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ABSTRACT
This paper is intended to provide an alternative optimization ap-
proach for the design of one-dimensional finite impulse response
filter based on modified Widrow-Hoff neural network. This tech-
nique is based on minimization of weighted square-error function
in frequency domain. Design guidelines and implementation ap-
proach was presented along with the proof of convergence theorem
for the stability of neural network algorithm. Few examples which
include single and multiband digital finite impulse response filters
are presented; comparisons to existing methods are made. Compu-
tational complexity of various neural-based methods are also com-
pared. As simulation results illustrates, the proposed neural net-
work based method is capable of achieving an excellent perfor-
mance for digital filter design.

Keywords:
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1. INTRODUCTION
Linear phase finite impulse response (FIR) digital filters are fre-
quently used in signal processing applications because of their
generalized stability and freedom from phase distortion. The
problem of designing linear phase FIR filters has been studied
extensively and solved in a number of different ways [1]−[4].
Much effort has been spent on designing filter based on win-
dowing methods and frequency sampling [5]. The windowing
method is the earliest and simplest approach of FIR filter de-
signing. In this approach, a truncated ideal low pass filter having
a certain bandwidth is generated, and then a chosen window is
applied to achieve certain stop band attenuation. The use of win-
dows offers very little design flexibility e.g. in low pass filter de-
sign, the pass band edge frequency generally cannot be specified
exactly since the window smears the discontinuity in frequency.
In frequency sampling method, evenly spaced samples of a de-
sired frequency response are created, and the IDFT is computed
to obtain an impulse response. This method is useful for the
design of non-prototype filters where the desired magnitude re-
sponse can take any irregular shape but has drawback i.e. the fre-
quency response obtained by interpolation is equal to the desired
frequency response only at the sampled points whereas at the
other points, there will be a finite error present. Because both the
methods can not accurately control border frequencies of pass
band and stop band in the practical application and are based on

fixed formulation and not iterative, as a result, many researchers
have presented some optimal design approaches.
Optimal FIR filter techniques were initiated in early 1970s.
Mainly Remez Exchange Algorithm was the basis of these tech-
niques and it has built for FIR filters. The algorithm proposed by
Parks and McClellan [6], [7] uses the Remez Exchange method
to find the optimal approximation for the magnitude response.
After that, many algorithms have been developed based on Lin-
ear Programming (LP) [8], [9], Quadratic Programming and
Heuristic methods in Artificial Intelligence (AI) Tools, such as
Neural Networks [10]−[15].
Remez Exchange Algorithm and linear Programming are opti-
mum in the sense that these methods achieve both a given dis-
crimination and a specified selectivity with a minimum length
of the filter impulse response. Unfortunately both the schemes
are computationally intensive as the filter length is increased.
The weighted least-square (WLS) methods [16], [17] show much
flexible utilization for any type of filter design analytically but
these approaches are typically based on linear algebra methods
that requires computationally intensive matrix inversion.
In this paper, an efficient method based on neural networks pro-
posed for the design of linear phase FIR filters. The design prob-
lem was formulated based on the approximation of magnitude
response using modified weighted Widrow-Hoff neural network
architecture.
In Sect. 2, motivation and some properties of modified Widrow-
Hoff neural network are briefly reviewed in order to perform the
filter design problem along with the linear transformation abil-
ity of proposed network. Then a convergence theorem and algo-
rithm to implement the FIR digital filters using ANN is proposed
along with a comparison of computational complexity of pro-
posed method with other neural network based models in Sect.
3. In Sect. 4, the designed examples and simulated results are
described to demonstrate the effectiveness of the proposed algo-
rithm. Finally, the conclusions are stated in Sect. 5.

2. FILTER DESIGN USING MODIFIED
WIDROW-HOFF NEURAL NETWORK
(MWHNN)

The standard Widrow-Hoff neural network described as ADA-
LINE (ADAptive LInear NEuron) is based on Least Mean
Square (LMS) algorithm.
Proposed model is a modified version of the standard Widrow-
Hoff network in the sense that this does not include the bias term.
If a single layer artificial neural network with no bias input has
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Table 1. The parameters of the four types of filter
Type I II III IV
s s=0 s=0 s=1 s=1
N Odd Even Odd Even
M N−1

2
N
2

N−1
2

N
2

n0 0 1 1 1

an

{
h(M), n = 0

2h(M − n), 1 ≤ n ≤M
2h(M − n),
1 ≤ n ≤M

2h(M − n),
1 ≤ n ≤M

2h(M − n),
1 ≤ n ≤M

ϕn(ω) cos(nω) cos(n− 1
2 )ω sin(nω) sin(n− 1

2 )ω

a linear transfer function, then the transformation from the input
vector to the output vector is a linear transformation. This makes
our proposed model suitable for filter design with the capability
of linear transformation [18].

2.1 Motivation of Filter Design
The frequency response of a linear phase digital filter [5] is given
as

H(ω) =

N−1∑
n=0

h(n)e−jωn = e−jω
N−1
2 ejs

π
2 A(ω), (1)

where h(n) (n = 0 to N − 1) is the impulse response, ω is
frequency, N is the filter length, and

s =

{
0, if h(n) is symmetric
1, if h(n) is antisymmetric

The freuency response of real-valued amplitude response A(ω)
can be expressed as the general form,

A(ω) =

M∑
n=n0

an ϕn(ω) (2)

where an and ϕn(ω) are the filter coefficient vector and appro-
priate trigonometrical function respectively.
These parameters can be divided into four types of filters, ac-
cording to whether the filter length is even or odd and whether
the impulse response is symmetric or antisymmetric. All the re-
sults are shown in Table 1. From Eq. (2), A(ω) for type I filter
[5] can be expressed as

A(ω) =

M∑
n=n0

an ϕn(ω) =

M∑
n=n0

an cos(nω) (3)

where M=N−1
2

and n0=0. Now, sample uniformly A(w) in fre-
quency axis to get its discrete values A(wl).

A(ωl) =

M∑
n=0

ancos(nωl) = a Φn(ωl) (4)

where A(ωl) is the magnitude response corresponding to the
sampling point at wl and L is the number of point sampled be-
tween 0 to π i.e. wl ∈ [0 − π]. The sampling point (ωl) can be
expressed as ωl = l

L
π, where l = 0, 1, . . . L. The trigonometric

function matrix Φn(ωl) can be evaluated as-

Φn(ωl) = b =


1 cos(ω1) . . . cos(nω1)
1 cos(ω2) . . . cos(nω2)
...

...
...

...
1 cos(ωL) . . . cos(nωL)

 (5)

Now, Eq. (4) can be written as

A(ωl) = bT a (6)

The error response is expressed as

ek = Ad − A(ωl) (7)

where Ad is desired magnitude response.
In this work, the performance index is chosen as weighted square
error function (P) to converge the training algorithm at its min-
ima and provide stability to proposed neural network model.
The proposed performance index P (weighted square−error
function) can be defined as

P =
1

W

L∑
l=1

W (l)e2k(l) (8)

where W (l) is a weight coefficient (W (l) > 0), and W =∑L

l=1
W (l).

In Eq. (8) the weight factor
∑L

l=1
W (l)

W
is multiplied with

sqaure error term to make performance index P as a weighted
square−error function.
To minimize the performance index of proposed Widrow-Hoff
neural network the concept of Least Mean Square (LMS) algo-
ritm is used. The number of neuron in hidden layer are M + 1
(i.e. N+1

2
). The weight vector of hidden layer is denoted by a

and recursively updated as

ak+1 = ak − η
∂P
∂ak

= ak + 2 η b ek
Wd

W
(9)

where η > 0 is the learning rate and Wd can be expressed as

Wd =


W (1) 0 . . . 0

0 W (2) 0
...

... 0
. . . 0

0 . . . 0 W (M)

 (10)

The term Wd
W

in Eq. (9) is a weight factor which depends on the
selection of weight coefficient vectors using Eq. (18).

2.2 Proposed Neural Network Model
The proposed model for FIR digital filter design is shown as in
Fig. 1, where a and b are the input vector and weight matrix of
the NN model respectively. A(ωl) is the amplitude response of
the model and ek is the error of network, where Ad represents
the desired magnitude response. Here, L and n are the number
of points sampled at frequency axis and required number of hid-
den neuron in the ANN model respectively.
During training phase the error ek is evaluated as the difference
of desired and current amplitude response of the neural network
and using error back propagation algorithm the weights are up-
dated with appropriate choice of learning rate η .

3. CONVERGENCE AND COMPUTATIONAL
COMPLEXITY ANALYSIS

In order to ensure the convergence of proposed model, it is im-
portant to select appropriate value of learning rate η. In this sec-
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Table 2. Computational complexity involved in NN based models
Operation −→ Integer Integer Sigmoid
Algorithm ↓ multiplication addition function
Conventional Least−square method [16] ≈ n2 L – –
Bhattacharya and Antoniou method [10] 2nL(1 + n) + n(2L+ 1) 2nL(1 + n) + n(2L+ 1) n+ 2L+ n(2L+ 1)

Yuo-Dar Jou method [14] n(1 + n) n(1 + n) n

Neural network optimization method [19] n(1 + n) n(1 + n) n

Proposed algorithm n(n) n(n− 1) –

(a) (b)

Fig. 2. Design of low-pass FIR filter using modified Widrow-Hoff NN with filter length N=31, ωp=0.3 π, ωs=0.3 π, and sampling grid L=180.
(a) Amplitude response, (b) Designed error response (Normalized to π)

Fig. 1. Proposed modified Widrow-Hoff Neural Network
(MWHNN) model

tion a proof of convergence theorem is presented to show the
convergence and stability of the proposed neural network algo-
rithm. The computational complexity involved in various neural
network based models is also discussed.

3.1 Convergence Theorem
THEOREM 1. Algorithm of the neural network is convergent,

if learning rate satisfies 0 < η < 2W
(N+1)W (l)

, where W (l) > 0,
N is odd integer, N − 1 is the order of FIR filter and N+1

2
is the

number of hidden neurons used in neural network.

PROOF. Lets define performance index P as a Lyupunov
function shown in Eq. (8).
Therefore,4P can be expressed as

4P = Pk+1 − Pk =
1

W

L∑
l=1

W (l)
[
e2k+1(l)− e2k(l)

]
, (11)

where l=1, 2, . . . L.
The term4ek(l) can be expressed as

4ek(l) =

[
∂ek(l)

∂a

]T
4a (12)

from Eq. (9), we get,

4a = −η 2

W
W (l)ek(l)

∂ek(l)

∂a
(13)

Therefore Eq. (12) can be expressed as -

4ek(l) = −η 2

W
W (l)ek(l)

[
∂ek(l)

∂a

]T [
∂ek(l)

∂a

]
= −η 2

W
W (l)ek(l)‖∂ek(l)

∂a
‖2 (14)

where ‖ · ‖ =
∑
| · |2 is the square of Euclidean norm.

From Eq. (11)

4P =
1

W

L∑
l=1

W (l)
[
{ek(l) +4ek(l)}2 − e2k(l)

]
=

4

W 2

L∑
l=1

W 2(l)e2k(l)‖∂ek(l)

∂ a
‖2[

−η + η2
1

W
W (l)‖∂ek(l)

∂ a
‖2
]

(15)

From Eq. (15), if

−η + η2
1

W
W (l)‖∂ek(l)

∂ a
‖2 < 0 (16)
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(a) (b)

Fig. 3. Design of high-pass FIR filter using modified Widrow-Hoff NN with filter length N=41, ωs=0.3017 π, ωp=0.3994 π, and sampling grid
L=180. (a) Amplitude response, (b) Designed error response (Normalized to π)

(a) (b)

Fig. 4. Design of multiband FIR filter using modified Widrow-Hoff NN with filter length N=65, ωp = {0 ≤ ω ≤ 0.1π} ∪ {0.5π ≤ ω ≤ 0.66π},
ωs = {0.16π ≤ ω ≤ 0.44π} ∪ {0.7π ≤ ω ≤ π}, and sampling grid L=501. (a) Amplitude response, (b) Designed error response (Normalized to

π)

the term4P ≤ 0 and algorithm is convergent. Therefore accord-
ing to Eq. (4) and (7)

‖∂ek(l)

∂ a
‖2 = ‖ ∂ek(l)

∂A(ωl)

∂A(ωl)

∂ a
‖2

=

M∑
i=0

|Φn(ωl)|2 =
N + 1

2
(17)

by substituting the value of ‖ ∂ek(l)
∂ a ‖

2 from Eq. (17) to (16), we
get 0 < η < 2W

(N+1)W (l)
.

The derivative of performance index 4P ≤ 0, if learning rate
satifies 0 < η < 2W

(N+1)W (l)
, and the algorithm converges. If

4P = 0 , from Eq. (13) and (15) we have4a = 0 , therefore the
NN model is stable and hence, theorem is proved completely.

3.2 Selection of Weight coefficient Vector
The appropriate values of weight coefficient vector improve the
performance of ANN filter design therefore selection of weight
vector is the key step of proposed algorithm and should be cho-

sen in the same range as shown in Eq. (18).

W (ωl) =


ωp ≥ 1, in the pass-band
ωp edge ≥ 1, on the pass-band edge
ωs edge ≥ 1, on the stop-band edge
ωt = 1, in the transition-band
ωs ≥ 1, in the stop-band

(18)

The values of weight coefficient vectors (W (ωl)) are selected
more than unity to minimize the ripples present in pass band
and stop band of magnitude response of filter. The transition
band does not demand any ripple minimization therefore
weight coefficient are kept unity in this region. The ripples are
minimized during updation of weight vector (ak+1) of hidden
layer of modified Widrow-Hoff Neural Network using Eq. (9).

The following algorithm summarize the proposed design
of FIR filter using modified Widro-Hoff Neural Network.
<step 1> Set initial iteration number k = 0, stop criterion ε,
learning rate η according to convergence theorem and weight
coefficient vector W (ωl) using equation Eq. (18).
<step 2> Sample the desired magnitude response Ad uniformly
on the frequency sample point at ωl = l

L
π, where l=1,2,. . . L.

<step 3> Initialize random weight vector a for training of
proposed neural network.
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<step 4> produce amplitude response A(ωl) of neural network.
Compare it with desired response Ad and compute error ek and
performance index P using Eq. (7) and (8).
<step 5> Update the weight vector a of the network according
to Eq. (9).
<step 6> Check the stop criterion. If P ≤ ε, condition satisfied,
we terminate the design process. Otherwise, set k = k + 1 and
go to step 4 for the next iteration.

3.3 Computational Complexity
In Table 2, a complexity comparison of different schemes and
algorithms is summarized, where n and L are the number of
neurons (filter coefficients) and number of frequency points on
desired response (sampling grid) respectively.
The neural network based models proposed by Bhattacharya
[10], Yuo-Dar Jou [14] and Zhao [19] are used feedback neu-
ral network, compacted feedback neural network and continu-
ous Hopfield neural network respectively. Table 2 shows that the
proposed method requires a less number of computation as com-
pared to other techniques.

Table 3. Performance comparison for lowpass FIR
filter design

Design Result −→ Maximum peak ripple (dB)
Algorithm ↓ Passband Stopband
conventional least-squares [16] 0.7803 21.2296
Bhattacharya and Antoniou [10] 0.6805 20.2199
Yue-Dar Jou and Fu-Kun Chen [14] 0.6282 21.4116
Proposed method 0.6241 21.587

Table 4. Performance comparison for highpass FIR
filter design

Design Result −→ Maximum peak ripple (dB)
Algorithm ↓ Passband Stopband
Parks-McClellan Transformation [6] 0.0985 37.99
Neural network optimization [19] 0.0981 38.13
Proposed method 0.0954 38.49

4. SIMULATIONS AND COMPARISONS
In this section, Matlab programs are used to design three
examples of 1-Dimentional FIR digital filters, including the
least-squares using the implementation of MWHNN to evaluate
the performance of the proposed technique. The weight coef-
ficient vector is set according to Eq. (18) so as to obtain least
square approximation in each example.
Example-1. (Low-pass filter): The desired amplitude re-
sponse Ad is a low-pass FIR filter with unity gain in the
pass-band {0 ≤ ω ≤ ωp = 0.30π}, zero gain in the stop-band
{ωs = 0.30π ≤ ω ≤ π} with a sampling frequency of π. The
filter length is chosen to be N=31 (i.e. type I filter) with sam-
pling grid of L=180 [14]. The MWHNN iterates for 1000 times
to converge to a low-pass filter with learning rate η=0.1. Fig.
2 illustrates the amplitude response of the low pass FIR filter.
Table 3 shows the performance comparison of the low-pass filter
design with conventional least-squares [16], Bhattacharya [10],
You-Dar Jou [14], and the proposed method.

Example-2. (High-pass filter): For this simulation a high-pass
FIR filter with zero gain in the stop-band
{0 ≤ ω ≤ ωp = 0.3017π}, unity gain in the pass-band
{ωs = 0.3994π ≤ ω ≤ π} with a sampling frequency of π is
selected as an example from literature [19]. The filter length
is chosen to be N=41 (i.e. type I filter) with sampling grid of

L=180. The MWHNN iterates for 1000 times to converge to a
high-pass filter with learning rate η=0.1. Fig. 3 illustrates the
amplitude response of the low pass FIR filter. Table 4 shows the
performance comparison of the high-pass filter design with H.
Zhao [19], Parks-McClellan transfromation [6] and the proposed
method.

Example-3. (Multiband filter): The desired amplitude response
Ad is a 65−tap multiband filter with unity gain in the pass-band
region ωp = {0 ≤ ω ≤ 0.1π} ∪ {0.5π ≤ ω ≤ 0.66π}, zero
gain in the stop-band region ωs = {0.16π ≤ ω ≤ 0.44π} ∪
{0.7π ≤ ω ≤ π}. The filter length (N) and sampling grid (L)
are chosen as 65 and 501 respectively [13]. The MWHNN
iterates for 2000 times to converge to a multiband filter with
learning rate η =0.1. Fig. 4 illustrates the amplitude response of
the multiband filter. Table 5 shows the performance comparison
of the multiband filter design results with X. P. lai [3], X. Wang
[13] and the proposed method.
From all three examples, It is evident that the proposed network
shows a better convergance to a optimal solution and it’s
performance is superior to other methods.

5. CONCLUSIONS
The proposed MWHNN based approach is an alternatively com-
putationally effective, weighted least square technique for de-
signing FIR digital filters. Few examples are simulated and com-
pared on the basis of maximum peak ripples in passband and
stopband of FIR filter. Furthermore, the required number of neu-
rons in MWHNN is independent of the sampling grid in the
frequency domain and approximately proportional to the filter
length. Therefore, higher order filter can further be designed ef-
ficiently by using the proposed neural network approach.
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