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ABSTRACT 

Suffix Tree Clustering (STC) uses the suffix tree structure to 

find a set of snippets that share a common phrase and uses this 

information to propose clusters. As a result, STC is a fast 

incremental algorithm for automatic clustering and labeling 

but it cannot cluster semantically similar snippets. However, 

the meaning of the words is indeed an important property that 

relates them to other words, although there may not be a 

match of text strings per se.  In this paper, we propose a new 

semantic search results clustering algorithm, called semantic 

suffix net clustering (SSNC). It is based on semantic suffix 

net structure (SSN). The proposed algorithm uses the net 

pruning technique to merge the related suffixes through their 

suffix links for finding base clusters.  This logic causes both 

string matching and meaning of the words to be used as 

conditions for the purpose of clustering. Experimental results 

show that the proposed algorithm has time complexity lower 

than CFWMS, SSTC and STC+GSSN which are current 

semantic search results clustering methods. Moreover, the F-

measure of the proposed algorithm is similar to that of the 

original STC, CFWMS, STC+GSSN, and higher than that of 

MSRC and SSTC.   

General Terms 

Algorithms, Data Mining, Text Mining, Search Results 

Clustering. 

Keywords 

search results clustering, semantic suffix net, net pruning 

techniques, semantic suffix net clustering, semantic 

clustering. 

1. INTRODUCTION 
Recently, information retrieval and text mining have 

generated a great deal of interest in the fields of business 

intelligence, knowledge management, and various search 

applications. This is because of the rapid growth of databases, 

belonging to government, businesses and other organizations, 

which contain documents in digital form [1]. Paradoxically, 

the volume of information available often makes finding what 

they need actually harder for users. Development of 

applications that help users retrieve the answer to their query 

from massive digital archives is a challenging task and one 

essential, therefore, to making these growing archives actually 

useful and not just voracious hogs of disk space. 

The World Wide Web is an example of an enormous 

distributed database of electronic documents, or web pages as 

they are called [2]. Powerful and sophisticated search engines 

such as Google and Bing exist to help users navigate the web. 

However, typically, search engines return a long list of search 

results. The user then has to sift through these to find relevant 

ones, which is a time-consuming task. Moreover, if the 

relevant results do not occur in the first part of the returned 

list, then the user may even fail to find them. A possible 

solution to this problem is the use of the search result 

clustering techniques which group results in easily understood 

clusters, facilitating the user’s search – instead of scanning 

linearly through a long list of items, she scans linearly through 

a much shorter list of groups of items, and then, once an 

appropriate group has been identified, through a 

correspondingly shorter list of items in that group. Typically, 

clustering is performed based on snippets - short passages of 

text summarizing the content of search results [3, 4, 5, 6, 7]. 

Search results clustering algorithm are a core component of 

web clustering engines [7]. Most search results clustering 

algorithms are a combination between search engines and text 

clustering, the latter grouping snippets returned from search 

engines (e.g., STC [3], SHOC [4], LINGO [5], SNAKET [6], 

CREDO [8], and NSTC [9]). Typically, they generate cluster 

labels as navigators which facilitate user access to relevant 

search results. However, the quality of search results 

clustering is crucial. One way to enhance the quality is to use 

the semantic similarity of words; in particular, one tries to 

relate words by finding commonality in meaning, although 

there may not be a match of text strings per se. 

Semantic text clustering has drawn considerable interest in 

recent years. For example, the CSUGAR approach proposes 

biomedical textual information clustering using ontology to 

create semantic clusters [10]. TRSSC performs search results 

clustering by creating the semantic upper approximation space 

based on the tolerance rough set method and then organizing 

results into groups by relating meaning [11]. These projects 

confirm the importance of semantic clustering in practical 

situations. 

In this paper, a new semantic search results clustering 

algorithm is proposed, called semantic suffix net clustering 

(SSNC). This approach is derived by combining the 

advantage of both semantic suffix tree clustering (SSTC) [12] 

and its generalization STC+GSSN [13]. The SSNC is 

proposed by using a generalized semantic suffix net (GSSN) 

as a structure to represent snippets instead of the semantic 

suffix tree. Subsequently, a net pruning technique is used to 

replace tree pruning in SSTC since net pruning is a 

modification of the tree pruning technique in SSTC. 

According to our evaluations, semantic suffix net can be used 

instead of the semantic suffix tree in SSTC and the time 

execution of SSNC is faster than that of SSTC. Additionally, 

the precision of SSNC results is higher than STC+GSSN. 

This paper is organized as follows. Related works are 

described in Section 2. The semantic suffix net clustering is 

proposed in Section 3. In Section 4 experiments are presented. 

Finally, we conclude in Section 5. 
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2. RELATED WORKS 
STC is a fast incremental algorithm for search results 

clustering but it suffers from the typically large size of the 

suffix tree used as a structure to represent snippets. Therefore, 

the MSRC algorithm [14] was introduced to manage the huge 

tree returned by STC but the difficulty with this approach is 

that the n-gram technique generates interrupted cluster labels 

if the common phrase size is longer than the defined n-gram 

size. Based on the problem of MSRC, the STC with a partial 

phrase join operator [15] was presented to solve the problem 

of the interrupted cluster labels that are generated when using 

the STC with n-gram techniques. In another approach, the 

STC with x-gram [16] was created based on the on-line 

construction of suffix trees to decrease the memory space 

used by the original suffix trees. However, these various 

approaches do not allow one to modify the original STC to 

perform semantic search results clustering. Even though, the 

STC algorithm gives significant search performance it does 

not consider semantically related words to construct suffix 

trees and, therefore, eventually generates a huge tree with a 

complexity which is hard to manage. 

In addition, the original STC cannot group semantically 

similar snippets into the same clusters. For example, the two 

snippets: S1 = Doctor likes children and S2 = Physician cares 

for child have similar meanings but STC cannot group them 

into the same cluster. Moreover, the two snippets: S1 = John 

wrote the paper in the morning and S2 = the paper was written 

by John in the morning have similar meanings but STC 

returns three base clusters: john={1,2}, paper={1,2}, and 

morn={1,2}. That means STC cannot generate phrase cluster 

labels when the two snippets in the form of the passive voice 

and the active voice are similar in meaning. To deal with these 

problems of STC, SSTC [12] is created using a semantic 

suffix tree as a structure to represent snippets and then tree 

pruning to combine related suffixes. However, SSTC lacks the 

logic to explain the disappearance of semantically similar 

nodes. Thus, STC+GSSN [13] are introduced in order to 

address the problem of a lack of logic to explain the 

disappearance of semantically similar nodes of SSTC. 

The significant contribution of this paper is a new approach to 

semantic search results clustering by using the semantic suffix 

net as a structure to represent snippets. The semantic suffix 

net is a new semantic search structure for search results. It can 

be used to alleviate the problem of the size of the suffix tree 

and to improve semantic clustering when STC ignores 

meaning of the words. The logic is that search results 

clustering which works on textual information should use 

meanings of words for the purpose of clustering. In fact, 

humans use the concept or meaning of the words directly to 

group them. For example, in the case of biomedical textual 

information clustering, the CSUGAR approach [10] is 

proposed based on ontology techniques. In the field of 

document and search results clustering, CFWMS [2] are 

created synsets and hypernyms from the WordNet database to 

generate the meaning of the union MU and then the apiori 

concept is applied to find the frequent meaning union FMU 

and this information is used to identify final clusters. These 

approaches confirm the importance of semantic clustering in 

practical situations. 

3. SEMANTIC SUFFIX NET 

CLUSTERING 
Semantic search structure is an important structure to use for 

grouping the semantically similar snippets since words have 

meaning as an important property that relates them to other 

words, although there may not be a match of text strings per 

se. Therefore, Semantic Suffix Net Clustering (SSNC) is 

proposed to present a new semantic search structure for search 

results clustering called Semantic Suffix Net (SSN). Also, net 

pruning technique is proposed to exploit the usefulness of 

suffix links in SSN structure. The architecture of SSNC is 

shown in Fig.1. The details of four processes are described as 

follows. 

 

Fig 1: The architecture of SSNC which modifies search 

results clustering can be used for semantic search results 

clustering by using SSN structure and net pruning 

technique. 

3.1 Step 1- Preprocessing  
In this step, the two common text pre-processing methods 

(e.g. ignoring stop words and non-words, stemming 

algorithms) are used as tools to clean snippets. In addition, the 

next-word is deleted, if it is duplicated to the previous word. 

For example, there is a string: He is a taxi driver and he 

drives a taxi in the city, after the two common text pre-

processing methods are completed, taxi drive drive taxi city is 

returned. Then, the drive word in the third position is deleted 

to reduce the space complexity and time execution of the next 

processes.  

As example in this paper, there are three snippets: s1 =john 

wrote the paper in the morning, s2 =the paper was written by 

John in the morning, and s3 =the paper is made from wood. 

The results of this process are s1 =john wrote paper morn, s2 

=paper written John  morn, and s3 =paper made wood. 

 

3.2 Step 2- Data Representation  
In this step, the SSN of snippet pairs are combined to GSSN 

for representing a set of snippets. The detail of GSSN 

construction is explained in the STC+GSSN algorithm [13]. 
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Fig 2: This is a GSSN which is created depending on the 

three strings: s1 =john wrote paper morn, s2 =paper written 

John  morn, and s3 =paper made wood. 

 

In Fig. 2, each node is drawn in a circle, and is labeled by 

inputting a string word, which is connected to a suffix node 

with a direct link which is represented as a black line. Each 

branch of the root is defined as a suffix, which contains one or 

more sub-suffixes (e.g., the first branch of a root is a suffix 

which has john as a heading node and this suffix contains two 

sub-suffixes which are wrotepapermorn {1,1} and norm 

{2,3}). Each suffix is connected to the next suffix with suffix 

links which are represented as dotted red lines. For each of the 

boxes at the leaf node, the first number designates the string 

of origin (our example is starting to 1-3) and the second 

number is a starting position of the suffix in that string. 

3.3 Step 3 – Identifying Base clusters  
The identification of base clusters can be done efficiently 

using suffix links and direct links since suffixes are related 

through their suffix links and direct links. The details of this 

step include a move to update or to delete branches and nodes 

in order to find base clusters. This step is called the net 

pruning technique. 

The process of the net pruning technique is divided into two 

steps. The first step is called merging suffixes, which is shown 

on line numbers 4-22 in Algorithm 1 below. Then the second 

step is shown on line numbers 23-24 which is called compact 

nodes. 

The process of merging suffixes uses suffix links as a path to 

travel in order to join the two related suffixes. Based on 

Algorithm 1, βp is defined as a suffix which is a prefix of βs 

whereby βp and βs are connected through suffix links.  The 

details of merge suffixes in the three cases are explained as 

follows: 

Case 1: p = s when p is the ordinal number of βp and s is the 

ordinal number of βs. This case means that βp and βs are the 

same suffix. This shows that duplicated words appear on the 

same suffix and results in erroneous merging of related 

suffixes. To reduce the occurrence of duplicated words, the 

current node N[k] is merged to update at its parent node 

which is called p[N[k]]. An example of this case is shown in 

Fig. 5 and the equation is shown in line number 16.  

Case 2: |βp ∩ βs| = |βs| means βs is a subset of βp. To delete the 

duplicate suffix, all nodes of βs are moved to update at the 

related nodes on βp through their suffix links. The illustration 

of this case is shown in Fig. 3 and the equation is shown in 

line number 18.  

Case 3:  |βp ∩ βs | < |βs| means βs is not a subset of βp. Only 

related sub-suffixes of βp are moved from βs to update at the 

related sub-suffixes on βp through their suffix links. In 

contrast, sub-suffixes which are not related to βp will remain 

as a suffix on the root node. The illustration of this case is 

shown in Fig. 4 and the equation is shown in line number 19. 

 

1 Input: GSSN structure 

2 Output: a tree structure 

3 Initialization: 

4 j←0 

5 n ← the number of child’s root node 

6 While p ≤ n Do 

7  βp ← jth suffix path 

8  βs ← suffix path of βp 

9  For all nodes on βp { 

10    N(k) ← a child of βp 

11    s[N(k)] ← a suffix node of N(k)      

12     p ← the ordinal number of βp 

13     s ← the ordinal number of βs 

14     If (p>s)  Then  root ← root - βp  

15     Else If (p = s) Then 

16            d[p[N(k)]] ← d[p[N(k)]] ⨁ d[N(k)] ►case 1 

17     Else{ 

18       If  (|βp ∩ βs | = | βs |) Then βp ← βp ⨁ βs  ►case 2  

19       Else  βp ← βp ⨁ (βp ∩ βs)  ►case 3  

20     } 

21   }//end of for statement 

22 End // end of while statement  

23 For i ← 1 To n do // the compact nodes process 

24  If d[Ni] = Ø and |c[Ni]| =1 Then Ni ← Ni + Ni+1 

 

Algorithm 1: The process of the net pruning technique 

 

To understand the process of merging suffixes, the result of 

data representation in Fig. 2 is used as an example to explain 

the details of this process.  

The initial step to merge suffixes is defining the path of suffix 

βp and βs. According to Fig. 3-A, the root contains six suffixes 

which are related through their suffix links. The first suffix of 

the root is defined as βp which has john as a label of its node 

and p is equal to 1. A node john is a heading node of this 

suffix. According to john node, it contains two sub-suffixes: 

1) wrotepapermorn {1,1} and 2) morn {2,3}.   

After βp is defined, βs will be identified by a suffix link of the 

first child node of βp which is called the current node N(k). 

Herein, N(k) has john node as a parent node p[N(k)]. In this 

example, the suffix link of N(k) is used to identify βs. As a 
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result, the second suffix of the root: wrote node is defined as 

βs which is called s[N(k)] and s is equal to 2.   

βs has wrote as a heading node and it contains two sub-

suffixes: 1) papermorn {1,2} and 2) johnmorn {2,2}. In 

this case, βs is a subset of βp when all nodes of βs are related to 

βp through their suffix links. Therefore, case 2 can be applied 

to merge related suffixes. An example of this case is shown in 

Fig. 3-A and its result is shown in Fig. 3-B.  

After βp and βs are merged based on case 2, its result is used 

to process the next step, which can be shown in Fig. 4. In this 

paper, the preorder traversal based on depth-first traversal 

method is applied to travel on semantic suffix net structure. 

Thus, the first child node of wrote node on βp called paper 

node is assigned as the current node N(k) and it has wrote 

node as parent node p[N(k)] automatically. As a result, the 

second suffix of the root: paper node is defined as βs and s is 

equal to 2. 

In this case, case 3 can be applied since βs is not a subset of βp. 

This is because only the first sub-suffix: norm {1,3} and 

second sub-suffix: writtenjohnmorn {2,1} of βs are 

related to βp through suffix links. Also, the third sub-suffix: 

madewood {3,1} of βs is not related to βp through suffix 

links. The process of this example is shown in Fig. 4-A and 

then its result is shown in Fig. 4-B. 

In Fig. 4-B, the result of case 3 is used to process the next step 

of preorder traversal. The child node of paper node on βp: 

morn node is assigned as N(k). After that, the third suffix of 

the root is assigned as βs thus the morn node on βs is assigned 

as s[N(k)]. In this case, case 2 can be applied. The results of 

this case are shown in Fig. 5-A. 

 

 

Fig 3: The initial step of net pruning is defining βp and βs which are related suffixes through suffix links. Fig. 3-A shows both βp 

and βs are connected through their suffix links. This figure shows an example for case 2 of net pruning and its result is shown 

in Fig. 3-B. Since βs is a subset of βp, case 2 can be applied to prune a net form through suffix links. As result, the number of 

suffix paths on a net form is decreased because βs is moved to update at βp. The equation of this case is βp = βp ⨁ βs. 

 

 

Fig 4: This figure is an example of case 3 since some sub-suffixes of βs are not related to βp. Therefore, only related sub-suffixes 

between βs and βp are transferred to update on βp. Fig. 4-B shows the result of case 3 since the related sub-suffixes between βs 

and βp are moved from βs to βp for updating on βp. In contrast, different sub-suffixes between βs and βp are not transferred to 

update on βp but they will still exist on βs (papermadwood). The equation is βp = βp ⨁ (βp ∩ βs). 
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Fig 5: This figure is an example of case 1 when the same meaning is shared by sentences of both passive and active voice. It 

causes the loop of string on a net form to appear. To reduce the loop of string, case 1 can be applied. The equation is d[p[N(k)]] 

= d[p[N(k)]] ⨁ d[N(k)]. Fig. 5-B shows the results of case 1 which cause the number of the node and the height of the net to be 

reduced. 

 

In Fig. 5-A, the second child node of paper node: written 

node is assigned as N(k), that means paper node is p[N(k)] and 

wrote node is s[N(k)] automatically. In this case, case 1 is 

applied to avoid the mistakes of merging the related suffixes 

in the case 2 and 3 since βs and βp are the same suffix. 

In case 1, d[p[N[k]]] is represented to document members of 

node p[N[k]] and d[N[k]] is represented to document members 

of node N[k] and its child nodes. Thus, d[p[N[k]]] of this 

example is null when a node p[N[k]] does not have a 

document member. In contrast, d[N[k]] contains one 

document member which is document number 2. For that 

reason, a node morn {2,1} which is a child nod of N[k] has a 

document number 2 as a document member. The illustration 

of this process is shown in Fig. 5-A and its results are shown 

in Fig. 5-B. 

The process of merging suffixes is applied and will be 

finished since all related suffixes are merged through their 

suffix links based on case 1-3. The results of the merging of 

suffixes step are shown in Fig. 6-A. 

In Fig. 6-A, the result of merging suffixes is represented in a 

tree form. Each node may include both label and document 

members. For example, a node of a root is divided into two 

suffixes: 1) johnwrotepapermorn and 2) 

papermadewood. According to john, it has john as a label 

and number 2 is a document member. In the other case, a node 

of paper in the second suffix of the root contains only a label 

but the document member is empty. Thus, this node is an 

empty node. An empty node is a node that has a child node 

but does not have a document member. So, it is unable to be a 

cluster. It must be combined with its child node in order to 

reduce the number of nodes and to generate a phrase label. 

The definition of a compact node is defined as definition 1 

and the process of this step is shown in Fig. 6-A. Its result is 

shown in Fig. 6-B.  

Definition 1: Let Ni be an empty node and Ni+1 be a child 

node of Ni. Each empty node is compacted with its child node 

by deleting the direct link that directs from that empty node Ni 

to its child node Ni+1 in that suffix. Then, the label of Ni is 

concatenated to Ni+1 as in Ni = Ni + Ni+1.   

After the compact nodes step is completed, all nodes in each 

suffix are collected to form base clusters which label and 

document members. In particular, a label of a base cluster is 

generated by concatenating the labels of nodes from the root 

to that node. Similarly, a document member is generated in 

the same way. For example, the first suffix of the root 

includes four base clusters which are john ={2}, john wrote = 

{2}, john wrote paper = {2}, and john wrote paper morn = 

{1,2}. Accordingly, there is a base cluster john wrote paper 

morn = {1,2}, which has a phrase john wrote paper morn as a 

label and document number 1 and 2 as document members. 

Each base cluster is assigned a score that is a function of the 

number of documents it contains, and the words that make up 

its phrase. The score S(c) of base cluster B with phrase P is 

given by: 

                                s(c) = |D| * ƒ(|P|)  

Let |D| be the number of document members in base cluster B, 

and |P| be the number of words in phrase label P that have a 

non-zero score. In the other word, |P| is the length of the label.  

The function ƒ(|P|) means that the score of P is equal to  0 if 

the length of the label is less than 2 or more than 6. This is 

because the function ƒ penalizes single word phrase label and 

longest phrase labels. Thus, the function ƒ(|P|) is equal to the 

length of phrase label in the range of 2-5 words which is 

shown in the following and the score of each base cluster is 

shown in Table 1. 

 

 

                         ƒ(|P|) =                              

 

|P|   if 1<P<6 

 0    otherwise 
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Table 1.  This table contains the five base clusters and 

their scores: s(c) 

Node Phrase Label document 

member 

Score 

Cluster 

s(c) 

john john  2 1*0=0 

wrote john wrote 2 1*2=2 

paper john wrote paper 2 1*3=3 

morn john wrote paper 

morn 

1,2 2*4=8 

paper made 

wood 

paper made wood 3 1*3=3 

 

3.4 Step 4 – Identifying Final Clusters  
In this paper, a string may share one or more concept clusters 

since the meaning of the words and matching string are used 

as conditions of clustering. According to Fig. 7-A, both label 

and document members of base clusters may overlap or may 

even be identical. For this reason, both label and document 

members should be used as conditions to combine base 

clusters, which are duplicated. 

The logic is that the combination of base clusters should use 

both label and document members to combine base clusters 

for identifying the final clusters. This avoids duplicate 

clusters. The overlap criterion of label and documents is 

achieved by calculating the overlap ratio of the pair clusters 

based on the following: 

 

    If |La⋂Lb|=|Lb| & |Da⋂Db|=|Db| Then  Ca=Ca⨁Cb 

    Else If |La⋂Lb|=|La| & |Da⋂Db|=|Da| Then  Ca=Ca⨁Cb 

 

There are two base clusters: Ca and Cb with size |Da| and |Db|, 

respectively. Let |Da⋂Db| represents the number of documents 

common to both Ca and Cb. Similarly, |La⋂Lb| represents the 

number of words common in label to both Ca and Cb. In 

addition, S(c) is used to rank the final clusters. 

In Fig. 7-A, there are five base clusters: john={2}, john 

wrote={2}, john wrote paper={2}, john wrote paper 

morn={1,2}, and paper made wood={3}. The first two base 

clusters are used to check overlap criterion which is shown in 

Fig. 7-B. Thus, john={2} is assigned to Ca and john 

wrote={2} is assigned to Cb. As a result, Ca is combined into 

Cb because they are duplicated. Moreover, the S(c) of Cb is 

higher than that of Ca. Therefore, Cb is selected and Ca is 

deleted. The results of this example are shown in Fig. 7-C. 

In the other case, Ca and Cb are not duplicated. They are 

separated into two final clusters. For example, john wrote 

paper morn={1,2} is assigned to Ca and paper made 

wood={3} is assigned to Cb. As a result, they are separated 

into two final clusters which are john wrote paper 

morn={1,2} and paper made wood={3}. This result is shown 

in Fig. 7-D. 

After the identifying of final clusters process is completed, the 

resulting final cluster is john wrote paper morn={1,2} and 

paper made wood={3}. Consequently, this process can reduce 

the number of duplicate identical clusters and return specific 

readable clusters. 

Finally, the set of final clusters are ranked based on S(c). 

Therefore, john wrote paper morn = {1,2} is returned on the 

top rank of final clusters because its s(c) is higher than that of 

paper made wood ={3}. From this result, the SSNC algorithm 

can cluster snippets that have a semantic similarity because it 

can cluster s1: john wrote the paper in the morning and s2: the 

paper was written by John in the morning to a cluster and then 

separate s3: the paper is made from wood to another cluster. 

 

 

 

Fig 6: This illustration shows the compact nodes and results of net pruning techniques.  In Fig. 6-A, the second suffix has a 

paper node as a heading node and it is an empty node. Thus, it must be compacted to its child node. As a result, there are three 

nodes in the second suffix, which are paper, made and wood. They are compressed to a node called paper made wood node as 

shown in Fig. 6-B. Finally, all nodes are constructed as base clusters as shown in Fig. 6-C. For example, a john {2} group has 

“john” as a cluster label and 2 as a document member. 
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Fig 7: This diagram shows the process of identifying final clusters by using a merged base clusters equation. Fig 7-A depicts 

the initial step when the base clusters are the results of the examples given in Fig. 2 – 6. Fig. 7-B and 7-C are the next step after 

the first base clusters couple is merged into a bigger cluster. Finally, Fig. 7-D shows the final clusters, which are returned after 

all base clusters are merged. 

4. EXPERIMENT 
The results of SSNC are compared with both the original 

search results clustering (e.g. STC and MSRA) and semantic 

search results clustering algorithms (e.g. CFWMS, SSTC, and 

STC+GSSN). 

4.1 Data Collection  
The dataset is created from a testing dataset using 31,760 

search results from 30 query words on Dmoz.com [17]; 

Dmoz.com is a human-collected directory of web pages. This 

utility is used in order to sample categories, and then SSNC is 

executed on the pre-categorized samples. Thus, the clusters 

produced by SSNC are compared with the Dmoz categories. 

In Table 2, the dataset specially selects three types of query, 

which are ambiguous queries, entity names, and general term 

queries. 

Table 2. The thirty queries in three types selected from 

DMOZ.com 

Type Queries 

Ambiguous 

queries 

jaguar, apple, saturn, jobs, jordan, tiger, 

trec, ups,quotes, matrix 

 

Entity names 
susan dumais, clinton, iraq, dell, disney, 

world war 2, ford 

General terms 

health, yellow pages, maps, flower, music, 

chat, games, radio, jokes, graphic design, 

resume, timezones, travel 

 

4.2 Experimental Results  

4.2.1 Execution Time and Space Complexity in 

the part of data representation  
To compare execution time and space complexity of three 

data structures (e.g. suffix tree, semantic suffix tree, and 

semantic suffix net), 967 search results of the “Apple” query 

word are selected as example of snippets for inputting to six 

algorithms (e.g. STC, MSRA, CFWMS, SSTC, STC+GSSN, 

and SSNC). After the data representation process of the six 

algorithms is completed, their results are used to analyze the 

execution time and space complexity. 

The number of nodes and branches are used as a condition to 

compare and analyze the space complexity since they 

represent the space used. If the size of the data structure can 

be reduced, then execution time will be reduced as well. 
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Fig 8: This figure shows the execution time and space 

complexity (number of nodes and branches) of the 

different structures in different clustering algorithms. 

 

According to Fig. 8, both SSNC and STC+GSSN algorithms 

use a semantic suffix net as a structure to represent data. It 

causes the number of nodes and branches to decrease when 

they are compared with STC, MSRC, CFWMS algorithms. 

All three of STC, MSRC, and CFWMS algorithms use a 

suffix tree. Moreover, the number of nodes and the execution 

time of SSNC are lower than that of STC+GSSN because 

SSNC has a process to delete duplicated words. 

The SSNC has an execution time which is lower than the 

original algorithms semantic search results clustering: 

CFWMS, SSTC and STC+GSSN, respectively. The 

reductions in the execution time are 60.61%, 89.00% and 

1.27% compared to the CFWMS, SSTC, STC+GSSN, 

respectively. 

Interestingly, the semantic suffix net can be used to reduce the 

space complexity and execution time for representing 

semantically similar snippets. Although SSNC spent more 

time than STC and MSRC to 87.18%, it could not solve the 

problem of STC and MSRC since they cannot be used to 

represent the semantically similar snippets. 
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4.2.2 Precision, Recall, F-Measure, and Time 

Execution in the part of Clustering Algorithm  
To evaluate the clustering algorithms, the balanced F1 

measure (F-measure) is used as a weighted harmonic mean 

between precision and recall. In addition, execution time is 

used to compare the efficiency of clustering algorithms. In 

average of 30 queries, the performance of each algorithm is 

shown in Fig. 9. 

According to Fig. 9, the effectiveness of SSNC is similar to 

STC, CFWMS, STC+GSSN. This is because the F-measure of 

SSNC is 0.48 and the F-measure of STC, CFWMS, 

STC+GSSN algorithms are 0.52, 0.50, and 0.52, respectively. 

Approximately, the F-measure of STC, CFWMS, and 

STC+GSSN is higher than that of SSNC by 6.46%. However, 
the F-measure of SSNC is higher than that of MSRC and 

SSTC, which can be shown as a percentage, 14.58% and 

37.50%, respectively. 
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Fig 9: This illustration shows the comparison of F-

measure, recall and precision in average of 30 queries for 

the STC, MSRC, CFWMS, SSTC, STC+GSSN and SSNC 

algorithms. 

It can be seen that, the proposed algorithm is more effective 

and efficient than other algorithms. The reason for this is that 

SSNC can cluster the semantically similar snippets although it 

required a greater time execution than the STC and MSRC 

algorithms. In addition, the time execution of SSNC is lower 

than that of CFWMS, SSTC, and STC+GSSN which are 

current semantic clustering algorithms. Also, the F-measure of 

SSNC, CFWMS, STC+GSSN algorithms are similar but 

higher than that of MSRC and SSTC. 

5. CONCLUSION 
In this paper, semantic suffix net clustering (SSNC) is 

proposed using a semantic suffix net as a structure to 

represent semantically similar snippets. Additionally, a net 

pruning technique is used as logic to combine related suffixes. 

As a result, SSNC provides a better performance for 

clustering algorithms compared with STC, MSRC, CFWMS, 

SSTC, and STC+GSSN. This is because SSNC can group the 

snippets by using less time in execution than CFWMS, SSTC, 

and STC+GSSN. Moreover, SSNC can solve the problems of 

STC and MSRC which cannot group semantically similar 

snippets. 

Additionally, semantic suffix net (SSN) can be used as a 

structure to represent semantically similar snippets to instead 

suffix tree and semantic suffix tree. This is because the F-

measure of SSNC is similar to STC and STC+GSSN and 

higher than that of MSRC and SSTC. 
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