
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

8

Program Slicing using Test Cases

Sonam Agarwal
Amity University, Noida

Arun Prakash Agarwal
Amity University, Noida

ABSTRACT

The main applications of program slicing include various

software engineering activities such as program

understanding, debugging, testing, program maintenance,

complexity measurement and so on. Program slicing is a

feasible method to restrict the focus of a task to specific sub-

components of a program. It can also be used to extract the

statements of a program that are relevant to a given

computation. Applying slicing technique to software

architectures can benefit software development in two main

ways. The first one concerns maintenance of a component-

based software. By using slicing tools on an architectural

description, we can determine which components might be

affected when a given component is modified. Second,

architectural reuse can be facilitated. While reuse of code is

important, reuse of software design and patterns are expected

to offer greater productivity benefits and reliability

enhancements.

Keywords

Program slicing, test cases, static slicing, dynamic slicing,

control flow graph, program dependence graph.

1. INTRODUCTION

A program slice consists of various parts of the program that

effect the values computed at some point of interest such a

point of reference is known as a slicing criterion and is

typically specified by a pair (program point, set of variables).

The task of computing program slices is called program

slicing [1][2]. Program slicing can be used in functional

testing. Features of programming languages such as

procedures, unstructured control flow, composite data types

and pointers, and concurrency each require specific extensions

of slicing algorithms. Static and dynamic slicing methods for

each of these features are classified and compared in terms of

accuracy and efficiency.

Program slicing is a program analysis technique which was

first introduced by Weiser to aid in program debugging. A

program slice is usually defined with respect to a slicing

criterion. A slicing criterion is a pair < P, V >, where P is a

program point of interest and V is a subset of the program’s

variables. A slice of a program P with respect to a slicing

criterion SC is the set of all the statements of the program P

that might affect the slicing criterion for every possible input

to the program [1][15]. Since the publication of Weiser’s

seminal work, the concept of slicing has been extended and

many slicing algorithms have been proposed in the literature

for other areas of program analysis such as program

understanding, compiler optimization, reverse engineering,

etc.

The slices mentioned so far are computed by gathering

statements and control predicates by way of a backward

traversal of the program’s control flow graph (CFG) or PDG,

starting at the slicing criterion [1]. Therefore, these slices are

referred to as backward (static) slices. Informally, a forward

slice consists of all statements and control predicates

dependent on the slicing criterion, a statement being

“dependent” on the slicing criterion if the values computed at

that statement depend on the values computed at the slicing

criterion, or if the values computed at the slicing criterion

determine the fact if the statement under consideration is

executed or not.

2. PROPOSED WORK

2.1 Program Slicing

Program Slicing is a technique in which programs are

decomposed into smaller parts after analyzing their data [2].

The main applications of program slicing include various

software engineering activities such as program

understanding, debugging, testing, and program maintenance.

A program slicing consists of those program statements which

are related to the values computed at some program point.

Suppose there is a program of binary search in which

elements are in sorted position and an item is to be searched.

This program consist of three conditions. After making the

program, slicing can be performed by using different-different

techniques.

(1) int a[50],i,n,mid,high,low,item;

(2) int loc=0;

(3) printf(“enter the number of element”);

(4) scanf(“%d”,&n);

(5) printf(“enter the elements in sorted order”);

(6) for(i=0;i<n;i++)

(7) scanf(“%d”,&a[i]);

(8) printf(“enter the number to be searched”);

(9) scanf(“%d”,&item);

(10) low=loc=0;

(11) high=n-1;

(12) while(low<=high)

 {

(13) mid=((low+high)/2);

(14) if(item==a[mid])

{

(15) printf(“search is successful”);

(16) loc=mid;

(17) printf(“\n loc of item is%d”,loc+1);

}

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

9

(18) elseif(item<a[mid])

(19) high=mid-1;

(20) else

(21) low=mid+1;

}

Fig 1: Program for slicing

Fig 1 shows the portion of a program which can read any item

from the input elements and can search the item frequently. In

order to extract a slice from a program, the dependencies

between the statements must be computed first. The control

flow graph (CFG) is a data structure which makes the control

dependencies for each operation in a program explicit[3][4].

 Fig 2: control flow graph (CFG)

2.2 Test Cases
 A test data adequacy criterion is a minimum standard that a

test suite for a program must satisfy. An adequacy criterion is

specified by defining a set of “program components". An

example is the all-statements criterion, which requires that all

statements in a program must be executed by at least one test

case in the test suite. Here statements are the program

Test-

Sets

Array

Elements

Sear

ch

Item

Input Out

put

Loc
Lo

w

Hi

gh

t1 10,20,30,40,

50,60,70

20 0 6 2

t2 10,20,30,40,

50,60,70

40 0 6 4

t3 10,20,30,40,

50,60,70

60 0 6 6

Table 1: Test Cases

components and a statement is exercised by a test if it is

executed then the program will run on that test.

 Test-data adequacy criteria can be divided into three

groups: control flow based criteria, data-flow based criteria,

and program dependence graph (PDG) based criteria [9].

Satisfying an adequacy criterion provides some confidence

that the test suite does a reasonable job of testing the program

[8].

The all-statements criterion is satisfied by a test

suite T if for each statement s there is some test case t in T

that exercises s. A statement is exercised by test case t if it is

executed when the program is run with input t.

3. Program Slicing techniques

3.1 Static Slicing
A static slice for a given variable at a given statement contains

all the executable statements that could possibly affect the

value of this variable at the statement on all inputs.

 A program slice consists of the parts or components

of a program that affect the values which are referred to as a

slicing criterion [5]. Typically, a slicing criterion consists of a

pair < S, V >, where S is the statement number and V is a

variable. The components of a program which have a direct or

indirect effect on the values computed at a slicing criterion <

S, V > are called the program slice with respect to the slicing

criterion < S, V >.

 Now static slicing is performed on the above

program. Static slicing is similar to the simple slicing

technique. Static slicing simply means that remove one

variable and then eliminating all those conditions which are

using removing variable [14].

(1) int a[50],i,n,mid,high,low,item;

(3) printf(“enter the number of element”);

(4) scanf(“%d”,&n);

(5) printf(“enter the elements in sorted order”);

(6) for(i=0;i<n;i++)

(7) scanf(“%d”,&a[i]);

start
(7) (8)

end

(1)
(9) (6) (4) (5) (2) (3) (10) (11)

(12) (13) (15) (14)

(18)

(20)

(19)

(21)

(16) (17)

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

10

(8) printf(“enter the number to be searched”);

(9) scanf(“%d”,&item);

(10) low=0;

(11) high=n-1;

(12) while(low<=high)

 {

(13) mid=((low+high)/2);

(14) if(item==a[mid])

{

(15) printf(“search is successful”);

}

(18) elseif(item<a[mid])

(19) high=mid-1;

(20) else

(21) low=mid+1;

}

Fig 3: sliced program or static slicing

Fig 4 shows the slice of the program with respect to the

slicing criteria. All variables that are not relevant to the

computation is sliced away. Statistically available information

is used for slicing hence this type of slicing is called as static

slicing.

Static slicing can be approached in terms of

program reachability using Program Dependence Graph

(PDG) [3]. A PDG is a directed graph with vertices

corresponding to statements and control predicates, and edges

corresponding to data and control dependences. The slicing

criterion is identified with a vertex in the PDG, and a slice

corresponds to all PDG vertices from which the vertex under

consideration can be reached. The slices are computed by

gathering statements and control predicates by way of a

backward traversal of the program’s control flow graph (CFG)

or PDG, starting at the slicing criterion. In PDG of the

program solid arrows denotes the control dependencies and

dotted arrow denotes the flow dependencies.

3.2 Dynamic Slicing
During program slicing, the slicing criterion contains the

variables which produced an unexpected result on some input

to the program [12]. However, a static slice may contain

statements which have no influence on the values of the

variables of interest for the particular execution. During

execution of a program, the value inputted may cause

unexpected result. Dynamic slicing takes the input supplied to

the program during execution and the slice contains only the

statement that caused the failure during the specific execution

of interest. Dynamic slicing uses dynamic analysis to identify

all and only the statements that affect the variables of interest

on the particular anomalous execution trace [10]. The

advantage of dynamic slicing is the run-time handling of

arrays and pointer variables. Dynamic slicing will treat each

element of an array individually, whereas static slicing

considers each definition or use of any array element as a

definition or use of the entire array. Similarly, dynamic slicing

distinguishes the objects that are pointed to by pointer

variables during a program execution.

 Dynamic slicing is much smaller than Static slicing

because here slicer can compute the specific control and data

flow dependencies produced by the provided input data. Now

dynamic slicing is performed on fig 4. In dynamic slicing

remove that part of the program which is no necessary to run a

simple program.

(1) int a[50],i,n,mid,high,low,item;

(2) int loc=0;

(3) printf(“enter the number of element”);

(4) scanf(“%d”,&n);

(5) printf(“enter the elements in sorted order”);

(6) for(i=0;i<n;i++)

(7) scanf(“%d”,&a[i]);

(8) printf(“enter the number to be searched”);

(9) scanf(“%d”,&item);

(10) low=loc=0;

(11) high=n-1;

start

(7) (8)

(2)

(9)
(6) (4) (5)

(1)
(3) (10)

(11)
(12)

(13)

(15)

(14) (18)

(20)

(19)
(21)

(16) (17)

Fig 4: Program Dependence Graph (PDG)

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.10, December 2012

11

(12) while(low<=high)

 {

(13) mid=((low+high)/2);

(14) if(item==a[mid])

{

(15) printf(“search is successful”);

(16) loc=mid;

(17) printf(“\n loc of item is%d”,loc+1);

}

(18) elseif(item<a[mid])

(19) high=mid-1;

(20) else

(21) ;

}

Fig 5: Dynamic slicing

4. Conclusion

The use of the slice for regression testing is efficient in terms

of both memory and time overhead. Unlike previous

regression techniques, this approach neither needs to

completely recomputed data flow information after a change

nor maintain a history of previous data flow computation for

incremental updates. Instead, the approach recomputes the

partial data flow that is needed, as driven by the program

changes. Also, the approach does not need the overhead of

maintaining a test suite, which includes the input, output and

updates of the test suite. If the test suite is maintained, the

approach reduces the number of tests that must be rerun to

provide full testing coverage and to update the test suite.

Although the technique has been presented to satisfy the all-

uses criterion, it could easily be modified for other data flow

testing criteria.

Program slicing is a useful tool for working on the

incremental regression testing problem. Unlike older

approaches, which identify only directly affected components,

slicing can identify indirectly affected down-stream

components. Slicing can also be used to determine if two

components have the same execution behavior. The use of the

slice for regression testing is efficient in terms of both

memory and time overhead. The application of slicing in

various areas likes debugging, cohesion measurement,

comprehension, maintenance and re-engineering and testing

are highlighted.

5. Future Scope

Extended analysis of slicing in the form of object oriented

programming (OOP), web development, procedural,

component based, database aspect has to be focused. Here

only two techniques of slicing are discussed. In future all

other techniques like forward slicing, backward slicing, Quasi

Static slicing, Conditioned slicing, Debugging slicing,

Amorphous slicing, Functional Cohesion slicing etc. can be

performed. Slicing techniques can be performed through the

graph based approaches like Control Flow Graph (CGF),

Program Dependence Graph (PDG), Object oriented Program

Dependency Graph (OPDG), Dynamic Dependence Graph

(DDG), Dynamic Object oriented Dependence Graph

(DODG), Object oriented Dependency Graph(ODG), Class

Hierarchy Sub graph (CHG), Control Dependence Sub graph

(CDS) and Data Dependence Sub graph(DDS). Algorithmic

approach to slicing can also be focused.

6. References

[1] Swarnendu Biswas and Rajib Mall, “Regression Test

Selection Techniques: A Survey”, Information and

Software Technology, Vol. 52, no. 1, January 2010

[2] Jaiprakash T Lalchandani, R Mall, ”Regression Testing

Based-on Slicing of Component-based Software

Architectures”, ISEC ,vol. 79, no. 06, pp. 19-22, 2008

[3] Rajiv Gupta, Mary Jean Harrold, Mary Lou Soffa, “An

Approach to Regression Testing using Slicing”, ACM

Transactions on Programming Languages and Systems,

vol. 12, no. 1, pp. 26-60, January 1990

[4] N.Sasirekha, A.Edwin Robert, Dr.M.Hemalatha,

“Program slicing techniques and its applications”,

International Journal of Software Engineering &

Applications (IJSEA), Vol. 2, No. 3, pp.85-92, July 2011

[5] Mithun Acharya, Brian Robinson, “Practical Change

Impact Analysis Based on Static Program Slicing for

Industrial Software Systems”, ICSE, vol. 11, pp. 21–28,

may 2011

[6] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang, Wu

Lin Chen,” A Brief Survey Of Program Slicing”, ACM

SIGSOFT Software Engineering, Vol. 30, no. 2, pp. 1-

36, March 2005

[7] Josep Silva, “A Vocabulary of Program Slicing-Based

Techniques”, ACM Computing Surveys, Vol. 44, No. 3,

Article 12, June 2012

[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural

Slicing Using Dependence Graphs”, ACM Transaction

on Programming Languages and Systems, 1990, pp. 26-

61

[9] Frank Tip, “A Survey of Program Slicing Techniques”,

Journal of Programming Languages, Vol. 3, No. 3, pp.

121– 189

[10] David Binkley, “The Application of Program Slicing to

Regression Testing”

[11] Debasis Mohapatra, “GA Based Test Case Generation

Approach for Formation of Efficient Set of Dynamic

Slices”, International Journal on Computer Science and

Engineering (IJCSE),Vol. 3, No. 9, September 2011

[12] Amogh Katti, Sujatha Terdal, “Program Slicing for

Refactoring: Static Slicer using Dynamic Analyser”,

International Journal of Computer Applications, Vol. 9,

No. 6, November 2010

[13] Hiralal Agrawal, Joseph R. Horgan, “Dynamic Program

Slicing”, ACM SIGPLAN Notices, Vol. 25, No. 6, pp.

246-256, June 1990

[14] Z. Chen, B. Xu, and J. Zhao, “An Overview of Methods

forDependence Analysis of Concurrent Programs”, ACM

SIGPLAN Notices, Vol. 37, No. 8, pp. 45-52, 2002

[15] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang, and

Huowang Chen, “Regression testing for web applications

based on slicing. In Proceedings of the 27th Annual

International Computer Software and Applications

Conference”,IEEE Computer Society, pages 652–656,

Los Alamitos, CA, USA, November 2003

[16] J. Bible, G. Rothermel, and D. Rosenblum, ”A

comparative study of coarse- and fine-grained safe

regression test-selection techniques”, ACM Transactions

on Software Engineering and Methodology, Vol. 10, No.

2, pp. 149–183, April 2001

[17] S.S. Anju, P. Harmya, Noopa Jagadeesh, R. darsana,

“Malware detection using assembly code and control

flow graph optimization”, ACM Digital library, No. 52,

2010

