
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

1

Semantic Suffix Net Clustering for Search Results

Jongkol Janruang

Computer Science & Information Management
Program, Asian Institute of Technology

P.O.BOX 4, Klong Luang, Pathumthani 12120
Thailand

Sumanta Guha
Computer Science & Information Management

Program, Asian Institute of Technology
P.O.BOX 4, Klong Luang, Pathumthani 12120

Thailand

ABSTRACT

Suffix Tree Clustering (STC) uses the suffix tree structure to

find a set of snippets that share a common phrase and uses this

information to propose clusters. As a result, STC is a fast

incremental algorithm for automatic clustering and labeling

but it cannot cluster semantically similar snippets. However,

the meaning of the words is indeed an important property that

relates them to other words, although there may not be a

match of text strings per se. In this paper, we propose a new

semantic search results clustering algorithm, called semantic

suffix net clustering (SSNC). It is based on semantic suffix

net structure (SSN). The proposed algorithm uses the net

pruning technique to merge the related suffixes through their

suffix links for finding base clusters. This logic causes both

string matching and meaning of the words to be used as

conditions for the purpose of clustering. Experimental results

show that the proposed algorithm has time complexity lower

than CFWMS, SSTC and STC+GSSN which are current

semantic search results clustering methods. Moreover, the F-

measure of the proposed algorithm is similar to that of the

original STC, CFWMS, STC+GSSN, and higher than that of

MSRC and SSTC.

General Terms

Algorithms, Data Mining, Text Mining, Search Results

Clustering.

Keywords

search results clustering, semantic suffix net, net pruning

techniques, semantic suffix net clustering, semantic

clustering.

1. INTRODUCTION
Recently, information retrieval and text mining have

generated a great deal of interest in the fields of business

intelligence, knowledge management, and various search

applications. This is because of the rapid growth of databases,

belonging to government, businesses and other organizations,

which contain documents in digital form [1]. Paradoxically,

the volume of information available often makes finding what

they need actually harder for users. Development of

applications that help users retrieve the answer to their query

from massive digital archives is a challenging task and one

essential, therefore, to making these growing archives actually

useful and not just voracious hogs of disk space.

The World Wide Web is an example of an enormous

distributed database of electronic documents, or web pages as

they are called [2]. Powerful and sophisticated search engines

such as Google and Bing exist to help users navigate the web.

However, typically, search engines return a long list of search

results. The user then has to sift through these to find relevant

ones, which is a time-consuming task. Moreover, if the

relevant results do not occur in the first part of the returned

list, then the user may even fail to find them. A possible

solution to this problem is the use of the search result

clustering techniques which group results in easily understood

clusters, facilitating the user’s search – instead of scanning

linearly through a long list of items, she scans linearly through

a much shorter list of groups of items, and then, once an

appropriate group has been identified, through a

correspondingly shorter list of items in that group. Typically,

clustering is performed based on snippets - short passages of

text summarizing the content of search results [3, 4, 5, 6, 7].

Search results clustering algorithm are a core component of

web clustering engines [7]. Most search results clustering

algorithms are a combination between search engines and text

clustering, the latter grouping snippets returned from search

engines (e.g., STC [3], SHOC [4], LINGO [5], SNAKET [6],

CREDO [8], and NSTC [9]). Typically, they generate cluster

labels as navigators which facilitate user access to relevant

search results. However, the quality of search results

clustering is crucial. One way to enhance the quality is to use

the semantic similarity of words; in particular, one tries to

relate words by finding commonality in meaning, although

there may not be a match of text strings per se.

Semantic text clustering has drawn considerable interest in

recent years. For example, the CSUGAR approach proposes

biomedical textual information clustering using ontology to

create semantic clusters [10]. TRSSC performs search results

clustering by creating the semantic upper approximation space

based on the tolerance rough set method and then organizing

results into groups by relating meaning [11]. These projects

confirm the importance of semantic clustering in practical

situations.

In this paper, a new semantic search results clustering

algorithm is proposed, called semantic suffix net clustering

(SSNC). This approach is derived by combining the

advantage of both semantic suffix tree clustering (SSTC) [12]

and its generalization STC+GSSN [13]. The SSNC is

proposed by using a generalized semantic suffix net (GSSN)

as a structure to represent snippets instead of the semantic

suffix tree. Subsequently, a net pruning technique is used to

replace tree pruning in SSTC since net pruning is a

modification of the tree pruning technique in SSTC.

According to our evaluations, semantic suffix net can be used

instead of the semantic suffix tree in SSTC and the time

execution of SSNC is faster than that of SSTC. Additionally,

the precision of SSNC results is higher than STC+GSSN.

This paper is organized as follows. Related works are

described in Section 2. The semantic suffix net clustering is

proposed in Section 3. In Section 4 experiments are presented.

Finally, we conclude in Section 5.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

2

2. RELATED WORKS
STC is a fast incremental algorithm for search results

clustering but it suffers from the typically large size of the

suffix tree used as a structure to represent snippets. Therefore,

the MSRC algorithm [14] was introduced to manage the huge

tree returned by STC but the difficulty with this approach is

that the n-gram technique generates interrupted cluster labels

if the common phrase size is longer than the defined n-gram

size. Based on the problem of MSRC, the STC with a partial

phrase join operator [15] was presented to solve the problem

of the interrupted cluster labels that are generated when using

the STC with n-gram techniques. In another approach, the

STC with x-gram [16] was created based on the on-line

construction of suffix trees to decrease the memory space

used by the original suffix trees. However, these various

approaches do not allow one to modify the original STC to

perform semantic search results clustering. Even though, the

STC algorithm gives significant search performance it does

not consider semantically related words to construct suffix

trees and, therefore, eventually generates a huge tree with a

complexity which is hard to manage.

In addition, the original STC cannot group semantically

similar snippets into the same clusters. For example, the two

snippets: S1 = Doctor likes children and S2 = Physician cares

for child have similar meanings but STC cannot group them

into the same cluster. Moreover, the two snippets: S1 = John

wrote the paper in the morning and S2 = the paper was written

by John in the morning have similar meanings but STC

returns three base clusters: john={1,2}, paper={1,2}, and

morn={1,2}. That means STC cannot generate phrase cluster

labels when the two snippets in the form of the passive voice

and the active voice are similar in meaning. To deal with these

problems of STC, SSTC [12] is created using a semantic

suffix tree as a structure to represent snippets and then tree

pruning to combine related suffixes. However, SSTC lacks the

logic to explain the disappearance of semantically similar

nodes. Thus, STC+GSSN [13] are introduced in order to

address the problem of a lack of logic to explain the

disappearance of semantically similar nodes of SSTC.

The significant contribution of this paper is a new approach to

semantic search results clustering by using the semantic suffix

net as a structure to represent snippets. The semantic suffix

net is a new semantic search structure for search results. It can

be used to alleviate the problem of the size of the suffix tree

and to improve semantic clustering when STC ignores

meaning of the words. The logic is that search results

clustering which works on textual information should use

meanings of words for the purpose of clustering. In fact,

humans use the concept or meaning of the words directly to

group them. For example, in the case of biomedical textual

information clustering, the CSUGAR approach [10] is

proposed based on ontology techniques. In the field of

document and search results clustering, CFWMS [2] are

created synsets and hypernyms from the WordNet database to

generate the meaning of the union MU and then the apiori

concept is applied to find the frequent meaning union FMU

and this information is used to identify final clusters. These

approaches confirm the importance of semantic clustering in

practical situations.

3. SEMANTIC SUFFIX NET

CLUSTERING
Semantic search structure is an important structure to use for

grouping the semantically similar snippets since words have

meaning as an important property that relates them to other

words, although there may not be a match of text strings per

se. Therefore, Semantic Suffix Net Clustering (SSNC) is

proposed to present a new semantic search structure for search

results clustering called Semantic Suffix Net (SSN). Also, net

pruning technique is proposed to exploit the usefulness of

suffix links in SSN structure. The architecture of SSNC is

shown in Fig.1. The details of four processes are described as

follows.

Fig 1: The architecture of SSNC which modifies search

results clustering can be used for semantic search results

clustering by using SSN structure and net pruning

technique.

3.1 Step 1- Preprocessing
In this step, the two common text pre-processing methods

(e.g. ignoring stop words and non-words, stemming

algorithms) are used as tools to clean snippets. In addition, the

next-word is deleted, if it is duplicated to the previous word.

For example, there is a string: He is a taxi driver and he

drives a taxi in the city, after the two common text pre-

processing methods are completed, taxi drive drive taxi city is

returned. Then, the drive word in the third position is deleted

to reduce the space complexity and time execution of the next

processes.

As example in this paper, there are three snippets: s1 =john

wrote the paper in the morning, s2 =the paper was written by

John in the morning, and s3 =the paper is made from wood.

The results of this process are s1 =john wrote paper morn, s2

=paper written John morn, and s3 =paper made wood.

3.2 Step 2- Data Representation
In this step, the SSN of snippet pairs are combined to GSSN

for representing a set of snippets. The detail of GSSN

construction is explained in the STC+GSSN algorithm [13].

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

3

Fig 2: This is a GSSN which is created depending on the

three strings: s1 =john wrote paper morn, s2 =paper written

John morn, and s3 =paper made wood.

In Fig. 2, each node is drawn in a circle, and is labeled by

inputting a string word, which is connected to a suffix node

with a direct link which is represented as a black line. Each

branch of the root is defined as a suffix, which contains one or

more sub-suffixes (e.g., the first branch of a root is a suffix

which has john as a heading node and this suffix contains two

sub-suffixes which are wrotepapermorn {1,1} and norm

{2,3}). Each suffix is connected to the next suffix with suffix

links which are represented as dotted red lines. For each of the

boxes at the leaf node, the first number designates the string

of origin (our example is starting to 1-3) and the second

number is a starting position of the suffix in that string.

3.3 Step 3 – Identifying Base clusters
The identification of base clusters can be done efficiently

using suffix links and direct links since suffixes are related

through their suffix links and direct links. The details of this

step include a move to update or to delete branches and nodes

in order to find base clusters. This step is called the net

pruning technique.

The process of the net pruning technique is divided into two

steps. The first step is called merging suffixes, which is shown

on line numbers 4-22 in Algorithm 1 below. Then the second

step is shown on line numbers 23-24 which is called compact

nodes.

The process of merging suffixes uses suffix links as a path to

travel in order to join the two related suffixes. Based on

Algorithm 1, βp is defined as a suffix which is a prefix of βs

whereby βp and βs are connected through suffix links. The

details of merge suffixes in the three cases are explained as

follows:

Case 1: p = s when p is the ordinal number of βp and s is the

ordinal number of βs. This case means that βp and βs are the

same suffix. This shows that duplicated words appear on the

same suffix and results in erroneous merging of related

suffixes. To reduce the occurrence of duplicated words, the

current node N[k] is merged to update at its parent node

which is called p[N[k]]. An example of this case is shown in

Fig. 5 and the equation is shown in line number 16.

Case 2: |βp ∩ βs| = |βs| means βs is a subset of βp. To delete the

duplicate suffix, all nodes of βs are moved to update at the

related nodes on βp through their suffix links. The illustration

of this case is shown in Fig. 3 and the equation is shown in

line number 18.

Case 3: |βp ∩ βs | < |βs| means βs is not a subset of βp. Only

related sub-suffixes of βp are moved from βs to update at the

related sub-suffixes on βp through their suffix links. In

contrast, sub-suffixes which are not related to βp will remain

as a suffix on the root node. The illustration of this case is

shown in Fig. 4 and the equation is shown in line number 19.

1 Input: GSSN structure

2 Output: a tree structure

3 Initialization:

4 j←0

5 n ← the number of child’s root node

6 While p ≤ n Do

7 βp ← jth suffix path

8 βs ← suffix path of βp

9 For all nodes on βp {

10 N(k) ← a child of βp

11 s[N(k)] ← a suffix node of N(k)

12 p ← the ordinal number of βp

13 s ← the ordinal number of βs

14 If (p>s) Then root ← root - βp

15 Else If (p = s) Then

16 d[p[N(k)]] ← d[p[N(k)]] ⨁ d[N(k)] ►case 1

17 Else{

18 If (|βp ∩ βs | = | βs |) Then βp ← βp ⨁ βs ►case 2

19 Else βp ← βp ⨁ (βp ∩ βs) ►case 3

20 }

21 }//end of for statement

22 End // end of while statement

23 For i ← 1 To n do // the compact nodes process

24 If d[Ni] = Ø and |c[Ni]| =1 Then Ni ← Ni + Ni+1

Algorithm 1: The process of the net pruning technique

To understand the process of merging suffixes, the result of

data representation in Fig. 2 is used as an example to explain

the details of this process.

The initial step to merge suffixes is defining the path of suffix

βp and βs. According to Fig. 3-A, the root contains six suffixes

which are related through their suffix links. The first suffix of

the root is defined as βp which has john as a label of its node

and p is equal to 1. A node john is a heading node of this

suffix. According to john node, it contains two sub-suffixes:

1) wrotepapermorn {1,1} and 2) morn {2,3}.

After βp is defined, βs will be identified by a suffix link of the

first child node of βp which is called the current node N(k).

Herein, N(k) has john node as a parent node p[N(k)]. In this

example, the suffix link of N(k) is used to identify βs. As a

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

4

result, the second suffix of the root: wrote node is defined as

βs which is called s[N(k)] and s is equal to 2.

βs has wrote as a heading node and it contains two sub-

suffixes: 1) papermorn {1,2} and 2) johnmorn {2,2}. In

this case, βs is a subset of βp when all nodes of βs are related to

βp through their suffix links. Therefore, case 2 can be applied

to merge related suffixes. An example of this case is shown in

Fig. 3-A and its result is shown in Fig. 3-B.

After βp and βs are merged based on case 2, its result is used

to process the next step, which can be shown in Fig. 4. In this

paper, the preorder traversal based on depth-first traversal

method is applied to travel on semantic suffix net structure.

Thus, the first child node of wrote node on βp called paper

node is assigned as the current node N(k) and it has wrote

node as parent node p[N(k)] automatically. As a result, the

second suffix of the root: paper node is defined as βs and s is

equal to 2.

In this case, case 3 can be applied since βs is not a subset of βp.

This is because only the first sub-suffix: norm {1,3} and

second sub-suffix: writtenjohnmorn {2,1} of βs are

related to βp through suffix links. Also, the third sub-suffix:

madewood {3,1} of βs is not related to βp through suffix

links. The process of this example is shown in Fig. 4-A and

then its result is shown in Fig. 4-B.

In Fig. 4-B, the result of case 3 is used to process the next step

of preorder traversal. The child node of paper node on βp:

morn node is assigned as N(k). After that, the third suffix of

the root is assigned as βs thus the morn node on βs is assigned

as s[N(k)]. In this case, case 2 can be applied. The results of

this case are shown in Fig. 5-A.

Fig 3: The initial step of net pruning is defining βp and βs which are related suffixes through suffix links. Fig. 3-A shows both βp

and βs are connected through their suffix links. This figure shows an example for case 2 of net pruning and its result is shown

in Fig. 3-B. Since βs is a subset of βp, case 2 can be applied to prune a net form through suffix links. As result, the number of

suffix paths on a net form is decreased because βs is moved to update at βp. The equation of this case is βp = βp ⨁ βs.

Fig 4: This figure is an example of case 3 since some sub-suffixes of βs are not related to βp. Therefore, only related sub-suffixes

between βs and βp are transferred to update on βp. Fig. 4-B shows the result of case 3 since the related sub-suffixes between βs

and βp are moved from βs to βp for updating on βp. In contrast, different sub-suffixes between βs and βp are not transferred to

update on βp but they will still exist on βs (papermadwood). The equation is βp = βp ⨁ (βp ∩ βs).

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

5

Fig 5: This figure is an example of case 1 when the same meaning is shared by sentences of both passive and active voice. It

causes the loop of string on a net form to appear. To reduce the loop of string, case 1 can be applied. The equation is d[p[N(k)]]

= d[p[N(k)]] ⨁ d[N(k)]. Fig. 5-B shows the results of case 1 which cause the number of the node and the height of the net to be

reduced.

In Fig. 5-A, the second child node of paper node: written

node is assigned as N(k), that means paper node is p[N(k)] and

wrote node is s[N(k)] automatically. In this case, case 1 is

applied to avoid the mistakes of merging the related suffixes

in the case 2 and 3 since βs and βp are the same suffix.

In case 1, d[p[N[k]]] is represented to document members of

node p[N[k]] and d[N[k]] is represented to document members

of node N[k] and its child nodes. Thus, d[p[N[k]]] of this

example is null when a node p[N[k]] does not have a

document member. In contrast, d[N[k]] contains one

document member which is document number 2. For that

reason, a node morn {2,1} which is a child nod of N[k] has a

document number 2 as a document member. The illustration

of this process is shown in Fig. 5-A and its results are shown

in Fig. 5-B.

The process of merging suffixes is applied and will be

finished since all related suffixes are merged through their

suffix links based on case 1-3. The results of the merging of

suffixes step are shown in Fig. 6-A.

In Fig. 6-A, the result of merging suffixes is represented in a

tree form. Each node may include both label and document

members. For example, a node of a root is divided into two

suffixes: 1) johnwrotepapermorn and 2)

papermadewood. According to john, it has john as a label

and number 2 is a document member. In the other case, a node

of paper in the second suffix of the root contains only a label

but the document member is empty. Thus, this node is an

empty node. An empty node is a node that has a child node

but does not have a document member. So, it is unable to be a

cluster. It must be combined with its child node in order to

reduce the number of nodes and to generate a phrase label.

The definition of a compact node is defined as definition 1

and the process of this step is shown in Fig. 6-A. Its result is

shown in Fig. 6-B.

Definition 1: Let Ni be an empty node and Ni+1 be a child

node of Ni. Each empty node is compacted with its child node

by deleting the direct link that directs from that empty node Ni

to its child node Ni+1 in that suffix. Then, the label of Ni is

concatenated to Ni+1 as in Ni = Ni + Ni+1.

After the compact nodes step is completed, all nodes in each

suffix are collected to form base clusters which label and

document members. In particular, a label of a base cluster is

generated by concatenating the labels of nodes from the root

to that node. Similarly, a document member is generated in

the same way. For example, the first suffix of the root

includes four base clusters which are john ={2}, john wrote =

{2}, john wrote paper = {2}, and john wrote paper morn =

{1,2}. Accordingly, there is a base cluster john wrote paper

morn = {1,2}, which has a phrase john wrote paper morn as a

label and document number 1 and 2 as document members.

Each base cluster is assigned a score that is a function of the

number of documents it contains, and the words that make up

its phrase. The score S(c) of base cluster B with phrase P is

given by:

 s(c) = |D| * ƒ(|P|)

Let |D| be the number of document members in base cluster B,

and |P| be the number of words in phrase label P that have a

non-zero score. In the other word, |P| is the length of the label.

The function ƒ(|P|) means that the score of P is equal to 0 if

the length of the label is less than 2 or more than 6. This is

because the function ƒ penalizes single word phrase label and

longest phrase labels. Thus, the function ƒ(|P|) is equal to the

length of phrase label in the range of 2-5 words which is

shown in the following and the score of each base cluster is

shown in Table 1.

 ƒ(|P|) =

|P| if 1<P<6

 0 otherwise

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

6

Table 1. This table contains the five base clusters and

their scores: s(c)

Node Phrase Label document

member

Score

Cluster

s(c)

john john 2 1*0=0

wrote john wrote 2 1*2=2

paper john wrote paper 2 1*3=3

morn john wrote paper

morn

1,2 2*4=8

paper made

wood

paper made wood 3 1*3=3

3.4 Step 4 – Identifying Final Clusters
In this paper, a string may share one or more concept clusters

since the meaning of the words and matching string are used

as conditions of clustering. According to Fig. 7-A, both label

and document members of base clusters may overlap or may

even be identical. For this reason, both label and document

members should be used as conditions to combine base

clusters, which are duplicated.

The logic is that the combination of base clusters should use

both label and document members to combine base clusters

for identifying the final clusters. This avoids duplicate

clusters. The overlap criterion of label and documents is

achieved by calculating the overlap ratio of the pair clusters

based on the following:

 If |La⋂Lb|=|Lb| & |Da⋂Db|=|Db| Then Ca=Ca⨁Cb

 Else If |La⋂Lb|=|La| & |Da⋂Db|=|Da| Then Ca=Ca⨁Cb

There are two base clusters: Ca and Cb with size |Da| and |Db|,

respectively. Let |Da⋂Db| represents the number of documents

common to both Ca and Cb. Similarly, |La⋂Lb| represents the

number of words common in label to both Ca and Cb. In

addition, S(c) is used to rank the final clusters.

In Fig. 7-A, there are five base clusters: john={2}, john

wrote={2}, john wrote paper={2}, john wrote paper

morn={1,2}, and paper made wood={3}. The first two base

clusters are used to check overlap criterion which is shown in

Fig. 7-B. Thus, john={2} is assigned to Ca and john

wrote={2} is assigned to Cb. As a result, Ca is combined into

Cb because they are duplicated. Moreover, the S(c) of Cb is

higher than that of Ca. Therefore, Cb is selected and Ca is

deleted. The results of this example are shown in Fig. 7-C.

In the other case, Ca and Cb are not duplicated. They are

separated into two final clusters. For example, john wrote

paper morn={1,2} is assigned to Ca and paper made

wood={3} is assigned to Cb. As a result, they are separated

into two final clusters which are john wrote paper

morn={1,2} and paper made wood={3}. This result is shown

in Fig. 7-D.

After the identifying of final clusters process is completed, the

resulting final cluster is john wrote paper morn={1,2} and

paper made wood={3}. Consequently, this process can reduce

the number of duplicate identical clusters and return specific

readable clusters.

Finally, the set of final clusters are ranked based on S(c).

Therefore, john wrote paper morn = {1,2} is returned on the

top rank of final clusters because its s(c) is higher than that of

paper made wood ={3}. From this result, the SSNC algorithm

can cluster snippets that have a semantic similarity because it

can cluster s1: john wrote the paper in the morning and s2: the

paper was written by John in the morning to a cluster and then

separate s3: the paper is made from wood to another cluster.

Fig 6: This illustration shows the compact nodes and results of net pruning techniques. In Fig. 6-A, the second suffix has a

paper node as a heading node and it is an empty node. Thus, it must be compacted to its child node. As a result, there are three

nodes in the second suffix, which are paper, made and wood. They are compressed to a node called paper made wood node as

shown in Fig. 6-B. Finally, all nodes are constructed as base clusters as shown in Fig. 6-C. For example, a john {2} group has

“john” as a cluster label and 2 as a document member.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

7

Fig 7: This diagram shows the process of identifying final clusters by using a merged base clusters equation. Fig 7-A depicts

the initial step when the base clusters are the results of the examples given in Fig. 2 – 6. Fig. 7-B and 7-C are the next step after

the first base clusters couple is merged into a bigger cluster. Finally, Fig. 7-D shows the final clusters, which are returned after

all base clusters are merged.

4. EXPERIMENT
The results of SSNC are compared with both the original

search results clustering (e.g. STC and MSRA) and semantic

search results clustering algorithms (e.g. CFWMS, SSTC, and

STC+GSSN).

4.1 Data Collection
The dataset is created from a testing dataset using 31,760

search results from 30 query words on Dmoz.com [17];

Dmoz.com is a human-collected directory of web pages. This

utility is used in order to sample categories, and then SSNC is

executed on the pre-categorized samples. Thus, the clusters

produced by SSNC are compared with the Dmoz categories.

In Table 2, the dataset specially selects three types of query,

which are ambiguous queries, entity names, and general term

queries.

Table 2. The thirty queries in three types selected from

DMOZ.com

Type Queries

Ambiguous

queries

jaguar, apple, saturn, jobs, jordan, tiger,

trec, ups,quotes, matrix

Entity names
susan dumais, clinton, iraq, dell, disney,

world war 2, ford

General terms

health, yellow pages, maps, flower, music,

chat, games, radio, jokes, graphic design,

resume, timezones, travel

4.2 Experimental Results

4.2.1 Execution Time and Space Complexity in

the part of data representation
To compare execution time and space complexity of three

data structures (e.g. suffix tree, semantic suffix tree, and

semantic suffix net), 967 search results of the “Apple” query

word are selected as example of snippets for inputting to six

algorithms (e.g. STC, MSRA, CFWMS, SSTC, STC+GSSN,

and SSNC). After the data representation process of the six

algorithms is completed, their results are used to analyze the

execution time and space complexity.

The number of nodes and branches are used as a condition to

compare and analyze the space complexity since they

represent the space used. If the size of the data structure can

be reduced, then execution time will be reduced as well.

x 10
2

STC MSRC CFWMS SSTC STC+GSSN SSNC
0

2

4

6

8

10
x 10

4

N
u

m
b

er
 o

f
N

o
d

e

Algorithms

0

5

10

15

20

25

30

35

40

N
u

m
b

er
 o

f
B

ra
n

ch

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T
im

e
(s

ec
)

Number of Node Number of Branch Time

Fig 8: This figure shows the execution time and space

complexity (number of nodes and branches) of the

different structures in different clustering algorithms.

According to Fig. 8, both SSNC and STC+GSSN algorithms

use a semantic suffix net as a structure to represent data. It

causes the number of nodes and branches to decrease when

they are compared with STC, MSRC, CFWMS algorithms.

All three of STC, MSRC, and CFWMS algorithms use a

suffix tree. Moreover, the number of nodes and the execution

time of SSNC are lower than that of STC+GSSN because

SSNC has a process to delete duplicated words.

The SSNC has an execution time which is lower than the

original algorithms semantic search results clustering:

CFWMS, SSTC and STC+GSSN, respectively. The

reductions in the execution time are 60.61%, 89.00% and

1.27% compared to the CFWMS, SSTC, STC+GSSN,

respectively.

Interestingly, the semantic suffix net can be used to reduce the

space complexity and execution time for representing

semantically similar snippets. Although SSNC spent more

time than STC and MSRC to 87.18%, it could not solve the

problem of STC and MSRC since they cannot be used to

represent the semantically similar snippets.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.7, December 2012

8

4.2.2 Precision, Recall, F-Measure, and Time

Execution in the part of Clustering Algorithm
To evaluate the clustering algorithms, the balanced F1

measure (F-measure) is used as a weighted harmonic mean

between precision and recall. In addition, execution time is

used to compare the efficiency of clustering algorithms. In

average of 30 queries, the performance of each algorithm is

shown in Fig. 9.

According to Fig. 9, the effectiveness of SSNC is similar to

STC, CFWMS, STC+GSSN. This is because the F-measure of

SSNC is 0.48 and the F-measure of STC, CFWMS,

STC+GSSN algorithms are 0.52, 0.50, and 0.52, respectively.

Approximately, the F-measure of STC, CFWMS, and

STC+GSSN is higher than that of SSNC by 6.46%. However,
the F-measure of SSNC is higher than that of MSRC and

SSTC, which can be shown as a percentage, 14.58% and

37.50%, respectively.

STC MSRC CFWMS SSTC STC+GSSN SSNC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

F
-m

ea
su

re
/

R
ec

a
ll

 /
 P

re
ci

si
o
n

 i
n

 A
v
er

a
g
e

0

2

4

6

8

10

12

T
im

e
(s

ec
)

PrecissionRecallF-meansure Time

Fig 9: This illustration shows the comparison of F-

measure, recall and precision in average of 30 queries for

the STC, MSRC, CFWMS, SSTC, STC+GSSN and SSNC

algorithms.

It can be seen that, the proposed algorithm is more effective

and efficient than other algorithms. The reason for this is that

SSNC can cluster the semantically similar snippets although it

required a greater time execution than the STC and MSRC

algorithms. In addition, the time execution of SSNC is lower

than that of CFWMS, SSTC, and STC+GSSN which are

current semantic clustering algorithms. Also, the F-measure of

SSNC, CFWMS, STC+GSSN algorithms are similar but

higher than that of MSRC and SSTC.

5. CONCLUSION
In this paper, semantic suffix net clustering (SSNC) is

proposed using a semantic suffix net as a structure to

represent semantically similar snippets. Additionally, a net

pruning technique is used as logic to combine related suffixes.

As a result, SSNC provides a better performance for

clustering algorithms compared with STC, MSRC, CFWMS,

SSTC, and STC+GSSN. This is because SSNC can group the

snippets by using less time in execution than CFWMS, SSTC,

and STC+GSSN. Moreover, SSNC can solve the problems of

STC and MSRC which cannot group semantically similar

snippets.

Additionally, semantic suffix net (SSN) can be used as a

structure to represent semantically similar snippets to instead

suffix tree and semantic suffix tree. This is because the F-

measure of SSNC is similar to STC and STC+GSSN and

higher than that of MSRC and SSTC.

6. REFERENCES
[1] Jiawei, H. and Micheline, K. “Data Mining: Concepts

and Techniques”. Morgan Kaufmann, 2006, in press.

[2] Yanjun, L., Soon, M. C., and John, D. H. 2008. Text

document clustering based on frequent word meaning

sequences. Journal Data & Knowledge Engineering. 64,

381-404.

[3] Oren, Z. and Oren, E. 1998. Web Document Clustering:

Feasibility Demonstration. In Proceeding of SIGIR’98.

[4] Dell, Z. and Yisheng, D. 2004. Semantic, Hierarchical,

Online Clustering of Web Search Results. In Proceeding

of APWeb.

[5] Stanislaw, O. and Dawid, W. 2005. A Concept-Driven

Algorithm for Clustering Search Results. IEEE

Intelligent Systems, 20(3), 48-54.

[6] Paolo, F. and Antonio, G. 2005. A Personalized Search

Engine based on Web-Snippet Hierarchical Clustering.

In proceeding of WWW.

[7] Claudio, C., Stanislaw, O. and Dawid, W. 2009. A

Survey of Web Clustering Engines. ACM Computing

Surveys (CSUR), 41(3), 1-38.

[8] Claudio, C. and Giovanni, R. 2004. Exploiting the

Potential of Concept Lattices for Information Retrieval

with CREDO. Journal of Universal Computer Science,

10(8), 985-1013.

[9] Hung, C. and Xiaotie, D. 2007. A New Suffix Tree

Similarity Measure for Document Clustering. In

Proceeding of WWW.

[10] Illhoi, Y., Xiaohua, H. and Il-Yeol, S. 2007. A Coherent

Graph-Based Semantic Clustering and Summarization

Approach For Biomedical Literature and A New

Summarization Evaluation Method. BMC

bioinformatics.

[11] Xian-Jun, M., Qing-Cai, C. and Xiao-Long W. 2009. A

Tolerance Rough Set Based Semantic Clustering Method

for Web Search Results. Information Technology

Journal, 8(4), 453-464.

[12] Janruang, J. and Guha, S. 2011. Semantic Suffix Tree

Clustering. In Proceedings of DEIT.

[13] Janruang, J. and Guha, S. 2011. Applying Semantic

Suffix Net to Suffix Tree Clustering. In Proceeding of

DMO.

[14] Zeng, H., He, Q., Chen, Z., Ma, W. and Ma, J. 2004.

Learning to cluster web search results. In Proceeding of

SIGIR’04.

[15] Janruang, J. and Kreesuradej, W. 2006. A New Web

Search Result Clustering based on True Common Phrase

Label Discovery. In Proceeding of CIMCA.

[16] Wang, J., Mo, Y., Huang, B., Wen, J. and He, L. 2008.

Web Search Results Clustering Based on a Novel Suffix

Tree Structure. In Proceeding of ATC’08.

[17] Open Directory Project. 2012. http://www.dmoz.com

