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ABSTRACT 

In the recent years, there has been much interest in 

development of knowledge in the general region of Fibonacci 

numbers and related mathematical topics. The concept of 

coupled Fibonacci sequences was first introduced by 

Atanassov, K. T. in 1985. Generalized coupled Fibonacci 

sequences are defined by  

1 2 1 2, 2 , 2n n n n n np q n and r s n               

with initial conditions 
0 1 0 1, , , .a b c d        

In this paper, identities of generalized coupled Fibonacci 

sequences are presented. 
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1. INTRODUCTION 
The Fibonacci sequence is probably one of the most famous 

and most widely written about number sequences in all of 

mathematics. The Fibonacci sequence has been defined by the 

recurrence relation 
1 2, 2n n nF F F n    with initial 

conditions
0 10& 1.F F  In which each subsequent filial 

generation is seen as the sum of the previous two generations. 

In 1985, Attanasov [1] introduced a new view of a generalized 

Fibonacci sequences by taking a pair of sequence 
0}{ ii

and 
0}{ ii , which can be generate by a famous Fibonacci 

formula and gave various identities involving Fibonacci 

sequences called them coupled Fibonacci sequences. He was 

defined and studied about four different ways to generate 

coupled Fibonacci sequences.
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Singh, M., Sikhwal, O., and Jain, S. [9], present coupled 

Fibonacci sequences of fifth order with some properties for 

positive and negative integers. Multiplicative coupled 

Fibonacci sequences [2] and [4] are deliberated in 1995. 

Singh, B. and Sikhwal, O. [10], present fundamental 

properties of multiplicative coupled Fibonacci sequences of 

second order. Rathore, G. P. S., Jain, S. and Sikhwal, O. [8], 

presents multiplicative coupled Fibonacci sequences of third 

order under two specific schemes. The concept of Fibonacci-

Triple sequences is first introduced by Lee, J. Z., and Lee, J. 

S., [7] 1987. Singh, B. and Sikhwal, O. [11], presented some 

fundamental properties of Fibonacci-Triple sequences (3-F 

sequences). Singh, M., Bhatnagar, S., Sikhwal, O. [12], 

presented some results on multiplicative triple Fibonacci 

sequences under two specific schemes.  

 

In this paper, some new identities of generalized coupled 

Fibonacci sequences are presented. 

 

2. GENERLIZED COUPLED  

     FIBONACCI SEQUENCES 
Atanassov, K. T. was introduced new generalized coupled 

Fibonacci sequences. Let 
0}{ ii  and 

0}{ ii be two 

infinite sequences with initial conditions  

0 1 0 1, , , ,a b c d        then generalized 

coupled Fibonacci sequences are defined by 
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                      (2.1) 

Where , ,p q r and s are real numbers 

First few terms of the sequences are given below:  

n

 n  n  

0 a b 

1 c d 

2 pc qa  rd sb  

3 2p c pqa qc   2r d rsb sd   

4 3 2 22p c p qa pqc q a  

 

3 2 22r d r sb rsd s b  

 

 

3. MAIN RESULTS 
In this section, some new identities of generalized coupled 

Fibonacci sequences 2.1 will be discussed. Many authors have 

been presented identities of coupled Fibonacci sequences 

under additive and multiplicative patterns. In this section, 

some sum formulae of n terms of coupled Fibonacci 

sequences are presented  

Theorem (3.1): Sum of the first n terms of generalized 

coupled Fibonacci sequence is 
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Proof: By (2.1), to obtain 

1 1 3 3 2 2 ,q s p r           

2 2 4 4 3 3,q s p r           

3 3 5 5 4 4 ,q s p r           

…  …  … 

1 1 1 1 ,n n n n n nq s p r              

2 2 1 1.n n n n n nq s p r              

 

Term wise addition of all above equations, 
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Theorem (3.2): Sum of the first n terms with odd indices is  
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Proof: By (2.1), to obtain 
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Respectively and adding, to obtain 
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Theorem (3.3): Sum of the first n terms with even indices is 
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Proof: By (2.1), to obtain 
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Theorem (3.4): For positive integer n , 
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Theorem (3.5): Sum of the square of first n terms is 
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Proof: By Theorem (3.4), we have 
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4. CONCLUSION 
In this paper, identities of generalized coupled Fibonacci 

sequences are presented. For values of p, q, r and s, the 

identities of classical coupled Fibonacci sequences can be 

obtained.  In future, identities of coupled Fibonacci sequences 

of higher order can be formed under additive and 

multiplicative patterns. Also identities can be formed for 

Fibonacci-Triple Sequences under additive and multiplicative 

patterns. 
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