
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.20, December 2012

1

Estimation of Software Complexity in Component

based System

Tarun Ahuja
Research Scholar

 Chaudhary Devilal University
Sirsa

Dilbag Singh, PhD.
Reader

Computer Sc. and Engg. Deptt.
Chaudhary Devilal University

 Sirsa

ABSTRACT

Software complexity and software testing are interrelated and

important aspects of software development. For testing issue

we can relate software testing to measurable quantities like

coupling, cohesion etc. in order to measure and understand

complexity. Most of the applications are developed using

existing source code. This code is named as component in

component based software development. And the concept of

using these components to develop software is called

reusability. These components increase complexity of the

software and can also decrease software quality. In this work

a set of software metrics are taken that will check the

interconnection between the software components and the

application. How strong this relation defines the software

complexity after using this software component. For this work

three cases such as four components, six components and

eight components having interconnection among them are

taken. After applying software metrics on them it will be

suggested that complexity increases when new components

are added.

Keywords – Modularity, Complexity, Quality, Reusability,

Component-based software system.

1. INTRODUCTION

Software engineering is the analysis, design, coding,

implementation, verification, reviewing and maintenance of

technical entities. Software engineering is not just producing

software but means of producing them in most efficient,

effective and controlled way. Software engineering is the use

of sound engineering principles in order to obtain cost

effective and reliable software that works efficiently on real

machines. Software engineering is very vast term but software

reusability has completely changed the view. Reusability not

only makes the software development easier but also makes

development process transparent. For making reusability

happen we need software components. These components

may be code, whole module etc. With the addition of these

components whole life cycle of software development has

changed.

The core of component-based software system is to reuse

software components. The pressure for reducing software

development life cycles and cost has led to an increasing

interest in CBSS that not only facilitates the process of

software development but also changes the ways to develop

software applications. Most of the CBSS research has been

inclined towards methods and approaches in the development

and in comparison of software systems [11]. Some work tries

to evaluate the complexity of tools used to create the software

artifacts [1]. A very little work has been made for the

development of measures/metrics that can be used to evaluate

the complexity of components being developed, and the

software quality using component integration [8]. The paper is

organized as follows. Section 2 describes the Building system

from components; Section 3 presents description of software

reuse; Section 4 presents the proposed work; Section 5

presents the experimental result; Section 6 presents the

conclusion.

2. COMPONENTS BASED SYSTEM

Component based software engineering is a paradigm that

aims at constructing and designing system using a predefined

set of software component. This assumption has several

consequences for the system lifecycle. First, the development

processes of component-based systems are separated from

development processes of the components; the components

should already been developed and possibly used in other

products when the system development process starts.

Second, a new separate process will appear: Finding and

evaluating the components. Third, the activities in the

processes will be different from the activities in non-

component-based approach; for the system development the

emphasis will be on finding the proper components and

verifying them, and for the component development,

reusability will be the main concern.

3. SOFTWARE REUSE

Software component reuse does not just indicate the reuse of

application code but specification and designs[10]. The

potential gains from reusing abstract product of development

process such as specifications may be greater than those from

reusing code components. The Objective of this paper is to

estimate the software complexity on the basis of Software

reuse effectively. Software reuse enables developers to

leverage past accomplishments and facilitates significant

improvements in software productivity and quality [5]. A

critical problem in today’s practice of software reuse is the

lack of a standard process model which describes the

necessary details to support reuse-based software

development and evolution. Software reuse is counted as one

of the biggest benefits of object-oriented programming, and

indeed we have been reusing software libraries for decades

[7]. However, reuse practices have mostly been ad hoc, and

the potential benefits of software reuse are still rarely realized.

One of the primary obstacles to the reuse of independently-

developed binary components on the industrial level lies in

that the existing component technologies do not clearly

separate component assembly from component development

[15].Software development with reuse is an approach which

tries to maximize the reuse of existing software components.

Benefit of this approach is that overall development costs of

the software are decreased [10].

There is a difference in requirements and business ideas in

these two cases and different approaches are necessary.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.20, December 2012

2

Components are built to be used and reused in many

applications, some possibly not yet existing, in some possibly

unforeseen way system development with components is

focused on the identification of reusable entities and relations

between them, beginning from the system requirements and

from the availability of components already existing [2][3].

Much implementation effort in system development will no

longer be necessary but the effort required in dealing with

components; locating them, selecting those most appropriate,

testing them, etc. will increase.

4. PROPOSED WORK

The software components are the main object that performs

the code reusability. The proposed study aims to estimate

degree of reusability on the basis of black-box components

and component based systems. The work proposes and

validates metrics for Interface complexity, of the system. The

study uses methods and the properties of the component with

its interfacing.

Fig.1: Interaction Graph (i)

Fig. 2: Interaction Graph(ii)

Fig. 1 and fig. 2 shows the interaction between 4 and 6

components of any system is shown respectively. The arrow

lines are showing interaction among different components. It

is clear here that when two new components E,F are added in

a CBSS then interaction among of past four components get

also increased that clearly leads to complexity of those

components.

In our approach we are estimating the dependency of one

module on the other module in terms of no. of methods called

by other module or no. of variable used. We can estimate the

dependency with the help of coupling, cohesion and interface

metrics. Moreover, Estimate the software quality in terms of

software component reusability.

4.1 Interface metric

Interface complexity metric for software components is based

on complexity involved in the interface methods and

properties used in the interface. These interface methods may

have parameters and return values, which are the only source

of these parameters and return values and properties, weight

values may be assigned to them, which can be used to

measure the complexity of the target interface method.

4.2 Coupling metric

Coupling between components is the number of other

components coupled to this component. In CBSS, coupling

will be defined as: two components are coupled if and only if

at least one of them acts upon the other. Since coupling is the

extent to which the components are interdependent, a

quantitative measure is to count the way in which one

component may dependent on the other. There are usually two

kinds of coupling: afferent coupling and efferent coupling.

4.3 Cohesion metric

Cohesion specifies the similarity of methods in a component.

It is a measure of the extent to which the various functions

performed by a component are related to one another.

5. EXPERIMENTAL RESULTS

After experimental evaluation of these metrics the value of

coupling metric for the system is 0.95, 1.40, 2.00 in case of

4,6,8 components respectively, the value of cohesion metric

for the system is 0.47, 0.51, 0.51 in case of 4,6,8 components

respectively, the value of interface metric for the system is

1.18, 1.29, 1.34 in case of 4,6,8 components respectively.

 And using the formula:

 SCCMj = a*MVj + b*COMj + c*AIMj

Where a,b,c are the weights for system coupling, cohesion and

interface metrics i.e 0.5, 0.2 and 0.3. and MVj represents

coupling, COMj represents cohesion and AIMj represents

interface metric. The values of SCCM that comes out are 0.92

in case of 4 components, 1.18 in case of 6 components, 1.56

in case of 8 components. When we execute all these values on

the MATLAB we get a bar graph showing the relationship

among all the three cases as shown in fig 3.

Fig. 3: Comparison Graph

B

D

C

A

B

D

C

A

E

F

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.20, December 2012

3

The combined values of these metrics are calculated by using

the system architecture shown in fig. 4.

Fig. 4: System Metric Generation

Fig. 5: Relation between reusability, complexity and No. of

components

If combining result of all three metric is in efficient range then

we can say that the quality of software is good in terms of

software reusability. Moreover, larger the number of

components, reusability is high but at the same time software

is more complex (fig. 5). So we can remove those component

on which other component are not depended. By doing this

we can make the software less complex without affecting its

reusability. With this approach ultimately we are improving

reuse process, minimizing the amount of development work

required for future projects, and ultimately reducing the risk

of new projects that are based on repository knowledge.

6. CONCLUSION

Software complexity is very important to consider for

software development. Software components are one of the

major factors that provide the software reusability. The

system will check that the use of the component based

approach in the system increases or decreases the complexity

of the software by using 4 components, 6 components and 8

components. The end result will show the bar graph that

shows the complexity increases by adding components in the

system and it decreases the reliability of software system.

7. REFERENCES

[1]. A.A. Toptsis, J. Emilrazan “Cognitive and Usability

Perspectives in Software Platform Libraries”, JNIT, Vol.

1, No. 2, pp. 25-34, 2010.

[2] Bass L., Clements P., and Kazman R., Software

Architecture in Practice, Addison-Wesley, 1998.

[3]. Garlan D., Allen R., and Ockerbloom J.,Architectural

Mismatch: Why Reuse is so hard, IEEE Software, Vo.12,

issue 6, 1995.

[4]. G. Gui, P. D. Scott, “Measuring Software Component

Reusability by Coupling and Cohesion Metrics”, Journal

of Computers, vol. 4, no. 9, pp.797-805, 2009.

[5] Jasmine K.S, Dr. R. Vasantha “A New Process Model for

Reuse Based Software development Approach”

Proceedings of the World Congress on Engineering

2008, Vol IWCE 2008, July 2 - 4, 2008, London,U.K.

[6]. Jianguo Chen “Complexity Metrics for Component-

based Software Systems”, vol5, issue3.24,2011.

[7] Jo Woodison ,Managing Software Reuse with Perforce”,

Mandarin Consulting.

[8] L.Kharb, R. Singh, “Complexity metrics for component-

oriented software systems”, ACM SIGSOFT Software

Engineering Notes, vol. 33, no. 2, pp.1-3, 2008.

[9] Maurizio Pighin “A New Methodology for Component

Reuse and Maintenance” University degli Studi di Udine,

Italy.

[10] Prakriti Trivedi ,Rajeev kumar “Software Metrics to

Estimate Software Quality using Software Component

Reusability”,IJCSI, Vol. 9 ,Issue 2, No 2, March 2012.

[11] S. Jing, C. Jiang, "An Approach to Predict Performance

of Component-based Software with the Palladio

Component Model and Stochastic Well-formed Nets",

AISS, Vol. 2, No. 1, pp. 31-42, 2010.

[12] S Sedigh-Ali, A Ghafoor, R Paul,“Software Engineering

Metrics for COTS-Based Systems”,IEEE Computer, vol.

34, no. 5, pp.44- 50, 2001

[13] V. Narasimhan, B. Hendradjaya, “A New Suite of

Metrics for the Integration of Software Components”, the

First International Workshop on Object Systems and

Software Architectures (WOSSA'2004), South Australia,

Australia, 2004.

[14] V. P. Venkatesan, M. Krishnamoorthy, “A Metrics Suite

for Measuring Software Components”, JCIT, Vol. 4, No.

2, pp. 138-153, 2009.

[15] Yoonsun Lim, Myung Kim, Seungnam Jeong and Anm

o Jeong “A Reuse-Based Software Development

Method” Dept. of Computer Science & Engineering,

Ehwa Womans university,120-750 Seoul, Korea.

