New Separation Axiom on $\hat{\Omega}$-Closed Sets

M.Lellis Thivagar
School Of Mathematics,
Madurai Kamaraj University
Madurai-625021,
Tamil Nadu, INDIA.

M.Anbuchelvi
Department of Mathematics, V.V.Vanniaperumal College For Women
Virudhunar-626001,
Tamil Nadu, INDIA.

Abstract

In this paper we introduce and investigate a new separation axiom associated with $\hat{\Omega}$-closed sets and characterize it by using $\hat{\Omega}$ closure operator, $\hat{\Omega}$-kernel $\hat{\Omega}$-derived set and $\hat{\Omega}$-shell of singletons. Also we find some of their applications.

Keywords:

$\hat{\Omega}$-closed sets, $\hat{\Omega}$-closure, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}), \hat{\Omega}$-derived set and $\hat{\Omega}$ shell.,
$A M S$ subject classification 2010 :57D05
ifx

1. INTRODUCTION

[3] Generalized closed sets play a vital role in General Topology and many separation axioms were introduced and studied by using it.By using various kinds of generalized closed sets many authors introduced and investigated many types of separation axioms.[1]Thivagar.et.al introduced and investigated a new classes of sets known as $\hat{\Omega}$-closed sets which lies properly between the classes of $[6] \delta$-closed sets and that of [5] ω-closed sets.Also it is independent of open sets.Main feature of this classes of sets is "This structure forms a topology". The aim of the paper is to introduce and investigate the new notion namely $\hat{\Omega}-T_{\frac{1}{2}}$-space by utilizing $\hat{\Omega}$-open set.Also we characterize $\hat{\Omega}-T_{\frac{1}{2}}$ and $\hat{\Omega}$ - T_{0} spaces in terms of $\hat{\Omega}-d(\{x\})$ and $\hat{\Omega}$-shl $(\{x\})$.Also we introduce and investigate some more spaces like $\hat{\Omega}$ - $C_{0}, \hat{\Omega}$ C_{1},weakly $\hat{\Omega}-C_{0}$ and sober $\hat{\Omega}-R_{0}$.

2. PRELIMINARIES

Throughout this paper (X, τ) (or briefly X) represent a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of $X, \operatorname{cl}(A), \operatorname{int}(A)$ and A^{c} denote the closure of A, the interior of A and the complement of A respectively.The family of all $\hat{\Omega}$-open (resp. $\hat{\Omega}$-closed) subsets of X is denoted by $\hat{\Omega} O(X)$. (resp. $\hat{\Omega} C(X)$) and $\hat{\Omega} O(X, x)=$ $\{U \in X: x \in U \in \hat{\Omega} O(X)\}, \hat{\Omega} C(X, x)=\{F \in X: x \in$ $F \in \hat{\Omega} C(X)\}$.
Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. [6] A subset A of X is called δ-closed in a topological space (X, τ) if $A=\delta c l(A)$, where $\delta c l(A)=\{x \in$ $X: \operatorname{int}(\operatorname{cl}(U)) \cap A \neq \emptyset, U \in O(X, x)\}$. The complement of δ-closed set in (X, τ) is called δ-open set in (X, τ).

Definition 2.2. A subset A of a topological space (X, τ) is called
(i) Semi-open [4]if $A \subseteq \operatorname{cl}(\operatorname{int}(A))$.
(ii) $\hat{\Omega}$-open [1] if $\delta \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ).

The complement of semi open and $\hat{\Omega}$-closed set in (X, τ) is called semi closed and $\hat{\Omega}$-open set in (X, τ).

Definition 2.3. A topological space (X, τ) is
(i) $\hat{\Omega}-T_{0}[2]$ if for any distinct pair of points x and y of X, there exists a $\hat{\Omega}$-open set U of X containing x but not y (or) containing y but not x.
(ii) $\hat{\Omega}-T_{1}[2]$ if for any distinct pair of points x and y of X, there exists a $\hat{\Omega}$-open set U of X containing x but not y and a $\hat{\Omega}$-open set V of X containing y but not x.

Definition 2.4. [1] Let A be a subset of a topological space (X, τ). Then the $\hat{\Omega}$-closure of A is defined to be the intersection of all $\hat{\Omega}$-closed sets containing A and it is denoted by $\hat{\Omega} c l(A)$. That is $\hat{\Omega} c l(A)=\bigcap\{F: A \subseteq F, F \in \hat{\Omega} C(X)\}$. Always $A \subseteq \hat{\Omega} c l(A)$.

Definition 2.5. [2] Let (X, τ) be a space and $A \subseteq X$. Then the $\hat{\Omega}$-kernel of A, denoted by $\operatorname{Ker}_{\hat{\Omega}}(A)$ is defined as $\operatorname{Ker}_{\hat{\Omega}}(A)=\bigcap\{G \in \hat{\Omega} O(X): A \subseteq G\}$.

Definition 2.6. [1] A point x of a space (X, τ) is called a $\hat{\Omega}$-limit point of a subset A of (X, τ) iffor each $\hat{\Omega}$-open set U containing x intersects A other than x. That is $A \cap(U-\{x\}) \neq$ \emptyset. The set of all limit points of A is denoted by $D_{\hat{\Omega}}(A)$ and is called the $\hat{\Omega}$-derived set of A.

Definition 2.7. A subset A of a topological space (X, τ) is said to be degenerate if it is either a null set or a singleton set.

3. $\hat{\Omega}-T_{\frac{1}{2}}$-SPACE.

In a topological space X,the closure,the derived set, the kernel and the shell of a singleton set $\{x\}$ are denoted by $\operatorname{cl}(\{x\}), d(\{x\}), \operatorname{ker}(\{x\})$ and $\operatorname{shl}(\{x\})$ respectively.In a similar way,we introduce the notations $\hat{\Omega} c l(\{x\}), \hat{\Omega} d(\{x\}), \operatorname{ker}_{\hat{\Omega}}(\{x\})$ and $\hat{\Omega} \operatorname{shl}(\{x\})$ for the $\hat{\Omega}$ closure, $\hat{\Omega}$-derived set, $\hat{\Omega}$-kernel and $\hat{\Omega}$-shell of a singleton set $\{x\}$ respectively.

Definition 3.1. In a topological space (X, τ), for any $x \in X$,
$\hat{\Omega} c l(\{x\})=\bigcap\{F: F \in \hat{\Omega} C(X, x)\}$.
$-\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\bigcap\{G: G \in \hat{\Omega} O(X, x)\}$.
$-\hat{\Omega} c l(\{x\})=\left\{y: x \in \operatorname{Ker}_{\hat{\Omega}}(\{y\})\right\}$.
$-\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\{y: x \in \hat{\Omega} c l(\{y\})\}$.
$-\hat{\Omega} d(\{x\})=\hat{\Omega} c l(\{x\}) \backslash\{x\}=\left\{y: x \in \operatorname{Ker}_{\hat{\Omega}}(\{y\}), y \neq x\right\}$.
$-\hat{\Omega} \operatorname{shl}(\{x\})=\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \backslash\{x\}=\{y: x \in \hat{\Omega} c l(\{y\}), y \neq$ $x\}$.

LEMMA 3.2. In a topological space (X, τ), the following statements are true.
(i) $A \subseteq \operatorname{Ker}_{\hat{\Omega}}(A)$ for any $A \subseteq X$.
(ii) $\operatorname{Ker}_{\hat{\Omega}}(A)=\operatorname{Ker}_{\hat{\Omega}}\left(\operatorname{Ker}_{\hat{\Omega}}(A)\right)$ for any $A \subseteq X$.

Proof. (i) Suppose that A is any subset of X.If $x \notin$ $\operatorname{Ker}_{\hat{\Omega}}(A)$,then there exists $U \in \hat{\Omega} O(X)$ such that $A \subseteq U$ and $x \notin U$.Therefore, $x \notin A$.Thus, it is proved.
(ii) Suppose that A is any subset of X and $x \in$ $\operatorname{Ker}_{\hat{\Omega}}\left(\operatorname{Ker}_{\hat{\Omega}}(A)\right)$.Let $U \quad \in \quad \hat{\Omega} O(X)$ such that $A \subseteq U$. By the definition, $\operatorname{Ker}_{\hat{\Omega}}(A) \subseteq U$. Again by definition, $x \in \operatorname{Ker}_{\hat{\Omega}}\left(\operatorname{Ker}_{\hat{\Omega}}(A)\right)$ implies that $x \in U$. Thus, $\operatorname{Ker}_{\hat{\Omega}}\left(\operatorname{Ker}_{\hat{\Omega}}(A)\right) \subseteq \operatorname{Ker}_{\hat{\Omega}}(A)$. By (i), $\operatorname{Ker}_{\hat{\Omega}}(A) \subseteq \operatorname{Ker}_{\hat{\Omega}} \operatorname{Ker}_{\hat{\Omega}}(A)$. Hence it holds.

LEMMA 3.3. In a topological space (X, τ) , $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\}))=\hat{\Omega} \operatorname{shl}(\{x\})$ for any $x \in X$.

Proof. By the lemma 3.1 (i), $\hat{\Omega} \operatorname{shl}(\{x\}) \subseteq$ $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\}))$. On the other hand,if $y \in$ $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\}))$ such that $y \neq x$. Then by [2] lemma $3.2, \hat{\Omega} c l(\{y\}) \cap \hat{\Omega} \operatorname{shl}(\{x\}) \neq \emptyset$.Therefore, there exists $z \in X$ such that $z \in \hat{\Omega} c l(\{y\}) \cap \hat{\Omega} \operatorname{shl}(\{x\})$. By remark 3.1,z $\in \hat{\Omega} \operatorname{shl}(\{x\})$ implies that $x \in \hat{\Omega} c l(\{z\})$ such that $z \neq x$.By [1] remark $5.2, z \in \hat{\Omega} c l(\{y\})$ implies that $\hat{\Omega} c l(\{z\}) \subseteq \hat{\Omega} c l(\{y\})$. Therefore,$x \in \hat{\Omega} c l(\{z\}) \subseteq \hat{\Omega} c l(\{y\})$. Thus, $y \in \hat{\Omega} \operatorname{shl}(\{x\})$.Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\})) \subseteq$ $\hat{\Omega} \operatorname{shl}(\{x\})$ and hence proved.

Definition 3.4. A topological space X is said to be $\hat{\Omega}$ -$T_{\frac{1}{2}}$-Space if for every pair of distinct points x and y in $X, \operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$.

Example 3.5. $X=\{a, b, c\} \tau=\{\emptyset,\{a, b\}, X\}$. Then $\hat{\Omega} O(X)=\{\emptyset,\{a\},\{b\},\{a, b\}, X\}$. It is $\hat{\Omega}-T_{\frac{1}{2}}$.
THEOREM 3.6. Every $\hat{\Omega}-T_{1}$-space is $\hat{\Omega}-T_{\frac{1}{2}}$-space.
Proof. Let x and y be any pair of distinct points in X.Since X is $\hat{\Omega}-T_{1}$-space, [2] theorem 3.19 (iii), $\operatorname{Ker}_{\hat{\Omega}}(\{x\})=$ $\{x\}, \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{y\}$.Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\{y\})=\emptyset$.Thus, X is $\hat{\Omega}-T_{\frac{1}{2}}$.

REMARK 3.7. Converse of the above is not always possible from the example 3.2.

THEOREM 3.8. Every $\hat{\Omega}-T_{\frac{1}{2}}$-space is $\hat{\Omega}-T_{0}$-space
Proof. If x and y are any pair of distinct points in X.Since X is $\hat{\Omega}-T_{\frac{1}{2}}$-space, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$.Therefore, we have the following three cases.

Case(i) If $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{x\}$,then $\{x\} \subseteq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.By lemma 3.2 (ii) and by [2] lemma 3.5, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \subseteq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\{y\})=\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\{x\}$. That is,$y \in \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ but $y \notin \operatorname{Ker}_{\hat{\Omega}}(\{x\})$. Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \neq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.
Case(ii) In a similar way, if $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{y\}$, then $\operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{y\}$ and hence $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \neq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.
Case(iii) If $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=$ emptyset,then $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \neq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.
In all the three cases by[2] theorem 3.18, X is $\hat{\Omega}$ - T_{0}-space.

REMARK 3.9. Converse of the above is not always possible from the following example.

Example 3.10. $X \quad=\quad\{a, b, c\}, \tau=$ $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\},\{a, b, c\},\{a, c, d\}, X\}$.Then (X, τ) is a $\hat{\Omega}$ - T_{0}-space which is not a $\hat{\Omega}-T_{\frac{1}{2}}$-space.

The following theorem states that the necessary condition under which the reversible of the theorem 3.8 holds.

THEOREM 3.11. If $\quad \operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\})) \quad \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{y\}))=\emptyset$ for any pair of distinct points $x, y \in X$ in a $\hat{\Omega}-T_{0}$ space (X, τ), then X is $\hat{\Omega}-T_{\frac{1}{2}}$-space.

Proof. Let x and y be any pair of distinct points in a $\hat{\Omega}-T_{0}$ space X. By hypothesis, $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\})) \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{y\}))=\emptyset$. By lemma $3.3, \hat{\Omega} \operatorname{shl}(\{x\}) \cap$ $\hat{\Omega} \operatorname{shl}(\{y\})=\emptyset$.Then, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$ or $\{x, y\}$.If $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{x, y\}$, then $\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\operatorname{Ker}_{\hat{\Omega}}(\{y\})$, a contradiction to X is $\hat{\Omega}-T_{0}$ space.Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$ and hence X is $\hat{\Omega}-T_{\frac{1}{2}}$-space.

Let us prove a characterizations of $\hat{\Omega}-T_{\frac{1}{2}}$-space.
THEOREM 3.12. The following statements are equivalent in a topological space.
Case(i) (X, τ) is $\hat{\Omega}-T_{\frac{1}{2}}$-space.
Case(ii) For every pair of distinct points $x, y \in X$, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or one of the points has an empty $\hat{\Omega}$-shell.
(iii) (X, τ) is $\hat{\Omega}-T_{0}$ and $\hat{\Omega} \operatorname{shl}(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{y\})=\emptyset$ for every pair of distinct points $x, y \in X$.
(iv) (X, τ) is $\hat{\Omega}-T_{0} \quad$ and $\quad \operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{x\})) \quad \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\hat{\Omega} \operatorname{shl}(\{y\}))=\emptyset$ for every pair of distinct points $x, y \in X$.

Proof. $(i) \Rightarrow$ (ii) Suppose that x, y are any two distinct points in X. Since X is $\hat{\Omega}$ - $T_{\frac{1}{2}}$-space, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$.If $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=$ $\{x\}$,then $\{x\} \quad \subseteq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.By lemma 3.2 (ii) and by [2] lemma $3.5, \operatorname{Ker}_{\hat{\Omega}}(\{x\}) \subseteq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$. Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\operatorname{Ker}_{\hat{\Omega}}(\{x\})=$ $\{x\}$.Thus, $\hat{\Omega} \operatorname{shl}(\{x\})=\emptyset$.
$(i i) \Rightarrow(i)$ If $K e r_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\emptyset$ for every pair of distinct points $x, y \in X$,then there is nothing to prove.If not,by hypothesis,we assume that $\hat{\Omega} \operatorname{shl}(\{x\})=$ $\emptyset, \hat{\Omega} \operatorname{shl}(\{y\}) \neq \emptyset$, and $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\}) \neq \emptyset$.Then, $\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\{x\}$ and $\operatorname{Ker}_{\hat{\Omega}}(\{y\})$ contains points more than y.Therefore, $x \in \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ and hence $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{x\}$.Similarly if $\hat{\Omega} \operatorname{shl}(\{y\})=$ $\emptyset, \hat{\Omega} \operatorname{shl}(\{x\}) \neq \emptyset$, and $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\}) \neq \emptyset$.Then, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{y\}$.Therefore, for every pair of distinct points $x, y \in X, \operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$ and hence X is $\hat{\Omega}-T_{\frac{1}{2}}$-space.
(i) \Rightarrow (iii) By the theorem $3.8, X$ is $\hat{\Omega}-T_{0}$.It is enough to claim that $\hat{\Omega} \operatorname{shl}(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{y\})=\emptyset$ for every pair of distinct points $x, y \in X$. Suppose that x, y are any two distinct points in X. Since X is $\hat{\Omega}-T_{\frac{1}{2}}$-space, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})$ is either \emptyset or $\{x\}$ or $\{y\}$.
case(i).If $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\emptyset$,then $\left[\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \backslash\{x\}\right] \cap\left[\operatorname{Ker}_{\hat{\Omega}}(\{y\}) \backslash\{y\}\right]=\emptyset$ and hence
$\hat{\Omega} \operatorname{shl}(\{x\}) \cap \hat{\Omega} s h l(\{y\})=\emptyset$.
case(ii).If $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\{x\}$,then $\{x\} \subseteq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$. By lemma 3.2 (ii) and by [2] lemma $3.5, \operatorname{Ker}_{\hat{\Omega}}(\{x\}) \subseteq \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\{x\}$.Therefore, $\hat{\Omega} \operatorname{shl}(\{x\})=\emptyset$ and hence $\hat{\Omega} \operatorname{shl}(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{y\})=\emptyset$.
case(iii).In a similar way,if $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\})=$ $\{y\}$, then $\hat{\Omega} \operatorname{shl}(\{x\}) \cap \hat{\Omega} \operatorname{sh} l(\{y\})=\emptyset$.
$(i i i) \Rightarrow(i v)$ By lemma 3.3,it follows.
$(i v) \Rightarrow(i)$ By the theorem 3.11,it holds.
Definition 3.13. A subset A of a topological space (X, τ) is said to be weakly $\hat{\Omega}$ separated from a set B of X if there exists a $\hat{\Omega}$-open set U such that $A \subseteq U$ and $U \cap B=\emptyset$ or $A \cap \hat{\Omega} c l(B)=\emptyset$.
Characterize $\hat{\Omega} c l(\{x\}), \operatorname{Ker}_{\hat{\Omega}}(\{x\}), \hat{\Omega} d(\{x\})$ and $\hat{\Omega} \operatorname{shl}(\{x\})$ in terms of weakly $\hat{\Omega}$ separated sets.

Lemma 3.14. In a topological space (X, τ) for any $x, y \in$ X, we have
(i) $\hat{\Omega} c l(\{x\})=\{y:\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}\}$. (ii) $\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\{y:\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$ \}.
(iii) $\hat{\Omega} d(\{x\})=\{y: y \neq x,\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}\}$.
(iv) $\hat{\Omega} \operatorname{shl}(\{x\})=\{y: y \neq x,\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$.
(v) $y \in \hat{\Omega} c l(\{x\})$ if and only if $x \in \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.

Proof. (i) By [1] theorem 5.11,y $\in \hat{\Omega} c l(\{x\})$ if and only if every $U \in \hat{\Omega} C(X, y)$ contains $\{x\}$. Therefore, $\hat{\Omega} c l(\{x\})=\{y$: $\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}\}$.
(ii) By [2] lemma 3.2,y $\in \operatorname{ker}_{\hat{\Omega}}(\{x\})$ if and only if $\{x\} \cap$ $\hat{\Omega} c l(\{y\}) \neq \emptyset$. Therefore, $\operatorname{Ker}_{\hat{\Omega}}(\{x\})=\{y:\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}\}$.
(iii) Since $\hat{\Omega} d(\{x\})=\hat{\Omega} c l(\{x\}) \backslash\{x\}$ and by (i), $\hat{\Omega} d(\{x\})=$ $\{y: y \neq x,\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}\}$.
(iv) Since $\hat{\Omega} \operatorname{shl}(\{x\})=\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \backslash\{x\}$ and by (ii), $\hat{\Omega} \operatorname{shl}(\{x\})=\{y: y \neq x,\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$.
(v) If $x \in \operatorname{ker}_{\hat{\Omega}}(\{y\})$,then by (ii), $\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$.By (i), $y \in \hat{\Omega} c l(\{x\})$. In a similar way, if $y \in \hat{\Omega} c l(\{x\})$ then by (i), $\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$. By (ii), $x \in k e r_{\hat{\Omega}}(\{y\})$.Hence it is proved.

Definition 3.15. In a topological space (X, τ) for any $x \in X$, we define
(i) $\hat{\Omega}-N-D=\{x \in X: \hat{\Omega} d(\{x\})=\emptyset\}$.
(ii) $\hat{\Omega}-N-s h l=\{x \in X: \hat{\Omega} \operatorname{shl}(\{x\})=\emptyset\}$.
(iii) $\hat{\Omega}-\langle x\rangle=\hat{\Omega} c l(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{x\})$.

Theorem 3.16. For any $x, y \in X$,the following statements hold.
(i) $y \in \hat{\Omega} s h l(\{x\})$ if and only if $x \in \hat{\Omega} d(\{y\})$.
(ii) $y \in \hat{\Omega} c l(\{x\}) \Rightarrow \hat{\Omega} c l(\{y\}) \subseteq \hat{\Omega} c l(\{x\})$.
(iii) $y \in \operatorname{ker}_{\hat{\Omega}}(\{x\}) \Rightarrow k e r_{\hat{\Omega}}(\{y\}) \subseteq \operatorname{ker}_{\hat{\Omega}}(\{x\})$.

Proof. (i) By (iii) and (iv) of lemma 3.14,it holds.
(ii) Assume that $y \in \hat{\Omega} c l(\{x\})$.Let $z \in \hat{\Omega} c l(\{y\})$ be arbitrary and U be any $\hat{\Omega}$-open set in X containing $\{z\}$. Since $z \in \hat{\Omega} c l(\{y\})$,by (i) of lemma $3.4,\{z\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$. By the definition of weakly $\hat{\Omega}$ separated, $y \in U$.By hypothesis, $\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$.Again by the definition of weakly $\hat{\Omega}$ separated, $x \in U$. Therefore, $\{z\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$.By (i) of lemma $3.4, z \in$ $\hat{\Omega} c l(\{x\})$.Therefore, $\hat{\Omega} c l(\{y\}) \subseteq \hat{\Omega} c l(\{x\})$.
(iii) Suppose that $y \in \operatorname{ker}_{\hat{\Omega}}(\{x\})$.If $z \in \operatorname{ker}_{\hat{\Omega}}(\{y\})$,then by (v) of lemma $3.14, y \in \hat{\Omega} c l(\{z\})$. By (ii), $\hat{\Omega} c l(\{y\}) \subseteq \hat{\Omega} c l(\{z\})$. By hypothesis, $y \in \operatorname{ker}_{\hat{\Omega}}(\{x\})$ and by (v)of lemma 3,14, $x \in$ $\hat{\Omega} c l(\{y\})$.By (ii), $\hat{\Omega} c l(\{x\}) \subseteq \hat{\Omega} c l(\{y\})$. Therefore, $\hat{\Omega} c l(\{x\}) \subseteq$ $\hat{\Omega} c l(\{y\}) \subseteq \hat{\Omega} c l(\{z\})$ and hence $x \in \hat{\Omega} c l(\{z\})$.Again by (v) of lemma $3 \cdot 14, z \in \operatorname{ker}_{\hat{\Omega}}(\{x\})$. Therefore, $\operatorname{ker}_{\hat{\Omega}}(\{y\}) \subseteq$ $k e r_{\hat{\Omega}}(\{x\})$.

THEOREM 3.17. In a topological space (X, τ) the following statements are true.
(i) For every $x \in X, \hat{\Omega} \operatorname{shl}(\{x\})$ is degenerate if and only if $\hat{\Omega} d(\{x\}) \cap \hat{\Omega} d(\{y\})=\emptyset$ for any y different from x.
(ii) For every $x \in X, \hat{\Omega} d(\{x\})$ is degenerate if and only if $\hat{\Omega} \operatorname{shl}(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{y\})=\emptyset$ for any y different from x.

Proof. (i) Necessity- Assume that $\hat{\Omega} \operatorname{shl}(\{x\})$ is degenerate for every $x \in X$ and suppose that there exist some $y \in Y$ such that $\hat{\Omega} d(\{x\}) \cap \hat{\Omega} d(\{y\}) \neq \emptyset$. Choose $z \in X$ such that $z \in \hat{\Omega} d(\{x\})$ and $z \in \hat{\Omega} d(\{y\})$.Therefore,by the definition $3.1, x \neq y \neq z$ and $x, y \in \operatorname{Ker}_{\hat{\Omega}}(\{z\})$.Then, $x, y \in$ $\operatorname{Ker}_{\hat{\Omega}}(\{z\}) \backslash\{z\}=\hat{\Omega} \operatorname{shl}(\{z\})$ such that $x \neq y$, a contradiction to $\hat{\Omega} \operatorname{shl}(\{z\})$ is degenerate.
Sufficiency- Assume the contrary that there exist some $x \in X$ such that $\hat{\Omega} \operatorname{shl}(\{x\})$ contains two distinct points p, q of X.Then by the definition $3.1, x \neq p \neq q$ such that $x \in \operatorname{Ker}_{\hat{\Omega}}(\{p\}) \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\{q\})$ which contradicts the hypothesis.Thus, $\hat{\Omega} \operatorname{shl}(\{x\})$ is degenerate for every $x \in X$.
(ii) In a similar way by the lemma 3.16 (i),it can be proved.

THEOREM 3.18. In a topological space (X, τ), if $y \in \hat{\Omega}$ $\langle x\rangle$, then $\hat{\Omega}-\langle x\rangle=\hat{\Omega}-\langle y\rangle$.

Proof. If $y \in \hat{\Omega}-\langle x\rangle$,then by the definition 3.15 (iii), $y \in \operatorname{Ker}_{\hat{\Omega}}(\{x\})$ and $y \in \hat{\Omega} c l(\{x\})$.By theorem 3.16 (ii) and(iii), $\hat{\Omega} c l(\{y\}) \subseteq \hat{\Omega} c l(\{x\})$ and $\operatorname{Ker}_{\hat{\Omega}}(\{y\}) \subseteq$ $\operatorname{Ker}_{\hat{\Omega}}(\{x\})$.Therefore, $\hat{\Omega} c l(\{y\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{y\}) \subseteq \hat{\Omega} c l(\{x\}) \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\{x\})$. Thus, $\hat{\Omega}-\langle y\rangle \subseteq \hat{\Omega}-\langle x\rangle$.To prove the reversible inclusion, by lemma 3.14 (v), $y \in \operatorname{Ker}_{\hat{\Omega}}(\{x\})$ and $y \in \hat{\Omega} c l(\{x\})$ implies that $x \in \hat{\Omega} c l(\{y\})$ and $x \in \operatorname{Ker}_{\hat{\Omega}}(\{y\})$.Hence By theorem 3.16 (ii) and(iii), $\hat{\Omega} c l(\{x\}) \subseteq \hat{\Omega} c l(\{y\})$ and $\operatorname{Ker}_{\hat{\Omega}}(\{x\}) \subseteq$ $\operatorname{Ker}_{\hat{\Omega}}(\{y\})$.Therefore, $\hat{\Omega} c l(\{x\}) \cap \operatorname{Ker}_{\hat{\Omega}}(\{x\}) \subseteq \hat{\Omega} c l(\{y\}) \cap$ $\operatorname{Ker}_{\hat{\Omega}}(\{y\})$. Therefore, $\hat{\Omega}-\langle x\rangle \subseteq \hat{\Omega}-\langle y\rangle$.Thus, $\hat{\hat{\Omega}}-\langle x\rangle=\hat{\Omega}$ $\langle y\rangle$. $\quad \square$

Theorem 3.19. In a topological space (X, τ) either $\hat{\Omega}$ $\langle x\rangle \cap \hat{\Omega}-\langle y\rangle=\emptyset$ or $\hat{\Omega}-\langle x\rangle=\hat{\Omega}-\langle y\rangle$ for any $x, y \in X$.

Proof. If $\hat{\Omega}-\langle x\rangle \cap \hat{\Omega}-\langle y\rangle \neq \emptyset$,then there exist $z \in X$ such that $z \in \hat{\Omega}-\langle x\rangle$ and $z \in \hat{\Omega}-\langle y\rangle$.By theorem 3.18, $\hat{\Omega}-\langle x\rangle=\hat{\Omega}$ $\langle y\rangle=\hat{\Omega}-\langle z\rangle$. Thus, either $\hat{\Omega}-\langle x\rangle \cap \hat{\Omega}-\langle y\rangle=\emptyset$ or $\hat{\Omega}-\langle x\rangle=\hat{\Omega}-\langle y\rangle$ for any $x, y \in X$.

4. $\hat{\Omega}-T_{0}$ VIA WEAKLY $\hat{\Omega}$ SEPARATED SETS,SOBER $\hat{\Omega}-R_{0}$

Let us give some characterizations of $\hat{\Omega}-T_{0}$ space.
THEOREM 4.1. X is $\hat{\Omega}-T_{0}$ if and only if either $\{x\}$ is weakly $\hat{\Omega}$ separated from $\{y\}$ or $\{y\}$ is weakly $\hat{\Omega}$ separated from $\{x\}$.

Proof. Necessity- Let $x, y \in X$ be any two points such that $x \neq y$.By the definition of $\hat{\Omega}-T_{0}$ space, there exists $U \in \hat{\Omega} O(X)$ such that either U contains x but not y or contains y but not x.By the definition 3.13 , either $\{x\}$ is weakly $\hat{\Omega}$ separated from $\{y\}$ or $\{y\}$ is weakly $\hat{\Omega}$ separated from $\{x\}$.Hence it holds.
Sufficiency-Suppose that x and y are any two points in X such that $x \neq y$.By hypothesis, either $\{x\}$ is weakly $\hat{\Omega}$ separated from $\{y\}$ or $\{y\}$ is weakly $\hat{\Omega}$ separated from $\{x\}$.If $\{x\}$ is weakly $\hat{\Omega}$ separated from $\{y\}$, then there exists $\hat{\Omega}$-open set U in X such that $x \in U$ and $U \cap\{y\}=\emptyset$.Therefore, U satisfies $\hat{\Omega}-T_{0}$ axiom. Similarly if $\{y\}$ is weakly $\hat{\Omega}$ separated from $\{x\}$, then there exists $\hat{\Omega}$-open set U in X such that $y \in U$ and $x \notin U$.Thus X is $\hat{\Omega}-T_{0}$ space.

THEOREM 4.2. A topological space (X, τ) is $\hat{\Omega}-T_{0}$ if and only if $y \in \hat{\Omega} c l(\{x\}) \Rightarrow x \notin \hat{\Omega} c l(\{y\})$ for any distinct points $x, y \in X$.

Proof. Necessity- Assume that X is $\hat{\Omega}-T_{0}$ and $y \in$ $\hat{\Omega} c l(\{x\})$.By lemma 3.14 (i), $\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$. Since X is $\hat{\Omega}-T_{0}$ space and by theorem $4.1,\{x\}$ is weakly $\hat{\Omega}$ separated from $\{y\}$.Again by lemma 3.14 (i), $x \notin \hat{\Omega} c l(\{y\})$.
Sufficiency-If $x, y \in X$ are any two distinct points such that $\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$.By lemma 3.14 (i), $x \in$ $\hat{\Omega} c l(\{y\})$.By hypothesis, $y \notin \hat{\Omega} c l(\{x\})$.Again by lemma 3.14 (i), $\{y\}$ is weakly $\hat{\Omega}$ separated from $\{x\}$.By theorem $4.1, X$ is $\hat{\Omega}$ T_{0} space.

THEOREM 4.3. A topological space (X, τ) is $\hat{\Omega}-T_{0}$ if and only if $\hat{\Omega} d(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{x\})=\emptyset$ for every $x \in X$.

Proof. Necessity-Suppose that X is $\hat{\Omega}-T_{0}$ space and there exists $x \in X$ such that $\hat{\Omega} d(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{x\}) \neq \emptyset$.Choose $y \in X$ such that $y \in \hat{\Omega} d(\{x\})$ and $y \in \hat{\Omega} \operatorname{shl}(\{x\})$.By lemma 3.14 (iii) and (iv), $y \neq x,\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$ and $\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$ a contradiction to X is $\hat{\Omega}-T_{0}$ space.Therefore, $\hat{\Omega} d(\{x\}) \cap \hat{\Omega} \operatorname{shl}(\{x\})=\emptyset$ for every $x \in X$.
Sufficiency-On contrary, if there exists two distinct points $x, y \in$ X such that both $\{x\}$ is not weakly $\hat{\Omega}$ separated from $\{y\}$ and $\{y\}$ is not weakly $\hat{\Omega}$ separated from $\{x\}$ a contradiction to hypothesis.Therefore, either $\{x\}$ is weakly $\hat{\Omega}$ separated from $\{y\}$ or $\{y\}$ is weakly $\hat{\Omega}$ separated from $\{x\}$.By theorem 4.1,X is $\hat{\Omega}-T_{0}$ space.

Corollary 4.4. If a topological space (X, τ) is $\hat{\Omega}$ T_{0}, then $\hat{\Omega}-\langle x\rangle=\{x\}$ for any $x \in X$.

THEOREM 4.5. A topological space (X, τ) is $\hat{\Omega}-T_{1}$ if and only if $\hat{\Omega} d(\{x\})=\emptyset$ (resp. $\hat{\Omega} \operatorname{shl}(\{x\})=\emptyset)$ for any $x \in X$ or $\hat{\Omega}-N-D=X($ resp. $\hat{\Omega}-N-\operatorname{shl}=X)$.

Proof. By [2] theorem $3.19, X$ is $\hat{\Omega}-T_{1}$ if and only if $\hat{\Omega} c l(\{x\})=\{x\}\left(\right.$ resp.ker $\left._{\hat{\Omega}}(\{x\})=\{x\}\right)$ for every $x \in$ X.Therefore, X is $\hat{\Omega}-T_{1}$ if and only if $\hat{\Omega} \operatorname{cl}(\{x\}) \backslash\{x\}=$ $\emptyset\left(\right.$ resp.ker $\left.\hat{\Omega}_{\hat{\Omega}}(\{x\}) \backslash\{x\}=\emptyset\right)$ for every $x \in X$.That is, X is $\hat{\Omega}-T_{1}$ if and only if $\hat{\Omega} d(\{x\})=\emptyset(\operatorname{resp} \cdot \hat{\Omega} \operatorname{shl}(\{x\})=\emptyset)$ for every $x \in X$ or $\hat{\Omega}-N-D=X($ resp. $\hat{\Omega}-N-\operatorname{shl}=X)$.

DEFINITION 4.6. A topological space (X, τ) is said to be $\hat{\Omega}-C_{0}$, if for every pair of distinct points $x, y \in X$,there exists $\hat{\Omega}$-open set U in X such that $\hat{\Omega} c l(U)$ contains any one of x and y but not other.

DEFINITION 4.7. A topological space (X, τ) is said to be $\hat{\Omega}-C_{1}$, iffor every pair of distinct points $x, y \in X$, there exists $\hat{\Omega}$ open sets U and V in X such that $x \in \hat{\Omega} c l(U), y \notin \hat{\Omega} c l(U), y \in$ $\hat{\Omega} c l(V), x \notin \hat{\Omega} c l(V)$.

DEFINITION 4.8. A topological space (X, τ) is said to be weakly $\hat{\Omega}-C_{0}$, if $\bigcap_{x \in X} \operatorname{ker}_{\hat{\Omega}}(\{x\})=\emptyset$.

DEFINITION 4.9. A topological space (X, τ) is said to be sober $\hat{\Omega}-R_{0}$, if $\bigcap_{x \in X} \hat{\Omega} c l(\{x\})=\emptyset$.

EXAMPLE 4.10. $X=\{a, b, c\} \tau=\{\emptyset,\{a, b\}, X\}$ then $\hat{\Omega} O(X)=\{\emptyset,\{a\},\{b\},\{a, b\}, X\}$. It is $\hat{\Omega}-C_{0}$ and weakly $\hat{\Omega}$ C_{0}, but not $\hat{\Omega}-C_{1}$.

EXAMPLE 4.11. Let $X=\{a, b, c\}$ and $\tau=$ $\{\emptyset,\{a\},\{b, c\}, X\}$. Then $\hat{\Omega} O(X)=P(X)$. It is $\hat{\Omega}-C_{1}$.

EXAMPLE 4.12. $X=\{a, b, c\} \quad \tau=$ $\{\emptyset,\{a\},\{b\},\{a, b\},\{a, c\}, X\}$. Then $\hat{\Omega} O(X)=\tau$. It is sober $\hat{\Omega}-R_{0}$.

THEOREM 4.13. Every $\hat{\Omega}-C_{1}$ space is $\hat{\Omega}-C_{0}$.
Proof. It follows from their definitions.
REMARK 4.14. But $\hat{\Omega}-C_{0}$ space is not always $\hat{\Omega}-C_{1}$ from the example 4.9.
Let us prove a characterization of Sober $\hat{\Omega}-R_{0}$ as follows.
THEOREM 4.15. A topological space (X, τ) is Sober $\hat{\Omega}-R_{0}$ if and only if $\operatorname{ker}_{\hat{\Omega}}(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity-Suppose that (X, τ) is Sober $\hat{\Omega}-R_{0}$ and assume that there exists $y \in X$ such that $\operatorname{ker}_{\hat{\Omega}}(\{y\})=X$. Then every $\hat{\Omega}$-open set U containing y contains every $x \in X$.By [1] theorem 5.11, $y \in \hat{\Omega} c l(\{x\})$ for every $x \in X$.Therefore, $y \in$ $\bigcap_{x \in X} \hat{\Omega} c l(\{x\})$, a contradiction.
Sufficiency-Suppose that $\operatorname{ker}_{\hat{\Omega}}(\{x\}) \neq X$ for every $x \in X$ and suppose $\bigcap_{x \in X} \hat{\Omega} c l(\{x\}) \neq \emptyset$. Then, we can choose $y \in$ $\bigcap_{x \in X} \hat{\Omega} c l(\{x\})$ and hence $y \in \hat{\Omega} c l(\{x\})$ for every $x \in X$.By [2] lemma 3.3, $x \in \operatorname{ker}_{\hat{\Omega}}(\{y\})$ for every $x \in X$.Therefore, $X=$ $k e r_{\hat{\Omega}}(\{y\})$, a contradiction. Hence (X, τ) is Sober $\hat{\Omega}-R_{0} . \quad \square$ The following theorem proves a characterization of weakly $\hat{\Omega}$ C_{0}.

THEOREM 4.16. A topological space (X, τ) is weakly $\hat{\Omega}$ C_{0} if and only if there exists a proper $\hat{\Omega}$-closed set containing x for every $x \in X$.

Proof. Necessity-On contrary, if there exists some $p \in X$ is such that only a $\hat{\Omega}$-closed set containing p is X.For every $x \in X$ and for every proper $\hat{\Omega}$-open set U containing $x, X \backslash U$ is a proper $\hat{\Omega}$-closed set does not contain p.Hence, $p \in \operatorname{ker}_{\hat{\Omega}}(\{x\})$ for every $x \in X$.Therefore, $P \in \bigcap_{x \in X} \operatorname{ker}_{\hat{\Omega}}(\{x\})$, a contradiction. Hence the result.
Sufficiency- If X is not weakly $\hat{\Omega}-C_{0}$, then choose $p \in X$ such that $p \in \operatorname{ker}_{\hat{\Omega}}(\{x\})$ for any $x \in X$. This implies that X is the only $\hat{\Omega}$-open set,contains the point p, a contradiction.

THEOREM 4.17. If a topological space (X, τ) is $\hat{\Omega}-C_{0}$ then it is weakly $\hat{\Omega}-C_{0}$ space.

Proof. Suppose that x, y are any distinct pair of points in a $\hat{\Omega}$ - C_{0} space.Then,there exists $\hat{\Omega}$-open set U in X such that $\hat{\Omega} c l(U)$ containing x but not y.Since $U \neq \emptyset$, we can choose $z \in$ X such that $z \in U$.By the definition of $\hat{\Omega}$-kernel, $\operatorname{ker}_{\hat{\Omega}}(\{z\}) \subseteq$ $U \subseteq \hat{\Omega} c l(U)$.Since $y \notin \hat{\Omega} c l(U), y \in X \backslash \hat{\Omega} c l(U)$.Again by the definition of $\hat{\Omega}$-kernel, $\operatorname{ker}_{\hat{\Omega}}(\{y\}) \subseteq X \backslash \hat{\Omega} c l(U)$.Therefore, $\operatorname{ker}_{\hat{\Omega}}(\{z\}) \cap \operatorname{ker}_{\hat{\Omega}}(\{y\}) \subseteq \hat{\Omega} c l(U) \cap[X \backslash \hat{\Omega} c l(U)]=\emptyset$. Therefore, $\bigcap_{x \in X} \operatorname{ker}_{\hat{\Omega}}(\{x\})=\emptyset$ and hence X is weakly $\hat{\Omega}$ - C_{0} space.

REMARK 4.18. The reversible implication is not always possible from the following example.

EXAMPLE 4.19. $X \quad=\quad\{a, b, c, d\}, \tau \quad=$ $\{\emptyset,\{a\},\{b\},\{a, b\}, X\}$.Then it is weakly $\widehat{\Omega}-C_{0}$ but not $\hat{\Omega}-C_{0}$ space.

5. CONCLUSION

In this paper,weak separation axioms are studied through kernel and shell of singletons via $\hat{\Omega}$-closed sets.Also some char-
acterizations of $\hat{\Omega}-T_{0}$ and $\hat{\Omega}-T_{1}$ spaces by using $\hat{\Omega} c l(\{x\})$ and $k e r_{\hat{\Omega}}(\{x\})$ are investigated.It can be extended to bitopological spaces also.

6. REFERENCES

[1] Lellis Thivagar M, Anbuchelvi M,'Note on $\hat{\Omega}$-closed sets in topological spaces",Mathematical Theory and Modeling, Vol. 2 No. 9 (2012),50-58.
[2] M.Lellis Thivagar, M.Anbuchelvi, " New spaces and continuity via $\hat{\Omega}$-closed sets,"(Communicated).
[3] Levin N.(1970),"Generalised closed sets in topology" Rend. Circ. Mat. Palermo 19(2).89-96.
[4] Levin N, "Semi open stets and semi continuity in topological spaces",Amer.math.monthly 1963,70,36-41.,
[5] Sundaram.P and M.Sheik John,"Weakly closed sets and weak continuous maps in topological spaces", Proc. $82^{\text {nd }}$ Indian Sci.Cong,(1995),49.
[6] Velico.N.V,"H-closed topological spaces", Amer.math.soc.Trans,1968,78,103-18.

