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ABSTRACT 
Multiple Input Multiple Output (MIMO) antenna systems are 

being given much attention to provide high capacity with less 

bandwidth requirement. In this paper, some channel 

estimation techniques have been tried to implement with the 

adaptive semiblind channel estimation scheme using less 

requirement of pilot symbols similar to as in the case of the 

estimating the channel with known channel state 

information(CSI) conditions with requirement of high channel 

bandwidth which is not required in this analysis. The 

improved results have been found with less requirement of 

channel bandwidth and compared with the already simulated 

results. It is shown that in addition to improving the spectral 

efficiency, the proposed technique offer better semiblind 

channel estimation accuracy for the partial CSI conditions.  

Keywords  
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1.  INTRODUCTION 

MIMO Antenna system is widely used technique for high data 

rate transmission over frequency-selective fading channels 

due to its capability to combat the inter-symbol interference 

(ISI), low complexity, and spectral efficiency nowadays[1]. 

Even rich scattering environment is the key support for the 

MIMO  technology at both the transmitter and receiver ends 

which results in further increase in the capacity[2]. SPACE-

TIME coding is a powerful means to exploit spatial diversity 

and to combat fading in multiple-input multiple- output 

(MIMO) wireless communication systems. The data rate may 

be enhanced by using spatial multiplexing in MIMO systems, 

whereas the reliability may be enhanced by using space time 

coding (STC). Various space time codes have been developed 

till the date but orthogonal space–time block codes (OSTBCs) 

[3] are of particular interest because they achieve full diversity 

while offering very simple maximum-likelihood (ML) 

decoding in the single-user case. 

Self interference problems created by MIMO systems have 

been resolved by various algorithms i.e. STBC[3, 4], SVD [5], 

VBLAST [6] and so on. They fall into two main categories: 

spatial multiplexing-based algorithms [5, 6] and diversity-

based algorithms[3, 4] . Spatial multiplexing is highly spectral 

efficient: it takes advantage of spatial diversity of MIMO 

channels and creates parallel sub-channels over which 

separate data streams can be transmitted; while diversity-

based algorithms, e.g. STBC, aims to build up a reliable 

wireless link with high diversity order. These algorithms have 

different performance in terms of capacity[7]; and even within 

the same algorithm, the performance varies randomly under 

different channel conditions. Therefore, in adaptive systems to 

achieve the maximal spectral efficiency, we need to know the 

channel state information at the transmitter to adjust the 

transmitter accordingly, i.e., the algorithm, the modulation 

order and even the power and the coding rate[8, 9]. 

In most of the estimation techniques, it is known that the CSI 

of the transmitters is available at the receiver. This implies 

that pilot symbol should be used to estimate the transmitter 

CSI. Whereas it is known that, use of pilot symbol may 

reduce the spectral efficiency and therefore blind and 

semiblind techniques can be used for spatial channel model 

with partial CSI knowledge. 

Among the parameters to adapt at the transmitter, the work 

has been confined to find the optimal algorithm associated 

with the possible maximal constellation size. To be able to 

select the optimal algorithm under certain channel conditions, 

we need to know accurately beforehand the spectral efficiency 

of the algorithms at different signal to noise ratio (SNR) 

which has been shown in [10]. Although several theoretical 

upper bounds[11] of the spectral efficiency have been 

suggested, e.g. capacity, continuous-rate spectral efficiency, 

they are not accurate enough to be the metric on which the 

adaptation scheme is based.  

In general, data dependant (or data adaptive) filters 

outperforms their data independents counterparts and are 

preferred in many applications. A well know adaptive filter 

bank method is CAPON spectral estimator which has been 

simulated in [12] and the satisfactory results were found as 

compared with the existing results. Li and Stoica [13] gave 

another adaptive filter bank method with enhanced 

performance as compared with the CAPON estimator, which 

is referred as the Amplitude and Phase estimation (APES) and 

Gapped-data APES (GAPES). These estimators have been 

tried in this paper for implementing with the APASBCE 

scheme for making the system more stable and less complex. 

When the measurements during certain periods are not valid 

due to many reasons such as interferences or jamming, in 

APES, samples can occur at arbitrary places among complete 

data set, whereas in GAPES, missing samples may occur in 

groups of available data samples where within each group 

there are no missing samples. 

These APES and GAPES estimation schemes are used with 

utilizing the proposed Adaptive Pilot Assistant Semi-Blind 

Channel Estimation (APASBCE) scheme which shows some 

improved results. These results have been compared with the 

existing results available in the literature and with each other. 

A new approach of closed-form expressions of the spectral 

efficiency, coined as discrete-rate spectral efficiency, as a 

function of SNR has been derived which is shown to be a very 

precise estimation to be applied in adaptation. 

Nevertheless, the evaluation of the discrete-rate spectral 

efficiency only requires the information of SNR, meaning that 
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the optimal algorithm can be found as long as the SNR is 

given. The remainder of this paper is organized as follows. 

2.  SYSTEM MODEL 

A MIMO-OFDM system has been considered with 
TM

transmit antenna & 
RM  receive antenna, which 

communicates over a flat fading channels, and is abbreviated 

as 
T RM M  receive MIMO systems matrix H. The system is 

described by ( ) ( ) ( )y k Hx k n k  , where x is 

1 2( ),. ( ),.... ( )
T

T

Mx k x k x k 
 

which is the transmitted symbol 

vector of TM  transmitter with the symbol energy given by 

2 2| ( ) |mE x k    
 for 1 Tm M   and covariance matrix 

( )HQ E XX , y denotes the received vector 

1 2( ), ( ),..... ( )
R

T

My y k y k y k   
 and 

1 2( ) ( ), ( ),.... ( )
R

T

Mn k n k n k n k   
 is 

the complex valued gaussian white noise vector at the 

receiving end for MIMO channels with energy 
2( ) ( ) 2

R

H

n ME n k n k I   
 distributed according to Nc

2(0, )
Rn MI  assumed to be zero mean, spatially & temporally 

white and independent of both channel & data fades. The 

channel model considered here denoted by 1/2 1/2

R TH R H R

[14] with &T RR R representing the normalized transmit and 

receive correlation matrices with identity matrix. The entries 

of H are independent and identically distributed (i.i.d.) 

Nc(0,1). Here the CSIR is described by  

1/2 1/2 1/2 1/2ˆ ˆ, ,R T R TH H E H R H R E R E R    
          (1)

 

    where Ĥ is the estimate of H & E is the overall channel 

estimation error matrix, ˆ &H E 
are white matrices 

spatially uncorrelated with i.i.d. entries distributed according 

to Nc(0,1-
2

E ) & Nc(0,
2

E ) with variance 
2

E  of channel 

estimation error.[15]. 

If it is assumed that the system is having lossless feedback i.e. 

CSIT & CSIR both are same. Thus 2 2ˆ , , , &R T E nH R R  

represents that the CSI is known to both the ends. With the 

partial CSI model, the channel output can be considered as 

ˆy Hx Ex n   . The system model with proposed 

estimation scheme has been shown in Figure 1.  

 

Figure 1. System Model with Proposed Estimation schemes 

3.  PROPOSED METHOD TO 

IMPLEMENT THE SEMIBLIND 

CHANNEL ESTIMATION APPROACH 

USING APASBCE 

Now considering the problem of estimating the amplitude 

spectrum of a complex valued uniformly sampled discrete-

time signal 
1

0{ }N

n ny 


. For a frequency   of interest, the 

signal 
ny  is modeled as 

( ) ( ) 0,....... 1, (0 2 )j n

n ny e e n N           (2) 

where, α(ω) denotes the complex amplitude of the 

sinusoidal component at frequency ω, and en(ω) denotes the 

residual term i.e. zero mean noise and interferences from 

frequencies other than ω. The problem of interest is to 

estimate α(ω) from signal for any given frequency ω.  

Let h(ω) denote the impulse response of an M-tap finite 

impulse response(FIR) channel response, 

( ) [ ( ) ( ) ........ ( )]0 1 1
Th h h hM           (3) 

Where, ( )T
 denotes the transpose. Then the receiver output 

can be written as ˆ( )H

lh y
 

, where,  

1 1 1
ˆ    [     ] ,            0,  ,  1T

l l l My y y y l L      
     

(4) 

These are the Mx1 forward data sub vectors and L=N-M+1. 

For each ω of interest, we consider the following design 

objective, 

1 2
ˆmin | ( ) ( ) | . . ( ) ( ) 1

( ), ( ) 0

L j l HHh y e s t h al
h l


    

  


  


 

(5) 

Where, a(ω) is an Mx1 vector given by,  
 1

( )  [ 1     . ]
j Mj Ta e e



       (6) 

The channel coefficient h(ω) is designed such that the channel 

sequence is as close to a sinusoidal signal as possible in a least 

squares(LS) sense and the complex spectrum α(ω) is not 

distorted by the filtering. 

Let g(ω) denote the normalized Fourier transform of ˆ
ly , 

1

0

1
ˆ( )

L
j l

l

l

g y e
L








 
 (7) 

And define, 
1

0

1ˆ ˆ ˆ
L

H

l l

l

R y y
L





   (8) 

Equation (5) can be written as, 
2ˆ( ) ( ) *( ) ( ) ( ) ( ) ( ) | ( ) |H H Hh Rh h g g h             

  
2 2ˆ| ( ) ( ) ( ) | ( ) ( ) | ( ) ( ) |H H Hh g h Rh h g          

   
(9) 

where, ( )* denotes the complex conjugate. 

The minimization of (9) w.r.t. ( )   is given by, 

ˆ( ) ( ) ( )Hh g       (10) 

By putting (10) in (9), yields the following minimization 

problem for the determination of h(ω), 

( )

ˆmin ( ) ( ) ( ) . . ( ) ( ) 1H H

h
h S h s t h a


     

 (11) 

where, 
ˆ ˆ( ) ( ) ( )HS R g g    (12) 

The solution of (11) is obtained from [16] as 
1

1

ˆ ( ) ( )ˆ( )
ˆ( ) ( ) ( )H

S a
h

a S a

 


  






 (13) 
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This is the forward only APES channel coefficients, and the 

forward only APES estimator in (10) becomes, 
1

1

ˆ( ) ( ) ( )
ˆ( )

ˆ( ) ( ) ( )

H

H

a S g

a S a

  
 

  




  (14) 

3.1 Forward Backward Averaging 

Here we consider the data for the conditions when received 

data appeared at the receiver from multiple directions due to 

diversity effect. Let the backward data subvectors be 

constructed as 
* * *

1 2[ ... ] , 0,..., 1T

l N l N l N l My y y y l L       
    

(15) 

The outputs obtained by running the data through the channel 

both forward and backward are as close as possible to a 

sinusoid with frequency ω. This design objective can be 

written as 
1

2

( ), ( ), ( )
0

2

1
ˆmin {| ( ) ( ) | ...

2

| ( ) ( ) | } . . ( ) ( ) 1

L
H j l

l
h

l

H j l H

l

h y e
L

h y e s t h a



    



  

    







  

  (16) 

The minimization of (16) w.r.t. ( )   and ( )   gives 

ˆ( ) ( ) ( )Hh g    and ˆ( ) ( ) ( )Hh g    , where 

( )g  is the normalized Fourier transform of ˆ
ly , 

1

0

1
ˆ( )

L
j l

l

l

g y e
L








   (17) 

It follows that (16) lead to, 

( )

ˆmin ( ) ( ) ( ) . . ( ) ( ) 1H H

fb
h

h S h s t h a


         (18) 

 where,  

( ) ( ) ( ) ( )ˆ ˆ( )
2

H H

fb fb

g g g g
S R

   



  (19) 

with,       
1

0

1ˆ ˆ ˆ
L

H

f l l

l

R y y
L





  ,       
1

0

1ˆ ˆ ˆ
L

H

b l l

l

R y y
L





   

for forward and backward received signals, and, 

           
ˆ ˆ

2

f b

fb

R R
R


  

The solution for (18) is given by,  
1

1

ˆ ( ) ( )
ˆ ( )

ˆ( ) ( ) ( )

fb

fb H

fb

S a
h

a S a

 


  




  (20) 

Because of readily verified relationship, we have 

( ) ( ) [ ( ) ( )]H H Tg g J g g J     (21) 

where, J  denotes the exchange matrix whose non-diagonal 

elements are ones and the remaining elements are zeros. So 

fbS  can be conveniently calculated as 

ˆ ˆ( ) ( )
ˆ ( )

2

T

f f

fb

S JS J
S

 



  (22) 

where, 

ˆ ˆ( ) ( ) ( )H

f fS R g g    (23) 

Given the forward Backward APES based channel 

coefficients ( )fbh  , the forward-backward spectral estimator 

can be written as 

1

1

ˆ( ) ( ) ( )
ˆ ( )

ˆ( ) ( ) ( )

H

fb

fb H

fb

a S g

a S a

  
 

  




  (24) 

due to this relation, the forward backward estimator can be 

simplified as, 
* ( 1)ˆ ˆ( ) ( ) ( )H jw N

fb fb fbh g e         (25) 

It indicates that from ˆ ( )fb  , we will get the same forward 

backward symbol estimator ( )fb  . 

These are comparable with (13) and (14) which are generally 

better estimates of the true R  and ( )Q   ideal covariance 

matrices with and without presence of the signal of strength. 

For implementing the algorithm for fast processing and to 

avoid the inversion of matrix which is the drawback in 

estimating the semiblind channel can be reduced by using 

Cholesky factorization method for covariance matrices. 

 

3.2 GAPES based channel estimation  

This algorithm states two separate conditions i.e. estimating 

the channel adaptively with finding out the corresponding 

channel coefficients and then filling the gapped sequences in 

between the received data adaptively implementing the 

APASBCE scheme in it. Assuming some segment of data 

signals are unavailable. Let a complete data vector y, whose 

length are N1,…..Np, respectively, with N1+N2+….+Np=N, 

1 2 1

1 2

[ ........ ]

[ ........ ]

T

N

T T T T

p

y y y y

y y y





 (26) 

A gapped data vector   is formed by assuming yp ,  for p = 

1,3, …P (P is always an odd number), are available, 

1 3[ .... ]T T T T

Py y y  (27) 

2 4 1[ .... ]T T T T

Py y y 
 (28) 

where   denotes all the missing symbols. Then   and 

have dimensions gx1 and (N-g)x1, respectively, where g= 

N1+N3+….+Np is the total number of available symbols. Now 

it is required to estimate the initial amplitude and phase 

estimates of ( )h  and ( )  from the available data  . 

Choosing initial channel length 
0M  such that an initial full 

rank covariance matrix R can be built with the channel length

0M , using only the available data segments. This indicates 

0 0

{1,3,... }

max(0, 1)p

p P

N M M


    (29) 

Let Lp=Np-M0+1 and let J be the subset of {1,3,…P} for 

which Lp>0. Then the channel coefficients h(ω) is calculated 

from (12) and (13) by using 

1 1 1

1 1

....

....

1ˆ
p p

p

N N L

H

l l

P J l N Np

P J

R y y
L

 



  

   



  


 (30) 

1 1 1

1 1

....

....

1
( )

p p

p

N N L

j l

l

p J l N Np

p J

g y e
L


 



  



   



  


 (31) 

Data subvectors above have a size of M0x1 whose elements 

are only from  , and hence they do not contain any missing 

symbols. Vector R and g(ω) have sizes of M0xM0 and M0x1. 
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Now the channel coefficients ( )h  is applied to the available 

data  abd LS estimate of ( )   from the coefficients output 

is calculated by using (10), where ( )g   is replaced by (31). 

Using this process, only the available symbols are passed 

through. The initial LS estimate of ( )   is based on these so 

obtained received and filtered outputs only. 

   Now consider the estimate of μ based on the initial spectral 

estimates α(ω) and h(ω). The μ is obtained as the solution by 

getting   under the condition that the output of the filter h(ω) 

fed with the complete data sequence made from  , and μ as 

close as possible(in LS sense) to ( ) j le   
  for l = 0,…., L-

1. 
1 1

2

0 0

ˆˆmin | ( ) ( ) |k

K L
ej lH

k l k

k l

h y



  

 

 

  (32) 

By estimating  in this way, the system remains in the LS 

fitting framework of APES estimation technique. By solving 

the quadratic minimization problem(32), the minimization 

received w.r.t.  , 

1 1

0 0

ˆ ( ) ( ) 1 ( ) ( )
K K

H H

k k k k

k k

B B B d    
 

 

   
    
   
   (33) 

Once an estimate  has become available, the next step 

consist of re-estimating the spectrum and the filter bank, by 

applying APES estimation scheme to the data sequence made 

from Υ and μ. This leads the minimization w.r.t. ( )kh   and 

( )ka  of the function 

1 1
2

0 0

ˆ| ( ) ( ) |k

K L
ej lH

k l k

k l

h y
  

 

 

  (34) 

subject to ( ) ( ) 1H

k kh a   , where, 
ly is made from  and

 . Evidently the minimization of (34) w.r.t 

1 1
2

0 0

ˆ| ( ) ( ) |k

K L
ej lH

k l k

k l

h y
  

 

 

    , can be decoupled into K 

minimization problems of the form of (5), yet it is preferred to 

write the criterion as in ˆ ( ) ( ) 1Hh a    , to make the 

connection with (34). This comparison shows that the 

alternating estimation of  ( ), ( )k kh   and  can be 

recognized as the cyclic optimization approach for solving the 

following minimization problem, 
1 1

2

,{ ( ), ( )}
0 0

ˆmin | ( ) ( ) |

. . ( ) ( ) 1

k

k k

K L
ej lH

k l k
h

k l

H

k k

h y

s t h a



   
  

 

 

 





    (35) 

Finally, this minimized value is used with the proposed 

APASBCE algorithm[17] for finding the value of unknown

and  . Use the most recent estimate of  ( ), ( )k kh   in 

(35) to estimate   by minimizing the so obtained cost 

function, whose solution is given by  (33). Use the latest 

estimate of  to fill in the missing data symbols and estimate

1

0{ ( ), ( )}K

k k kh    


 by minimizing the cost function in (35) 

based on the interpolated data. Repeating this whole process 

for more number of iterations will converge the estimated 

symbols to the nearly approachable symbol. The practical 

convergence can be decided when the relative change of the 

cost function in (35) corresponding to the current and 

previous estimates is smaller than a pre-assigned 

threshold.(e.g.ε=10-3). After convergence, final spectral 

estimate are the practical approachable values. The 

comparison of the proposed approach with the existing 

estimation method for the MIMO antenna systems has been 

shown in Table 1. 

Table 1. Comparison of different Semiblind Channel 

Estimation Schemes for their Robustness and Complexity 

S.No. Name of 

Algorithm 

Filter 

Based 

Robustness Complexity Adaptiveness 

1. CAPON Yes Moderate High No 

2. MUSIC No Highly Very High No 

3. APES Yes High Less Yes 

4. GAPES Yes High Less Yes 

4. Results 

The results will be obtained by putting the values of estimated 

  to calculate the branch metric 2(M+N-1). Then calculating 

the tracking ability of the algorithm, if found suitable then the 

simulation will be terminated otherwise, the M samples from 

the L samples of information block will be processed again 

for k times. Now again calculating the branch metric as said 

above, if found suitable this time, calculating the path metric 

for all possible paths from the estimated values in Ĥ . Now 

choosing the path metric with minimum path metric gain 
,i L  

, which will help to track the bits through the chosen path or 

optimum path. If in case, the channel drops or the fading 

occur for the estimated channel then, again the algorithm will 

process for the k steps. Then taking the short time average 

value of the detected sequence found in previous step for 

.k k kJ  with minimum value will give us the desired 

result.  

 
Figure 2. Normalized RMSE for 4TM  and 2RM   

Figure 2. and Figure 3. shows the Normalized RMSE 

comparison for 4x2 and 4x4 antenna systems for APES and 

GAPES based semiblind channel estimation schemes with the 

existing results of CAPON and MUSIC based semiblind 

channel estimation schemes which shows the improved results 

as shown. These schemes show better results due to less 

complexity at the estimation stage.    

Further the BER comparison has been shown in Figure 4. for 

4x4 MIMO antenna system, where it is observed clearly that 

the APES and GAPES results have performed better than the 
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MUSIC based Semiblind channel estimation scheme. The 

GAPES based semiblind channel estimation scheme maintains 

the 0.5dB gain throughout as compared with the APES based 

semiblind channel scheme. Similarly, Figure 5, shows the 

capacity result comparison of MUSIC based semiblind 

channel estimation with the APES and GAPES based 

semiblind channel estimation scheme. It is shown that GAPES 

based semiblind channel estimation scheme start to show 

better performance after the SNR level of 12dB and 18db for 

2x2 and 4x4 MIMO Antenna systems respectively.        

 
Figure 3.  Normalized RMSE for 4TM  and 4RM   

 
Figure 4. BER versus SNR for 4TM  and 4RM   

 

 
Figure 5. Capacity for 2x2 and 4x4 antenna configurations 

using different Channel Estimation Schemes 

 

 

 

5. CONCLUSION 

The APES and GAPES based channel estimation scheme has 

been implemented with APASBCE scheme which shows that 

there is improvement in the results of the semiblind channel 

estimation using these filter based estimation schemes. The           

comparative results shown that the highly complex channel 

estimation schemes can be replaced using these filter based 

schemes with the proposed APASBCE scheme. The 

simulation time was less for the APASBCE based APES and 

GAPES semiblind channel estimation schemes and moreover 

the adaptive natures of these filter based schemes are very 

easy to implement. These schemes can be implemented in 

mobile environment and in such urban areas where the 

diversity effect is more common and there is more number of 

chances of signal fading due to large number of restrictions in 

between the path of the signal transmitting from one end to 

the second end of the mobile receiver. These schemes can be 

expanded to the multiuser MIMO systems where there are 

more number of data loss due to interference and fading. 
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