

 The large no. of methods in a class, the greater the

potential impact on children. Classes with large no. of

methods are likely to be more application specific,

limiting the possibility of reuse. So WMC has negative

impact or reusability of a class.

 The larger the no. of methods that can be invoked from a

class through message, the greater the complexity of the

class. So RFC has negative impact or reusability of a

class.

 Therefore the reusability of a class decreases with the

increase in combination of WMC and RFC of a class. So

WMC+RFC have negative impact on reusability of a

class.

Let Metric3 = WMC (Weighted Methods per Class) + RFC

(Response for a Class) [22].

5. ANALYSIS RESULTS

The proposed set of metrics Metric1, Metric2 & Metric3 is

applied to C++ program in Fig. 1 to measure the impact of

reusability of a class.

#include<iostream.h>

#include<conio.h>

class GF

{

int a;

public:

GF(int x)

 {

 a=x;

 }

int geta()

{

 return a;

}

};

class F: public GF

{

int b;

public:

F(int x, int y):GF(y)

{

 b=x;

}

int getb()

{

 return b;

}

};

class S : public F

{

int c;

public:

S(int x, int y, int z):F(y,z)

{

 c=x;

}

void show()

{

cout << geta() <<" " << getb() << " " ;

cout << c << "\n";

}

};

main()

{

clrscr();

S ob(1,2,3);

ob.show();

cout << ob.geta() <<" " << ob.getb() << "\n";

getch();

return 1;

}

Output:

3 2 1

3 2

Fig. 1

Parameterized constructor

in base class GF

Parameterized constructor

using in derived class F

and executing from Base

class GF

Parameterized

constructor using in

sub derived class S

and executing from

Base class GF.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

35

Table 1. VALUES OF PROPOSED METRICS

Metric

Class

 Metric1 Metric2 Metric3

DIT NOC DIT+NOC CBO LCOM CBO+LCOM WMC RFC WMC+RFC

GF (Grand Father 0 1 1 1 1 2 2 2 4

F (Father) 1 1 2 1 1 2 2 3 5

S (Son) 2 0 2 1 1 2 2 5 7

Fig. 2

As according to Table1 and Figure2, the values of Metric1 are

very less as compare to in combination of Metric2 and

Metric3. So we can say that object oriented system using

parameterized constructor based upon C++ program is

reusable up to some extent, because greater values of Metric2

and Metric3 means negative impact on reusability of class.

So object oriented system using parameterized constructor

based upon C++ program has negative impact on reusability

of class.

6. CONCLUSION AND FUTRUE WORK

The organizations implement systematic software reuse

programs in an effort to improve productivity and designing.

Reusability increases with increase of DIT and NOC,

reusability decreases with increase of CBO and LCOM,

reusability decreases with increase of WMC and RFC. In this

paper, an approach to measure the reusability of object

oriented program based upon CK metrics is proposed. Since

reusability is an attribute of software design and can analyze

software design by measuring software reusability. Hence,

this approach is important to measure reusability of class

diagram.

The most obvious extension of this work is to analyze the

degree to which these metrics correlate with managerial

performance indicators such as testing, maintenance effort and

quality.

This study can be followed up with another which includes

the model necessary to map the metrics to software quality.

Another future study prospect would be to have the data set as

projects with identical requirements done in different object

oriented languages. This would help us to ascertain that the

metrics are capable of predicting the quality of software

across the object oriented language.

7. REFERENCES

[1] Kayarvizhy, N., Kanmani, S. : " Analysis of Quality of

Object Oriented Systems using Object Oriented Metrics",

Electronics Computer Technology (ICECT), 2011 3rd

International Conference on, April 8-10, 2011.

Kanyakumari: IEEE Computer Society Press, 2011.

[2] Abreu, Fernando B. ,Carapuca, Rogerio.: “Candidate

Metrics for Object-Oriented Software within a

Taxonomy Framework.", Journal of systems software 26,

1(July 1994).

[3] Chidamber, Shyam , Kemerer, Chris F. "A Metrics Suite

for Object-Oriented Design." M.I.T. Sloan School of

Management E53-315, 1993.

[4] Li,Wei , Henry, Salley.: "Maintenance Metrics for the

Object OrientedParadigm", First International Software

Metrics Symposium. Baltimore,Maryland, May 21-22,

1993. Los Alamitos, California: IEEE Computer Society

Press, 1993.

[5] Abreu, Fernando B: "The MOOD Metrics Set," Proc.

ECOOP'95Workshop on Metrics, 1995.

[6] Lorenz, Mark & Kidd Jeff: “Object-Oriented Software

Metrics”, Prentice Hall, 1994.

[7] Chidamber S. R., and Kemerer C.F., “Towards a Metrics

Suite for Object-oriented Design,” Proc. Conf. Object-

oriented Programming Systems, Languages, and

Applications (OOPSLA’91), vol. 26, no. 11, pp. 197-

211, 1991.

[8] Chidamber S. and Kemerer C.: “A Metrics Suite for

Object-oriented Design”, IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476-493, June 1994.

[9] Subramanyam R., Krishnan M.S., “Empirical analysis of

CK metrics for object-oriented design complexity:

implications for software defects Software Engineering”,

IEEE Transactions on Publication Date: April 2003

Volume: 29, Issue: 4 On page(s): 297- 310.

[10] Shatnawi R., “ A quantitative investigation of the

acceptable risk levels of object-oriented metrics in open-

source systems”, IEEE Transactions on Software

0

1

2

3

4

5

6

7

Metric1 Metric2 Metric3

GF

F

S

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kayarvizhy,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kanmani,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

36

Engineering, Vol. 36, No.2, pp. 223-224 March/April

2010.

[11] Camargo Cruz Ana Erika, “Chidamber & Kemrer Suite

of Metrics”, Japan Advanced Institute of Science and

Technology School of Information, May 2008.

[12] Rosenberg, L. H. and Hyatt, L., “Applying and

interpreting object oriented metrics,” in Proceedings of

Software Technology Conference, Utah, April 1998.

[13] Rosenberg, L. H. and Lawrence, E. H., “Software

Quality Metrics for Object- Oriented Environments,”

Unisys Technology Conference, Virginia,1996.

[14] Chidamber, S. R. and Kemerer, C. F., “A Metrics Suite

for Object Oriented Design. IEEE Transactions on

Software Engineering,” vol. 20, pp. 476-493, 1994.

[15] Succi, G, Pedrycz, W., Stefanvic, M., and Miller, J.,

“Practical assessment of the models for identification of

defect-prone classes in object-oriented commercial

systems using design metrics,” The Journal of Systems

and Software, vol. 65, pp. 1–12, 2003.

[16] Basili, V. L., Brianc, L., and Melo., W. L., “A Validation

of Object- Oriented Metrics as Quality Indicators,” IEEE

Transactions Software Engineering, vol. 22,pp. 751-761,

1996.

[17] McQuillan, J. A. and Power, J. F., “On the application of

software metrics to UML models,” Springer Lecture

Notes in Computer Science, vol. 4364, pp. 217-226.

2007.

[18] Chidamber, S.R., Darcy, D.P. and Kemerer, C.F., “

Managerial use of Metrics for Object Oriented Software:

an Exploratory Analysis,” IEEE Transaction on Software

Engineering, vol. 24, pp. 629-639, 1998.

[19] Benlarbi, S., Eman, K. El, Goel, N., Rai, S.,“Thresholds

for Object-Oriented Measures,” Proceedings of

ISSRE2000, San Jose, CA, USA, pp. 24-37, 2000.

[20] Briand, L., Arisholm, E., Counsell, S., Houdek, F. and

Thevenod-Fosse, P., “Empirical Studies of Object

Oriented Artifacts, Methods, And Processes: State of the

Art and Future Direction,” In Empirical Software

Engineering,vol. 4, pp. 387-404, 1999.

[21] Liang,V., and Colemon, C., “Principal Components of

Orthogonal Object Oriented Metrics”, Software

Assurance Technology Center, White Paper SATC-323-

08-14, NASA Goddard Space Flight Center, Greenbelt,

Maryland 20771.

[22] Goel, B.M., Bhatia, P.K, “Investigation of Reusability

Metrics for Object–Oriented Designing”, Proceeding of

NCETCIT - May, 2012, GVM IT&M, Sonipat, Har,

India., pp. 104-110, 2012.

APPENDIX

Constructor in Drive Classes: When we have a

parameterized constructor in base class then it is mandatory

for drive class to create a parameterized constructor in its

class and invoke the base class constructor.

