
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

49

Unit based Scheduling in Project Management:
 A Programming Approach

D.Anuradha
Department of Mathematics,

School of Advanced Sciences
VIT University, Vellore-14,

Tamil Nadu, India

S.Bhavani
School of Information Technology

 and Engineering
VIT University, Vellore-14,

Tamil Nadu, India

ABSTRACT

A unit based scheduling technique is proposed to assess

networks of the given project and find out the optimum

schedule. The proposed approach uses an iterative method to

execute unit expediting and the expedition is done to the

desired amount for all activities along the critical path. The

output of the proposed approach includes a distribution of the

total cost of project, duration of project completion and it is

mainly applicable where cost and duration are of major issues.

A computer program has also been developed using the C

programming language to support the efficiency of the logic

applied in the algorithm. A civil construction scheduling has

been solved illustrating the validity of the proposed algorithm.

This algorithm can serve as an important tool for the project

managers to run the projects speedily and successfully.

Keywords
 Project Network, Critical path, Incremental cost, Expediting.

1. INTRODUCTION

Project management is the field of planning, scheduling, and

resource management to bring out the successful windup of

particular objectives and goals on one-time endeavor such as,

a building contract or other project activities that require to

apply a scientifically based method implementations. This

fundamentally admits the formulating project plan, defining

goals and objectives of project, specifying and finding out the

project completion duration. It also admits implementing the

plan of project, along with careful controls to remain on the

"critical path", that is, to make sure that the project is being

managed according to plan. Critical Path Method (CPM) is a

procedure for process scheduling that defines critical and non-

critical tasks with the objective of preventing duration-frame

problems. It is an essential tool for the project management to

determine the critical activities in the critical path of an
activity network.

The expedition of an activity is determined as the maximum

duration to which an activity can be constricted and yet is

economic. The expediting approach is concentrated on

reducing the activities duration on the critical path. Since the

critical path finds out the project completion date, the project

can be speeded up by adding the necessary resources to

diminish the activities duration in the critical path. Such a

project shortening is termed as project expediting. Ramini [11]

also proposed an algorithm for crashing PERT networks

incorporating the use of criticality indices. Ameen [1]

developed Computer Assisted PERT Simulation, a simulation

program developed as a teaching tool to teach project

management techniques. Badiru [2] reported development of

another simulation program for project management, called

STARC. Pulat and Horn [10] described a project network with

a set of tasks to be completed according to some precedence

relationship; the objective is to determine efficient project

schedules for a range of project realization times and resource

cost per time unit for each resource. Bissiri and Dunbar [14]

discussed a simulation model that allocates resources to

project activities in a way so as to minimize the additional

cost of resources. Feng et al. [4] presented a hybrid approach

that combines simulation techniques with a genetic algorithm

to solve the time cost trade-off problem under uncertainty.

Haga and Marold [6] proposed a simulation based method that

deals with the time-cost trade-off involved with crashing a

project. Chao-gunag et al. [8] proposed a fully fuzzy time-cost

trade-off based on genetic algorithms. Haga and Marold [7]

developed a heuristic crashing method for project

management utilizing simulation. Yang [13] incorporated

budget uncertainty into project time-cost trade-off in a

chance constraint programming model. Ghazanfari et al. [5]

developed a new possibilistic model. Michael E. Kuhl [9]

introduced a dynamic simulation-based crashing method to

evaluate project networks. Yousefli et al. [15] presented a

heuristic method to solve a project scheduling problem by

using fuzzy decision making in fuzzy environment. Dishi Xu

and Hua [3] designed a crashing algorithm in the applications

of project management. Shakeela and Ganesan [12] proposed

a method for finding an optimal duration by crashing the

fuzzy activities of a project network without converting the

fuzzy activity times to classical numbers.

In this paper, we propose a unit based scheduling technique to

evaluate project networks and determine the optimum project

schedule. The proposed method mainly provides a framework

for expediting total maintenance of project duration at the

least total cost. The output of this approach includes a

distribution of the total cost of project, duration of project

completion and the savings of project cost. The paper is

organized as follows. In section 2, we discuss some relevant

concept of project scheduling techniques. In section 3 we

describe our proposed algorithm. To show the application of

proposed algorithm, a civil construction scheduling is solved

in section 4. The results and its graphical representation are

discussed in section 5. At last in section 6 some conclusions

are drawn.

2. PROJECT SCHEDULING

TECHNIQUES

Execution and completion of any project either tiny or big is

becoming highly complex due to so many constraints,

especially duration and resource. Hence, the field of ‘Project

Management’ is demanding effective and efficient techniques

to optimize the project results. In many situations we may be

interested in finding the least possible project completion time

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

50

if expediting of activities is permitted. The process of

reducing the duration of an activity by spending more

resources is called as Expediting. When activities are

expedited, it is obvious that more resources to be spent. The

total cost of any project comprises direct cost and indirect cost.

Direct cost are those which are associated with the individual

activities such as materials consumed, equipment used and so

on whereas indirect costs are associated with overhead

expenses such as managerial services, indirect supplies, cost

of security personnel and so on. While expediting an activity

there is a lower limit beyond which it is not possible to reduce

its time any more. This is called expedite limit of that activity.

So each and every activity will have two duration estimates,

viz., Normal Duration (ND) and Expedite Duration (ED).

Normal duration is the duration taken to execute an activity

under normal circumstances. Expedite duration is the

minimum duration of an activity beyond which it is not

possible to reduce it anymore. The cost associated with the

ND is called Normal Cost (NC) and the cost associated with

the ED is called Expedite Cost (EC).

Complex projects involve a sequence of activities, some of

which must be carried out consecutively and others that can

be carried out parallely with other activities. This

accumulation of series and parallel tasks can be patterned as

network. The network diagram can be used to identify the

activities whose duration should be shortened so that the

completion time of the project can be shortened in the most

economic manner. This procedure is called as Network

Expediting. It is true that due date for completion of a project

may well affect the cost incurred, because more resources are

required to perform work in a shorter period of time. This is

called ‘time–cost trade–off analysis’.

Fig 1 indicates the duration cost relationship and Fig 2

indicates the total cost of the project which is the addition of

the direct cost and indirect cost of the project.

Now we propose a new algorithm for finding an optimum

schedule to the unit based scheduling.

3. UNIT BASED SCHEDULING

ALGORITHM

The following algorithm focuses on expediting the activities

in a given project network day by day instead of expediting it

completely. For a given network, find the possible paths to

reach the destination. The incremental cost for all the

activities are found and sorted in an ascending order. Then the

expedition is started in the critical path’s activity with the

lower incremental cost. The project’s total cost is calculated

for every critical path after expedition. According to the result

the network is redrawn. The process continues until all the

activities are expedited to its maximum level specified. Fig 3

depicts the flow chart of the proposed algorithm.

Initialize all values

Calculate total EC & ED

 Calculate Cost Slope of activities

Compute CP & its total cost

Find all paths available from source to destination

Identify activity in CP with min cost slope & expedite by a day.

Is path

found?

Input ND, NC & ED, EC

Start

Stop

Is Max

total ED

reached?

Yes

Yes

No

No

Fig 3 Flowchart

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

51

The proposed algorithm proceeds as follows:

Step1:

 Initialize all values.

Step2:

 Calculate total expedite duration, total expedite cost,

total expedite cost slope by using the following criteria.

a[i].totExpdur[j]=a[i].normDur[j]-a[i].expDur[j];

a[i].totExpcost[j]=a[i].expCost[j]-a[i].normCost[j];

a[i].expCostslope[j]=a[i].totExpcost[j]/a[i].totExpdur[j];

Step3:

 Find all the paths available from source to destination;

 void path(int p,int queue[],int rear) {

 if(a[p].n!=0)

 q[rear++]=a[p].val;

 for(i=0;i<a[p].n;i++)

 {

 if(a[p].ad[i]==d)

 {

 q[rear++]=d;

 for(k=0;k<rear;k++)

 op[inc][k]=q[k];

 size[inc]=rear;

 inc++;

 }

 else

 {

 path(findposition(a[p].ad[i]),q,rear);

 }}}

Step4:

 Find the critical paths.

Step5:

 Find the minimum expedite Cost Slope.

 minimum=a[0].expCostslope[0];

if((minimum>a[i].expCostslope[j])&&(a[i].expCostslope[j]!=

0))

 minimum=a[i].expCostslope[j];

Step6:

 Path which has the minimum expedite Cost Slope that

activity is chosen for expediting.

 if(a[i].expCostslope[j]==minimum)

 expediteActivity(i,j);

Step 7:

 Expedite the given activity by calling the Expedite

Activity function. The Expedite Activity function is as

follows;

 void expediteActivity(int a1,int b1) {

 while(true) {

 Go to Step 8

 Go to Step 9

Go to Step 10

If(no.of current critical paths < no of prev critical paths)

Terminate and exit from the loop;

 }}

Step 8:

Find the Common Activities to Expedite using

findCommonPath();

flag=0;

for(i=0;i<cv;i++){

for(j=0;j<sizec[i]-1;j++){

 ta[tac].so=cre[i][j];

 ta[tac].de=cre[i][j+1];

 tac++; }}

for(i=0;i<tac;i++)

{

temps=ta[i].so;

tempd=ta[i].de;

noc=0;

for(j=0;j<tac;j++){

if((ta[j].so==temps)&&(ta[j].de==tempd)){

noc++; }}

 ps[sc].sou=temps;

 ps[psc].des=tempd;

 ps[psc].nc=noc;

 psc++; }

 cac=0;

for(k=0;k<psc;k++) {

if((ps[k].nc==cv)&&(getTotalExpediteDur(ps[k].sou,ps[k].de

s)!=0)) {

 printf("\nCommonPath:%d->%d",ps[k].sou,ps[k].des);

 ca[cac].sour=getsPosition(ps[k].sou,ps[k].des);

 ca[cac].dest=getdPosition(ps[k].sou,ps[k].des);

 flag=1; }}

if(flag==0) {

for(k=0;k<psc;k++) {

 if((ps[k].nc==cv-

1)&&(getTotalExpediteDur(ps[k].sou,ps[k].des)!=0)) {

 printf("\nCommonPath:%d->%d",ps[k].sou,ps[k].des);

 ca[cac].sour=getsPosition(ps[k].sou,ps[k].des);

 ca[cac].dest=getdPosition(ps[k].sou,ps[k].des);

 flag=1;

 index=indexOfProblematicCP(ps[k].sou,ps[k].des);

 for(l=0;l<sizec[index]-1;l++) {

 ts=cre[index][l];

 td=cre[index][l+1];

 if(IsnotPresentInOtherCPath(ts,td,index)) {

 printf("\nCommonPath:%d->%d",ts,td);

 cac++;

 ca[cac].sour=getsPosition(ts,td);

 ca[cac].dest=getdPosition(ts,td);

 goto x; } }

 goto x; } } }

if(flag==0) {

 for(k=0;k<psc;k++) {

 if((ps[k].nc==cv-

2)&&(getTotalExpediteDur(ps[k].sou,ps[k].des)!=0)) {

 printf("\nCommonPath:%d->%d",ps[k].sou,ps[k].des);

 ca[cac].sour=getsPosition(ps[k].sou,ps[k].des);

 ca[cac].dest=getdPosition(ps[k].sou,ps[k].des);

for(i=0;i<cv;i++) {

 tf=0;

for(j=0;j<sizec[i]-1;j++) {

 if((cre[i][j]==ps[k].sou)&&(cre[i][j+1]==ps[k].des)) {

 tf++; } }

 if(tf==0) {

 ind[ins]=i;

 ins++; } }

 ix=0;

 for(i=0;i<ins;i++) {

 for(j=0;j<sizec[ind[i]]-1;j++) {

 se[ix]=cre[ind[i]][j];

 dn[ix]=cre[ind[i]][j+1];

 ix++; } }

 int h,helpflag;

 helpflag=0;

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

52

 for(i=0;i<ix;i++) {

 h=0;

 for(j=0;j<ix;j++) {

if(((se[i]==se[j])&&(dn[i]==dn[j]))&&(getTotalExpediteDur(

se[i],dn[i])>0))

 h++; }

 if(h==2) {

 cac++;

 helpflag++;

 flag=1;

 printf("\nCommonPath:%d->%d",se[i],dn[i]);

 ca[cac].sour=getsPosition(se[i],dn[i]);

 ca[cac].dest=getdPosition(se[i],dn[i]);

 goto x; } }

 if(helpflag==0) {

 int ts,td,ijk;

 for(i=0;i<ins;i++) {

 ijk=0;

 for(j=0;j<sizec[ind[i]]-1;j++) {

 ts=cre[ind[i]][j];

 td=cre[ind[i]][j+1];

if((IsnotPresentInOtherCPath(ts,td,ind[i]))&&(getTotalExpedi

teDur(ts,td)>0)) {

 if(ijk==0)

 cac++;

 printf("\nCommonPath:%d->%d",ts,td);

 ca[cac].sour=getsPosition(ts,td);

 ca[cac].dest=getdPosition(ts,td);

 ijk++; } }

 ws:

 continue; } }

 goto x; } } }

 x:

 ;

 Step 9:

Expedite the activity by calling ExpediteTheCorrectActivity();

void expediteTheCorrectActivity(int sl,int dl) {

a[s1].totExpDur[d1]--;

a[s1].normDur[d1]--; }

Step 10:

Calculate the critical Path by calling Critical();

Void critical() {

max=sum(0);

for(i=0;i<5;i++) {

 if(sum(i)>max) {

 max=sum(i);

 posi=i; } }

 for(j=0;j<5;j++) {

 if(max==sum(j))

Take the path as Critical Path; } } }

Step 11: End.

4. ILLUSTRATIONS

The proposed unit based scheduling algorithm for finding the

optimum project schedule is illustrated by the following

example.

Fig 4 depicts the activities involved in the construction of a

house. The work commences with the study of plant layout

and the clearance of site. The normal duration, its respective

expedite duration is to be depicted. For the normal and

expedite cost of all the activities, the feasible expedite value

for the cost and duration will be estimated. The construction

work takes different tracks for its completion.

The activities involved depend on the previous activities for

its commencement. The earthwork starts that will lead to the

laying of foundation, after the completion of the study on

plant layout. Meanwhile the construction materials such as

bricks, sand, cement and concrete are procured. The drainage

and sewage systems are laid parallel with the foundations. The

other materials namely pipelines for electric wires and water

pipes are procured and also will be laid. The building

constructed after all basic foundations that is followed by

connecting the building to water and electricity. Finally, the

finishing work of the building will be performed with the

indirect cost of 1000 per day.

 Fig 4 Construction Network

State1

State2

State3 State4

State5

State6

State7

State8

State9

<<ND: 7, NC: 2500

CD: 5, CC: 3000>>

<<ND: 7, NC: 12000

CD: 6, CC: 14000>>

<<ND: 15, NC: 12000

 CD: 10, CC: 16000>>

<<ND: 14, NC: 6000

CD: 7, CC: 7400>>

<<ND: 8, NC: 6000

CD: 5, CC: 12000>>

Clearance of Site

Study of Plant Layout

Survey on existing layouts

Procurement of Sand,

Bricks, Cement &

Concrete

Earthwork Laying of Foundations

Laying of drainage

& sewage systems
Laying of

waterpipes & taps

Laying of conduit pipelines for

electric wires
Construction of Building

Finishing of Building

Connecting Building to Water and

Electricity

<<ND: 12, NC: 10000

CD: 8, CC: 16000>>

<<ND: 4, NC: 6000

CD: 2, CC: 8000>>

<<ND: 8, NC: 7000

CD: 3, CC: 10000>>

<<ND: 5, NC: 10000

 CD: 5, CT: 10000>>

<<ND: 6, NC: 6000

CD: 4, CC: 7800>>

<<ND: 6, NC: 9000

CD: 1, CC: 11500>>

<<ND: 0, NC: 0

 CD: 0, CC: 0>>

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

53

5. RESULTS AND DISCUSSIONS

Fig 5

Fig 6

Fig 7

 Fig 8 Fig 9 Fig 10

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

54

Fig 11

Fig 12

Fig 13

For the given project network from fig 4, we observe that the

critical path is 125789. The project duration of the

critical path is 41 days with the corresponding total cost of

127500. By applying the proposed unit based scheduling

algorithm, we obtain four critical paths in the given network

after 16 expeditions. They are C1:1234689,

C2:125689, C3:125789

and C4: 134689 respectively with the project

duration 25 days with the corresponding total cost of

129500.

5.1. Graphical Representation

The fig 14 portrays the results obtained by the proposed

algorithm, namely unit based scheduling algorithm of a given

project network.

Fig 14

123500

124500

125500

126500

127500

128500

129500

25 29 33 37 41

P
ro

je
c
t

T
o

ta
l

C
o

st

Project Duration

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.4, December 2012

55

From the fig 14, we notice that the expected duration of the

project was successfully reduced from 41 days to 25 days

upon the increase in the amount of money from 127500 to

129500 to the project.

6. CONCLUSIONS

This paper investigated the unit based scheduling algorithm in

the project management. The validity of the proposed

algorithm is examined with the illustration. The project

manager can scrutinize the effect on total cost of changing the

expected project duration to different alternative values. We

can consider this approach faster and easier to complete the

project in shortest possible duration. By using the proposed

approach, the project manager will become competent to find

out how much to be expedited in each activity and thus can

minimize the total cost of meeting any defined deadline for

the project.

7. ACKNOWLEDGMENTS

The authors are thankful to the Managing Editor and the

reviewers whose suggestions improved the version of the

paper.

8. REFERENCES

[1] Ameen, D.A. 1987. A computer assisted PERT

simulation, J. Syst. Management, 38, pp.6-9.

[2] Badiru, A. B. 1991. A simulation approach to network

analysis, Simulation, 57, pp. 245- 255.

[3] Dishi Xu and Xianggang Hua .2011. The Applications of

Crashing Algorithm in Project Management, IEEE, pp.

349-354.

[4] Feng, C.W.,L.Liu and S.A.Burns .2000. Stochastic

construction time-cost trade-off analysis, Journal

Comput. Civil Engg., 14, pp.117-126.

[5] Ghazanfari M, Shahanaghi K, Yousefli K A .2008. An

Application of possibility goal programming to the time-

cost trade-off problem, JUS, World academic press, 2,

pp.22-28.

[6] Haga, W. A., and K. A. Marold .2004. A simulation

approach to the PERT CPM time-cost trade-off problem,

Project Management Journal, 35, pp. 31-37.

[7] Haga, W. A., and K. A. Marold .2005. Monitoring and

control of PERT networks, The Business Review, 3, pp.

240-245.

[8] JIN Chao-guang, JI Zhuo-shang, LINYan Zhao Yuan-

min, Zhen-dong .2005. Research on the fully fuzzy time-

cost trade-off based on genetic algorithms, Journal of

Marine Science and Application, 4, pp.18-23.

[9] Michael E.Kuhl .2008. A dynamic crashing method for

project management using simulation based

optimization, Proceedings of the 2008 Winter Simulation

Conference, pp. 2370-2376.

[10] Pulat, P.S and S.J.Horn .1996. Time-Resource trade-off

problem (project scheduling), IEEE Trans. Eng.

Management, 43, pp.411-417.

[11] Ramini S. 1986. A simulation approach to time-cost

trade-off in project network, Modeling and

Simulation on Microcomputers, Proceedings of the

Conference, pp.115-120.

[12] Shakeela Sathish and K.Ganesan .2012. Fully fuzzy

time-cost trade-off in a project network- A new

approach, Mathematical Theory and Modeling, 2, pp.53-

65.

[13] Yang T .2007. Impact of budget uncertainty on project

time-cost trade-off, Eng Manage, 52, pp.167-174.

[14] Yassiah Bissiri and Scott Dunbar .1999. Resource

Allocation Model for a Fast-Tracked Project, Intelligent

Processing and Manufacturing of Materials, 1, pp.635-

640.

[15] Yousefli K A, Ghazanfari M, Shahanaghi K, Heydari M

.2009. A new heuristic model for fully fuzzy project

scheduling, JUS, World academic press, 2, pp.73-78.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6432
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6432

