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ABSTRACT 

In this paper, a method for computing entanglement of 

electrons in atoms and molecules is described. The 

importance of entanglement computation for Quantum 

Computers and for Biology is highlighted and the existing 

models’ pros and cons are illustrated. A description of the 

algorithms follows, with some considerations about the 

execution times and how they scale increasing the system’s 

Hilbert space dimension.   

Keywords 

Quantum, entanglement, computation, algorithms. 

1. INTRODUCTION 
An intuitive way of understanding why, in the near future, 

quantum mechanics will become important for computation, 

even for classical computers, is provided by miniaturization. 

Smaller size circuits boost computer power because the 

communication between components is faster, smaller active 

components are faster and at the same time their density 

increases. The progress in miniaturization may be quantified 

empirically in the well-known Moore’s law [1]: the number of 

transistors on a single integrated-circuit chip doubles 

approximately every 18 - 24 months. Presently integrated 

circuits feature minimum size is about 25 nm. If the shrinking 

of active elements dimensions will continue at the same rate 

for the next 20 years, they will probably become the same 

dimension of atoms and molecules. As the size of the smallest 

molecule, H2, is about 0.1 nm, at that point, quantum effects 

will become unavoidably important. They will have in general 

a disturbance effect on classical computing devices, or will be 

used to build quantum computers. For both reasons it is 

important to study quantum effects in atoms and molecules, 

from the point of view of computing machines engineering. It 

is to be noted that already in the eighties Carter [2] proposed 

to use single molecules to build active elements of electronic 

circuits, but he considered only their classical behaviour. In 

this setting one must be sure that the quantistic behaviour does 

not compromise the system’s functionalities. More recently 

the idea of quantum computers and communication systems 

has become feasible (see e.g. [3]); these devices will take an 

essential advantage from quantum effects of components that 

will be small enough and shielded from the environment. In 

this sense, it is natural to think of using single atoms or 

molecules to store and process both classical and quantistic 

information.  Another point of view to motivate the study of 

atoms and molecules in the scope of Quantum Computers and 

Quantum Information is that they are well-defined systems 

that can be computed with high accuracy. They then constitute 

a firm basis to check the validity of approximated models and 

algorithms. 

Among all the features of quantum systems, entanglement is 

the most relevant in quantum information. The interest in 

entanglement has now boomed, in sight of its possible 

application to Quantum Computers, Quantum Communication 

and quantum assisted classical Communication. Entanglement 

is an essential factor e.g. in quantum teleportation, quantum 

gates, quantum cryptography, dense coding, etc.  

Many studies have dealt with many physical systems that 

might be good candidates for the implementation of quantum 

computers, and very interesting few-qubit experiments have 

been performed both with natural and artificial atoms and 

molecules, see e.g. [4], [5]. It is interesting to recall that the 

Nobel Prize in Physics 2012 was awarded jointly to Serge 

Haroche and David J. Wineland "for ground-breaking 

experimental methods that enable measuring and 

manipulation of individual quantum systems". However, even 

when studying natural systems, practically all the authors use 

some specific setting, that is well suited only to the 

experimental situation in which they are interested. Often 

these systems, if built using microelectronic techniques, are 

referred to as “artificial atoms” and “artificial molecules”. 

Moreover, a second increase of interest in entanglement has 

been observed, in the field of Biology, e. g. [6], [7], [8], [9]. 

Unfortunately, in Biology the systems are so complex that 

authors are often forced to resort to models borrowed from the 

Quantum Computers Theory. This means that 

phenomenological parameters are introduced, because an "ab 

initio" treatment is not feasible. In what follows it is proposed 

a way of computing the entanglement in natural atoms and 

molecules, that is useful both in the field of Quantum 

Computers and for checking the actual applicability of 

concepts borrowed from Quantum Information Theory to 

biological and biochemical systems. 

2. ENTANGLEMENT AND QUANTUM 

INFORMATION  
In order to make the present work as self-contained as 

possible, some basic concepts are now introduced. Details can 

be found e.g. in [3]. In Quantum Information in general one is 

concerned with systems defined in a finite number of states 

only. These states are described by a Hilbert space, that 

describes the system. In particular, a qubit is a system with 

just two states, usually denoted |0> and |1>. Two or more 

qubits can be merged to form a bigger system, whose Hilbert 

space is the tensor product of the spaces of its constituents. 

The state vector is an element of the Hilbert space associated 

with the system, e.g. a|0>+b|1> for a qubit; a and b are 

complex numbers whose squared modules are the 

probabilities that the system will be found in state |0> or |1> 

and |a|2+|b|2=1.  

Entanglement is a property of quantum systems composed of 

at least two parts. A state is called entangled if it cannot be 

expressed by the tensor product of states of the subsystems; in 

this situation it is not possible to assign them individual state 

vectors and intriguing non-classical properties arise (see [3]).  
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To find the stationary state vectors |> of a system one has to 

solve the Schroedinger equation for the system at hand, that 

is the equation 

H  = E  

where H is the Hamiltonian and E, the Hamiltonian’s 

eigenvalues, represent the possible energy values of the 

system. 

In particular, the Hamiltonian of the He atom has the form: 

H =  K + N + I + S 

where K is the kinetic energy of the two electrons, N 

represents the attraction by the nucleus (inversely proportional 

to the distances r1, r2 of the two electrons from the nucleus), I 

the electron-electron repulsion (inversely proportional to their 

mutual distance, r12) and S contains spin dependent terms. A 

similar equation holds for molecules in the Born-

Oppenheimer approximation (see [10] and [11]). 

It is also important to recall from atomic physics that the 

electrons can be located in several shells, more or less far 

from the nucleus, labeled with letters: S, P, D, F etc. 

Moreover, neglecting the spin-orbit interactions, the state 

vector factorizes into two terms, one related to the spins and 

the other to the orbits of the electrons. The orbital state 

vector, the only one that will be considered in the present 

work, must be symmetric (for states called singlets) or 

antisymmetric (for states called triplets), with respect to 

exchanging the two electrons. The terms singlet and triplet 

refer to configurations of the spin degrees of freedom (see 

[10] and [11]).  

Standard high precision results about energies were used to 

check that the results of the method proposed in the present 

paper did not substantially differ from more standard 

descriptions of the atom. 

The density matrix is an alternative way to completely 

describe a quantum system. For the following discussion, the 

density matrix is obtained by 

 = |> <| 

A reduced density matrix of a system composed of several 

parts is obtained computing a partial trace of the density 

matrix of the total system on one of its subsystems. 

The von Neumann entropy of a system described by a 

density matrix  is defined by 

S(  ) = - Tr ( log ) 

and can be computed using the eigenvalues i of  as 

S(  ) = -i i log i 

 It is the analogous of the classical Shannon entropy for 

quantum information. The von Neumann entropy of the 

reduced matrix of a bipartite system is often used to quantify 

its entanglement; when it is not possible to compute the von 

Neumann entropy, the linear entropy is used, SL = 1 – Tr(2). 

It is to be noted that the entanglement definition, in this case 

for the Helium electrons, be it based on the von Neumann or 

on the linear entropy, is still debated and may differ according 

to several authors. The reader is referred to the discussion in 

[12]. 

3. THE STATE OF THE ART 
For implementation of Quantum Computers several systems 

have been studied. 

For instance [13] reviewed the research about entangled states 

of trapped atomic ions. In Quantum Information processing 

applications, a group of atomic ions is confined in a particular 

arrangement of electric  fields. In this way one gets a 

collection of quantum systems that can be individually 

manipulated, their states entangled, and their coherences 

maintained for long time. Two specific internal states of each 

ion are selected, and entanglement between pairs of ions is 

studied. [14] considered neutral atoms in optical lattices. 

Ultracold atoms are loaded into three-dimensional arrays of 

microscopic trapping potentials, known as optical lattices, in 

such a way that every lattice site is occupied by a single atom. 

After initialization, the interactions and the states of the atoms 

are controlled to coax them into the correct entangled state. 

Rydberg atoms, that is atoms with an external electron in a 

highly excited state, have been extensively used in quantum 

information experiments, as reviewed in [15]. Also in these 

cases, in general, two specific levels are selected, and the 

experiments involve the interactions and entanglement of 

Rydberg atoms and photons or of couples of Rydberg atoms. 

Also polar molecules have been considered to realize qubits, 

see e.g. [16]. The basic building block is a system of two 

polar molecules strongly trapped at given sites of an optical 

lattice, where the qubit is represented by a single electron 

outside a closed shell of a molecule formed by more than one 

element in its rotational ground state. 

All the above cases share the fact that 1) only a few states of 

the systems are selected, often just the two levels that are 

necessary to engineer a qubit, and the experimental setting 

tends to exclude all the other states; 2) the systems are 

artificially kept in the experimental environment. So, however 

interesting, they do not study entanglement in natural 

conditions. 

On the other hand, studying natural atoms and molecules in 

their natural conditions, as proposed in the present work, has 

two important advantages as it can shed light on: 1) the 

difficulties that one will meet when the dimensions of the 

components of a classical computer will become of the order 

of magnitude of molecules and atoms, and natural quantum 

effects in the materials will interfere with the computer 

operations 2) the possibility of using natural molecules, or 

polymers, to hold active elements (gates, etc.). In this way one 

could achieve the maximal miniaturization, probably the same 

of biological systems. 

Helium is the simplest case of a two electron system. 

Studying the entanglement in this system one obtains 

reference values to compare with the results of the simplified 

methods that must be employed when dealing with more 

complex systems. 

In Biology several phenomenological models have been 

proposed. There is a family of models used to model active 

sites, see for instance [8] and [17]. The physical elements that 

are relevant for the phenomenon of interest, e.g. the 

"chromophores" in photosynthesis, are described as two level 

systems (qubits), that can be grouped in higher level 

structures. A Hamiltonian function is then derived for these 

structures, using measures of site energies and coupling 

strengths. In general, a term is added to take into account the 

interplay between internal coherent dynamics and 

decoherence effects due to environmental interactions. 

The term describing the dynamics of the N active elements 

considered as closed systems, is usually written in the form: 
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Hint =  Ei |i><i| + ij>i Jij (|i><j| + |j><i|) 

here |i> represents the state in which only the ith element is 

excited, Ei are the on-site energies and Jij are the coupling 

strengths, both measured experimentally.  

Some realistic hypotheses on the environmental properties are 

added, then numerical values for the relevant quantities are 

derived from the experiments and used in simulations to 

evaluate the entanglement. 

For the purposes of the present work, it is important to stress 

that, however detailed, these models do not start from the 

basic chemical structures involved. The approach that is 

herein proposed consists, on the contrary, to start from the 

bottom level of intra atomic entanglement, with the goal of 

eventually arriving at the level of the phenomenological 

description. In this way, models like those described above 

will be completely justified. 

Some simplified models have been proposed. E.g. [18], [19], 

[20], [21], [22], [23], used analytical models to compute the 

entanglement in atoms. Although these papers highlight some 

interesting aspects of the problem, it must be stressed that all 

of them use some simplifications in the Hamiltonian, so that 

the problem can be treated analytically. Instead of the 

complete Hamiltonian, these models use Hamiltonians like the 

following: 

H =  K + A + P 

Where A is a harmonic potential and P is the interaction 

potential, taken proportional to r2
12 or to 1/ r2

12 or to 1/ r12. As 

a consequence, none of those models can be considered a high 

precision description of a real atom. 

In two papers, [24], [25], the authors computed the von 

Neumann entropy of a two electron system, a heliumlike 

atom, near the ionization threshold. Their model considers 

again a simplified Hamiltonian, namely one of the form: 

H =  K + N +  / r> 

where N represents the attraction by the nucleus (inversely 

proportional to the nucleus-electron distance) and r> = max(r1; 

r2). This means that the models uses a spherical average of the 

repulsion between electrons. In [24] the von Neumann 

entropy of the ground state only of Helium is computed, 

focusing on its dependence on the "coupling" parameter and 

on the search of its critical values. In [25] a similar model is 

used for the lowest energy triplet state. 

A computation of entanglement for a realistic model of the 

Helium atom can be found in [26]. The entanglement is 

evaluated computing the linear entropy, that implies to 

evaluate the trace of the squared reduced density matrix. As 

the functions used as a basis in this work are expressed in 

terms of spatial coordinates, no simplifications are possible 

and it is necessary to evaluate a 12-dimensional integral, that 

was computed using Monte Carlo multidimensional numerical 

integration. The authors computed the linear entropy for 

several levels of the singlet and triplet; actually, the present 

work can be considered an extension of [26], as some more 

levels have been computed, and also the von Neumann 

entropy has been evaluated, because the method proposed 

herein computes the eigenvalues of the reduced density 

matrix. 

Another difference is that the Monte Carlo integration implies 

statistical errors. On the contrary, in the proposed method, 

once one has attained a requested precision in the energy, the 

entropies are computed using only algebraic operations, so no 

other approximations or errors are involved. 

A comparison between existing techinques is summarized in 

Table 1; the main differences considered are: “cond”, the 

conditions of the systems (Artificial, Simplified or Natural); 

“ab initio” computations (Yes, No or Not applicable); “energy 

approximation” (High, Good, Low or Not applicable); “vN 

entr” if the model is able to compute the von Neumann 

entropy (Yes, Approximated, No); “lin entr” the same for 

linear entropy.   

Results obtained for Helium have been reported in [12]. 

Table 1. Comparison between existing techiques and the 

proposed scheme 

model cond 
ab 

initio 

energy 

appr 

vN 

entr 

lin 

entr 

For QC 

[13] [14] 

[15] [16] 

Art 

 

Yes High 

 

Yes 

 

Yes 

For  

Biology 

[8] [17] 

Simp 

 

No Not app 

 

Appr 

 

Appr 

Analytical 

models 

[18] [19] 

[20][21] 

[22][23] 

Simp 

 

 

Not 

app 

Low 

 

 

Appr 

 

 

Appr 

Near 

ionization 

[24][25] 

Simp 

 

Yes Good 

 

Appr 

 

Appr 

Helium  

as in 

[26] 

Nat 

 

Yes High 

 

No 

 

Appr 

Present 

method 

[12] 

Nat 

 

Yes Good 

 

Yes 

 

Yes 

 

4. DESCRIPTION OF THE ALGORITHM 
The computation is composed of the following steps: 

Step 1: computation of the energy of a specific state of the 

system. The Schroedinger equation is solved using the 

variational method. It consists of defining solutions that 

depend on variational parameters. This can be considered as a 

parametrization of the Hilbert space. The method is based on 

a theorem, stating that upper bounds of energies can be found 

looking for minima of the parameters, both for the 

fundamental and the excited states.  The estimate of energies 

is improved with a suitable choice of the initial wave 

functions. There are 3 substeps: 

Step 1.1: computation of the matrix element of the  

Hamiltonian H of the system 

Step 1.2: computation of eigenvalues and eigenvectors of this 

matrix 

Step 1.3: evaluation of the minimum of the eigenvalues, 

varying the parameters 

Step 2: computation of entanglement, with the substeps 

Step 2.1: computation of the density matrix and reduced 

density matrix using the eigenvectors computed in step 1 

Step 2.2: computation of the eigenvalues of the reduced 

density matrix, then computation of the entropies. 
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Step 2.3: computation of entanglement given the entropy. As 

already noted, entanglement can be defined in several ways 

(see [12]). 

Step 1.1. Details for Helium: an orthonormal basis is used 

for the Hilbert space, with functions: 

n1,l1,m1;n2,l2,m2 = Fn1,l1;n2,l2(r1,r2) Yl1m1(1) Yl2m2(2) 

where the indexes 1,2 refer to the two electrons, the Y are 

spherical harmonics, that depend on the atomic shell 

considered and the  are the solid angles for each particle, l1, 

l2= 0,1,2 for shells S,P,D. The radial functions F are obtained 

starting with the functions 

Rnl(r) = rn+l-1 exp(-n,l r) 

known as Slater Type Orbitals (STO) in atomic physics. Here 

n,l are variational parameters. These R functions are 

orthonormalized obtaining a set of functions fnl(r). The F 

functions are then defined as: 

 Fn1,l1;n2,l2(r1,r2) = (1/2)1/2 (fn1l1(r1) fn2l2(r2) - fn2l2(r1) fn1l1(r2)) 

for the antisymmetric case and 

Fn1,l1;n2,l2(r1,r2) = (1/2)1/2 (fn1l1(r1) fn2l2(r2) + fn2l2(r1) fn1l1(r2)) 

or Fn1,l1;n1,l1(r1,r2) = fn1l1(r1) fn1l1(r2)  for the symmetric. Up to 3 

shells (S, P and D) have been considered in our computations 

and after several tests it was concluded that it is sufficient to 

consider a single variational parameter  for each shell. The 

Hamiltonian matrix elements are computed using the 

functions F, that means to compute the kinetic energy and the 

potential energies for the nucleus attraction and mutual 

repulsion of the electrons, integrating on the whole space. 

Details for H2: in this case there is the further complication 

that there are two nuclei at some distance R. As usual, to 

compute energies and electronic eigenfunctions the Born-

Oppenheimer approximation has been used, that considers 

nuclei at a fixed distance. For this reason it is convenient to 

approximate every STO function with a suitable number of 

Gaussian functions. The great advantage of the Gaussian 

representation, based on the linear combination of Gaussian 

functions, is that for instance an integral over a product of two 

Gaussians centered about two positions reduces to a single 

integral over a third Gaussian centered in an intermediate 

point; similar results are available for more complex cases 

([27]). 

Step 1.2 In all the runs the matrix to diagonalize had 

dimension up to 250x250. The computation of eigenvalues 

and eigenvectors of a matrix is a well-studied topic, see e.g. 

[28] where the calculation of electronic structure is quoted as 

a classical eigenvalue problem. Any algorithms can be used 

(classical Jacobi, divide and conqueror, parallelized 

algorithms, etc.) to find the best mix of simplicity, speed, and 

accuracy. It is to be noted that the H matrix is symmetric. 

Step 1.3 It was found that a single variational parameter for 

each shell is sufficient, and that the minimization can be 

performed one shell at a time, so that simple methods for 

finding local minima of functions of one variable can be 

employed. 

Step 2.1 The reduced density matrix is obtained integrating  

f(r1,r2) *(r’1,r2) dr2 where the  have been computed in 

Step 1 in terms of the  functions computed in Step 1.1: 

(r1,r2) = i,k ci,k i,k (r1,r2),  

here multi-indexes i,k have been used for the sake of brevity. 

Since the expansion is done over an orthonormal basis the 

reduced density matrix on that basis is simply given by a 

partial trace over the second particle of the overall density 

matrix. Schematically: 

rid
i,k = j ci,j c*k,j 

A major advantage of the method and the use of orthonormal 

basis orbitals is that the reduced density matrix is obtained by 

purely algebraic methods, without numerical computations of 

multi-dimensional integrals. 

Step 2.2 It consists again of an eigenvalue problem, but with 

two simplifications: 1) the matrices are smaller 2) 

eigenvectors are not needed. Once eigenvalues are found, 

every form of entropy that is needed can be computed.  

5. PERFORMANCE EVALUATIONS 
In order to evaluate critical points and to test the possibility to 

use the method in more complex situations, the time needed to 

perform the main subroutines of the Fortran implementation 

was measured. All the calls in a program run have been 

summed to compute tables 2, 3, 4 and 5. The entries = 0 mean 

that the time was negligible. In all the tables, n is the 

dimension of the single particle Hilbert space. The total run 

time for n=3 has been taken as a unit of measure: the figures 

are relative measures, exploiting the time scaling with n. 

Here eig1 computes the eigenvalues of the reduced density 

matrix; it scales linearly with n in the range considered; eig2 

computes the eigenvalues of the Hamiltonian. For two 

particles the dimension is n(n+1)/2 for singlets and n(n-1)/2 

for triplets; eig2 scales approximately as n5.8. ortho 

orthogonalizes the STO functions, and scales linearly. The 

routine singp computes the matrix elements for a single 

electron, and twop for two electrons in the same shell; they 

scale respectively as n4.6 and n3.5. The total runtime, for n>7 

scales as n3.8.The programs have been compiled with the 

gfortran compiler and run on two Windows computers; and 

with the Intel compiler on a Linux system. Average run times 

have been computed to compare the subroutines scaling. 

Table 2. Execution time – He S shell only 

n eig1 eig2 Ortho singp twop Total 

3 0.0000 0.0003 0.0000 0.0023 0.0010 1 

5 0.0013 0.0043 0.0003 0.0144 0.0020 1.0187 

7 0.0030 0.0314 0.0007 0.0725 0.0047 1.1089 

9 0.0070 0.1416 0.0013 0.2438 0.0124 1.4021 

11 0.0150 0.4693 0.0030 0.6536 0.0294 2.1690 

13 0.0210 1.3133 0.0040 1.4957 0.0655 3.9092 

15 0.0361 2.9312 0.0073 3.0361 0.1346 7.1523 

17 0.0558 6.0564 0.0104 5.6673 0.2672 13.063 

19 0.0815 12.123 0.0147 9.7993 0.4873 23.516 

 

Table 3. Execution time – He S and P shells 

n eig1 
eig2 Orth

o 

sing

p 

twop twoq Tota

l 

5 
0.00

0 

0.04

0 
0.001 

0.02

7 

0.00

5 

0,00

4 

1.00

0 

7 
0.00

1 

0.28

8 
0.001 

0.13

6 

0.01

1 

0.00

8 

1.36

1 

9 
0.00

2 

1.27

7 
0.002 

0.45

9 

0.02

8 

0.01

8 

2.70

1 
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1

1 

0.00

3 

4.47

1 
0.005 

1.21

0 

0.06

8 

0.04

2 

6.70

1 

1

3 

0.00

5 

11.8

5 
0.008 

2.77

5 

0.14

9 

0.09

0 

15.8

0 

1

5 

0.00

8 

27.1

6 
0.012 

5.64

5 

0.29

9 

0.17

5 

34.2

2 

 

Table 3 refers to runs in which electrons in shell S and P have 

been considered. The name of the routines is the same as in 

table 2 with the exception of twoq that computes the 

interactions between electron in different shells. The scaling 

of this routine is n3.5, all the others are similar to the case of 

shell S only. 

 

Fig 1: The scaling routines for shell S 

 

Fig 2: The scaling routines for shell S - P 

Figures 1 and 2 represent graphically the scaling of the 

subroutines, relative to the longest time of each of them. 

Also the total run times for runs considering only the S, the S-

P and the S-P-D shells have been compared. Mean times in 

seconds are shown in table 4. For these runs we used a 1.66 

Ghz, 1 Gb Ram, 32 bit Windows system. The ratio between 

the S and S-P runs scales approximately as n1.5, and the ratio 

between S and S-P-D runs as n2.6. 

Table 4. Execution time – He S, S-P, S-P-D shells 

n S S-P S-P-D S-P / S  S-P-D / S 

5 47.6 50.6 56.8 1.06 1.19 

7 51.8 68.8 115.3 1.33 2.23 

9 65.5 136.5 350.3 2.08 5.35 

11 101.3 339.4 1032.5 3.35 10.19 

13 182.6 798.4 2598.6 4.37 14.23 

15 334.1 1728.9 6525.2 5.18 18.72 

 

For the H2 computation, the scaling with the number of basis 

functions and with the number G of Gaussian functions used 

in the expansions has been considered. Table 5 shows that, 

notwithstanding some fluctuations due to the small values of n 

used in these exploratory runs, the time needed to compute the 

two bodies interactions is far longer than the duration of all 

the other subroutines. Times are relative to the total run time 

for n=3, G=1. 

Table 5. Execution time – H2 S shell only 

n G eig1 eig2 ortho twop Total 

3 1 0.0000 0.0294 0.0009 0.0069 1 

3 3 0.0000 0.0025 0.0057 0.3173 1.288 

3 6 0.0000 0.0018 0.0261 4.4026 5.393 

5 3 0.0003 2.0691 0.0186 2.8533 5.905 

5 6 0.0006 0.1536 0.0742 40.6721 41.863 

 

6. CONCLUSIONS 
An algorithm to compute electronic entanglement in atoms 

and molecules has been described. All tests showed that the 

entanglement computation is feasible with less effort than 

energy computation, and that the algorithm can be extended, 

without major problems, to more complex situations. 

Moreover, these computations that are in principle “exact” as 

their precision is limited only by the Hilbert space dimension, 

allow to check the accuracy of simplified computational 

models that must be used in situations that are so complex that 

approximate methods are mandatory. Among these, there are 

undoubtedly biochemical and biological systems, where the 

entanglement has been proposed as an important efficiency 

factor. 

Other applications can be found in the quantum computer 

implementation area, where natural atoms and molecules 

could be considered as candidates to realize active elements. 

Even classical computers could benefit  of this kind of 

computation, as quantum effects will show with the progress 

of miniaturization, and it will be important to prevent their 

interference with the optimal operation of the devices. 
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