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ABSTRACT

Ant System (AS) is a general purpose heuristic algorithm inspired
by the foraging behaviour of real ant colonies. AS and its im-
proved versions have been successfully applied to difficult com-
binatorial optimization problems such as travelling salesman prob-
lem, quadratic assignment problem and job shop scheduling. In this
paper, two versions of multi-colony ant systems that are extensions
to the AS are proposed for the multi-hose routing. In both versions,
each colony of ants searches for an optimum path between two end
points (or commodities). While each colony searches for optimum
paths, they try to maximum use of other colonies paths (sharing
paths, or bundling) for easy handling of multiple paths. The first
version uses a single pheromone matrix for all colonies and the
second version uses different pheromone matrices for each colony
and a modified random propositional rule to attract ants toward for-
eign pheromones. The tessellated format of the obstacles was used
in the algorithm instead of the original shapes of the obstacles. As
a result of using this format, the algorithm can handle freeform ob-
stacles and speed up the algorithm when checking the collision de-
tections. The experimental results show that there is no significant
difference in the quality of the solutions produced by two versions
and the first version takes less computation time. Further first ver-
sion needs low computer memory and one parameter lesser than of
the second version.
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1. INTRODUCTION

The ant system [[1} 12} 3] is a kind of a collective search algorithm
inspired by the behaviour of real ants for searching foods from
their nest. The originally blind ants are able to find astonishing
good solutions to shortest path problems between food source
and their nest. The communication between the ants is based on
pheromone trails that may be laid by individual ants. An ant’s
tendency to choose a specific path depends on the intensity of
the pheromone trail on the path, i.e. the stronger the pheromone
trail a path has the higher probability that an ant will follow that
particular path. Over time, the pheromone trail evaporates and it
loses intensity if no more pheromone is laid down by other ants.
If a large number of ants choose a specific path, the strength of
pheromone of this path increases and more ants likely to follow
this path. AS imitates the foraging behaviour of natural ants and
allows the application of this search metaphor to the solutions
of hard combinatorial optimization problems like the Travelling
Salesman Problem [[1} 12, 3], the Quadratic Assignment Problem
[4], job-shop scheduling problem [5], and Automatic Single
Hose Routing Problem in 3D space [16117].

This scenario can be modelled in a network (laid in the
free space of the environment) as follows. Let G = (V, E)
be an edge-weighted undirected graph representing a
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network in which the nodes represent the terminating
cities (start or end nodes) or intermediate cities. Let
T = {(S¢,E.)|Sc # Ec € V,e = 1,2,...,n} be a list
of commodities, i.e. pairs of nodes in G, representing termi-
nating points demanding to be connected by a path in G. T is
said to be realizable in G, if there exist paths (disjoint or not)
from S, to E. in G, for every ¢ = 1,2,...,n. The question
of whether T is realizable was early known to be NP-complete
in arbitrary graphs [[19] as well as specific types of graphs (e.g.
disjoint path problem) [20, 21} 22} 23| 24].

The combinatorial optimization version of the problem
consists of finding the optimum set of paths between the
commodities and maximising the shared (or common) length of
these paths. i.e. it needs to be find a solution such that

min il(Pc) and mawi i I(P) NP (1)
c=1

c=1¢=1,

c#c

where P, and P.(c # () are two paths between (S, E.) and
(Se, E) respectively, I() represents the length of the argument
and P, U P. represents common edges (or shared edges)
between P, and P.,.

In this paper, two types of multi-colony ant systems (MCAS-
MHR-1 and MCAS-MHR-2) are proposed for multi-hose
routing; both are extensions to the ant system (AS). In MCAS-
MHR-1, each colony’s task is to search for an optimal path
between two points such that it shares other colonies’ optimal
paths (bundling) as much as possible. MCAS-MHR-1 uses only
a single pheromone matrix for all the colonies. Pheromone
updating is based on a weighted sum of total path length and
shared path length between the paths. MCAS-MHR-2 is very
similar to MCAS-MHR-1, but it uses a separate pheromone
matrix for each colony and adds an additional term to random
propositional rule defined in the original ant system (AS) so as
to ants prefer to select paths that were used by not only the same
colony but also the ants of other colonies.

Previously, hose routing was addressed in various approaches.
These algorithms have been developed from stationary 2D
workspace and simple objects to more complex 3D environ-
ment, dynamic, multi-constraint and multi-objective problems.
Methods for pipe routing can be traced back to techniques for
robot path planning that have been traditionally classified into
four major categories: Skeleton search (roadmap) [14], the Cell
Decomposition approach [14} 25]], the Potential Field method
[[14] and Mathematical Programming method [14}25].

Skelton approach involves capturing the set of feasible
motions in a network of one dimensional lines and conducting
a graph search of this network [26]. The Cell Decomposition
approach consists of decomposing the free space into cells and
connecting the start and goal configurations by a sequence of
connected cells. In the Potential Field Method, a scalar math-



ematical function is constructed whose value is the minimum
when the robot is at the goal configuration, and maximum
near the obstacles [27]. The path from the start to the goal is
determined by putting a small marble at the start and following
its movement. The Mathematical Programming approach deals
with computing the path as a mathematical objective function
and trying to minimize it while satisfying constraints (obstacle
avoidance).

Mathematical Programming [14] techniques would be fur-
ther classified into deterministic and non-deterministic methods
based on the search algorithms employed. Deterministic tech-
niques guarantee the same solution for a problem when run
at different times with the same starting solution, while non-
deterministic techniques generate different solutions to the same
problem at different runs due to the randomness involved in the
solution process. Deterministic methods such as the linear and
non-linear programming methods usually behave inefficiently
with highly non-linear and sometimes discontinuous problems
like the pipe routing and often result in a local optimum. In con-
trast, non-deterministic algorithms such as genetic algorithms,
simulated annealing and ant colony algorithms are aimed at
generating a set of globally good solutions. This feature is of
practical relevance in engineering applications.

In [28], pipe routing problem was solved from a cable
harness routing perspective. Initial solution is generated without
considering the obstacles. The obstacles are introduced indi-
vidually, thereby intensifying the complexity of the problem
gradually. In [29]], the research was focused on developing
a pipe routing algorithm to solve for non-orthogonal routes.
Simulated annealing is the optimization algorithm used to
obtain the optimal route. They utilized the versatility of this
non-deterministic technique to overcome limitations associated
with orthogonal routing and thus generated shorter routes. In
[30], the authors considered a simplified routing problem in the
domain of auto-mobile assembly maintainability. Their method
changes the search resolution dynamically with respect to the
complexity of the environment.

In [14], a non-deterministic optimization approach based
on Genetic Algorithms was proposed to generate pipe routing
solution sets. Objects are represented in tessellated format and
it offers huge benefits in computation as well as usage. This
approach can handle 3D free-form obstacles as the algorithm
uses the tessellated format.

Previously, research has been primarily focused on auto-
matic single hose routing with the use of either deterministic
or non-deterministic approaches. However, none of the above
algorithms has been designed for routing multiple hoses in
parallel.

The rest of the paper is organized as follows. Section 2
describes the Ant System (AS) in detail. Section 3 presents the
proposed extensions to the ant system for multi-hose routing.
Section 4 describes how to apply these extensions to multi-hose
routing in 3D space. Section 5 presents the experimental results
and finally section 6 concludes the paper.

2. ANT SYSTEM

Multi-colony ant systems (MCAS-MHR-1 and MCAS-MHR-2)
that are proposed in this paper are based on the ant system (AS).
Before discussing the multi-colony extension of the ant system,
the original ant system (AS) is described [16}17].

Real ants are able to find the shortest path between their
nest and a food source. Communication between the ants
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is based on a pheromone trail deposited by individual ants.
An ant’s tendency to choose a specific path depends on the
intensity of the pheromone trail on the path, i.e. the stronger the
pheromone trail a path has the higher the probability that an ant
will follow that particular path. Over time, the pheromone trail
evaporates and it loses intensity if no more pheromone is laid
down by other ants. If a large number of ants choose a specific
path, the intensity of this trail increases and more ants tend to
choose that path.

When applying the Ant System to single hose routing problem
[16} [17] (finding the optimal or near optimal path between two
nodes in a network), a trail strength is associated with every
edge, to represent the pheromone. Initially, all ants are set on
the start node (nest) and they construct tours to the end node
(food source). When an ant visited to a node, the ant knows
the straight line distance to the end node, the trail strength
(pheromone strength) on the connecting edges, and which nodes
have already been visited. Based on this knowledge ants choose
the next node probabilistically. Once all ants have completed a
certain number of turns or moves (N“"™%) or a cycle, a global
pheromone updating rule (global updating rule, for short) is
applied (See Fig. 1): a fraction of the pheromone evaporates on
all edges (edges that are not refreshed become less desirable);
each ant that was able to finish a complete tour deposits an
amount of pheromone on the edges which belong to its tour
in proportion to how short its tour was (in other words, edges
which belong to many short tours receive the greater amount of
pheromone).

After global updating, the current set of ants is removed from
the civilization and another set of ants starts from the start
node to explore the end node. The process is iterated until the
prescribed stopping criterion (e.g. 100 cycles) is met. Note that,
the parameter N®“7™¢ is set such that most of the ants in each
set are able to reach the end node.

The state transition rule used by the ant system, called
random-proportional rule, is given by (2) and gives the prob-
ability with which ant k£ in node r chooses to move to node s
[,

[7(r,s)]*.[n(r,s)]? ;
(r,u)]e. [n(r,u a”LfSEJk(T)
Pa(ry8) =  we P In(r] 2

0, otherwise

where 7(r, s) is the pheromone level on edge (r, s), u(r, s) is
the inverse of the distance from node s to the end node (heuristic
information), Ji(r) is the set of neighbour nodes of r that
remain to be visited by the ant r positioned on the node r, «
and B(> 0) are parameters which determine the importance of
pheromone and heuristic information, respectively.

In the ant system, the global updating rule is implemented
as follows. Ants that were able to complete their tour within the
number of allocated turns (Nt“""*) allow updating pheromone
levels of their visited edges according to [[11]],

m

7(r,8) « (1 —p).7(r,s) + ZATk(T, s) 3)
k=1

where
Atg(r,s) = {

0 < p < 1is a pheromone decay parameter, L is the length
of the tour performed by ant &, and m is the number of ants that
were able to complete their tours within the stipulated number of
turns (N14rm),

L—lk, if (r,s) € tour done by ant k
0, otherwise

(C))



BEGIN

Setturn =0
Set turnsRemaining = N™™ + 1

Y

Release a new set
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Fig. 1: Flowchart of Ant System

3. MULTI-COLONY ANT SYSTEM FOR
MULTI-HOSE ROUTING

The multi-colony ant systems proposed in this paper uses n
colonies to explore paths between n commodities. Each ant in
the colony c explores paths between the start node S, and the
end node E. by cooperating with other ants of the colony c.
While the ants of the colony ¢ walking along edges, they try to
maximum use of common edges that is being used by ants of
other colonies. As there are no direct communications between
ants, this is obtained by the pheromone communication system
of the proposed ant systems.

Version 1 (MCAS-MHR-1)

The problem which is interested in this research is to identify
the paths between the commodities with maximum possible
length of common edges. Therefore, in the proposed algorithm,
the common edges of the paths receive a higher amount of
pheromone when pheromone updating is occurred. As a result,
an ant of a latter cycle encounters a shared edge, has a higher
probability of choosing it than of non-sharing edge.

In this approach a single pheromone matrix is used for all
the colonies. When an ant of a colony selecting the next move, it
uses the random propositional rule as in the ant system defined
in eq. (2). However, the most noticeable change to this algorithm
is pheromone updating procedure. The pheromone updating of a
path P, produced by an ant k of colony c is implemented based
on



—The length of the path P,.

—The total shared length of the path P, with each path P,/
produced by each successful ant k' of each colony /(¢ #
c¢,d =1,2,...,n).

Global updating rule is implemented as follows. Ants which
were able to complete their tour within the number of allocated
turns (IN*“7™¢) allow to updating pheromone levels of their vis-
ited edges according to the following equation:

7(r,s) < (1 = p).7(r,s) + Z zr: At (r, 8) (5)

c=1 k=1

where

Ateg(r,s) = {

Fo., if (r,s) € tour done by ant k of colony ¢
0, otherwise

where (0 < p < 1) is a pheromone decay parameter, n is number
of colonies (or number of commodities), m, is the number of
ants in colony c that were able to complete their tours within the
stipulated turns Nt“"™¢ and F;, is the pheromone contribution
of edges on path (P,;) produced by ant k of the colony ¢ which
is defined as follows:

Sck
Lck Lck

where L. is the length of the path P.; and s.x is the total
shared length of the path P.; with paths produced by ants of
other colonies (i.e. other than colony c) which is defined as fol-
lows:

Fck:wl'

+ ws -

@)

®)

n Mg
Sck = Z Z U(Pex, N Poyr)
/=1kK=1
c#c
where [(-) is the length of the argument and m is the number
of ants in colony ¢ that were able to complete their tours within
the stipulated turns Nt“™"*; w; and wy (w; + we = 1) are two
weights that measure the importance of the length of the path
P_;. and total shared length s, respectively.

Version 2 (MCAS-MHR-2)

Unlike version 1, this algorithm uses a separate pheromone
matrix for each colony (or commodity). This algorithm is
designed similar to the multi-colony ant algorithm for the edge
disjoint path problem described in [18]. In this approach also, an
ant that encounters a pheromone trail left by an ant of the same
type still have a high probability of following it. However, when
it encounters an edge that was shared by other paths is more
attracted than that of non-shared paths.

To implement ants’ attractiveness towards foreign pheromones,
the random propositional rule defined in eq. (2) is modified
appropriately as follows:

[re (s [n(r,9)]? [6(r,s))]7
> Ire(rs)]®.[n(r,s)1P[e(r,s)]7°

ueJp (1)
0,

if s € Jp(r)
)

otherwise

Pk (Ta S) =

where 7.(r, s) is the pheromone trails left by colony ¢ on the
edge (7, s), n(r,s) is the inverse of the distance from node s
to the end node (E.) of colony ¢, Ji(r) is the set of neigh-
bour nodes of r that remain to be visited by ant & positioned on
the node 7, o and § are parameters indicates the importance of
pheromones and heuristic information respectively, ¢.(r, s) rep-
resents the amount of pheromone trail not belonging to colony ¢
on the edge (r, s) and is known as foreign pheromone and is de-
fined as the sum of the pheromone trails left by all other colonies.

(6)
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10)

and +y is a parameter that indicates the relative importance of
foreign pheromone trails left by other colonies. If v is set to
zero, ants calculate the probability base on the problem heuristic
and the pheromones of its own colony in the manner identical to
original ant system [see eq. (2)]. If y is increased, the probability
of choosing an edge with a large amount of foreign pheromone
trail is also increased and thus it tends to select edges shared
with the previous paths.

Global updating rule is implemented as follows. Ants which
were able to complete their tour within the number of allocated
turns (N*“7™*) allow updating pheromone levels of their visited
edges according to:

Te(r, 8) < (1 — p).7e(r, s) + zc:Arck(r, s) (11)
k=1

where m.. is the number of ants in colony c that were able to
complete their tours within the stipulated turns N®“"™* and
Ak (r, s) is defined as in egs. (6), (7) and (8).

In the ant colony algorithms presented above, it is neces-
sary to compare two paths produced by the same colony and
compare the entire solution produced by all colonies in the
current cycle with the previously generated best solution.
Following definitions are adopted for comparing them.

(1) Finding the best path of a colony in a cycle
As the algorithm needs to be considered the shared distance
with paths produced by other colonies, it is not sufficient
to consider only the length of the path produced by an ant.
Thus, the pheromone contribution F;, defined in (7) is used
to compare two paths in the same colony. i.e. Frp > Fop
means the ant k produced a better path than ant &'.

(2) Updating the total solution

From part 1, it is noticeable that how to find the best path of

each colony in a cycle. The next step is to compare current

solution (best paths produced by colonies) with the previous

best solution produced by an earlier cycles. For this, two

criteria are used; strength_1 (reciprocal of total length of

the solution)

1
strength 1 = — (12)

L

and strength_2 (a weighed measure of the total length and
total shared distance) which is defined as follows:

strength_2 of a solution {P;},j =1,2,...,nis

1
strength 2 = wy - 7 + wsy - (13)

s
L
where L is the total length of paths P;(j = 1,2,...,n) and
s is defined as follows:

i=1 j=1
J#F

(14)

where [(+) denotes the length of the argument.

The solution produced by a cycle is considered to be
better than of the earlier solution if it is improved both
strength_1 and strength_2 or was improved one of the
criteria while the other criteria is remained the same.



Fig. 2: Original CAD model

4. MULTI-HOSE ROUTING IN 3D SPACE

The proposed algorithms (MCAS-MHR-1 and MCAS-MHR-2)
were tested on randomly generated networks on 3D CAD
models. The problem interested was to find the optimum layout
of pipes when routing of pipes between different commodities
(or different start and end points). The pipe layout is considered
to be optimum when it provides the shortest total length of pipes
and maximum length of shared paths.

The proposed hose routing methods briefly contain the
following steps:

(1) Assign the start and end points for each commodity.

(2) Create a network using randomly generated points in the
free space and n commodities.

(3) Perform the hose routing algorithm (MCAS-MHR-1 or
MCAS-MHR-2).

When performing the step 2, the algorithm must check the laying
of a pipe between two points is collision free with objects in
the CAD model. For this purpose, tessellated representation of
the original 3D model is passed into the C++ collision detection
library RAPID.

(1) The Tessellated Format

The .stl (STereoLithography) format or tessellated format
[14] is an ASCII or binary file used in manufacturing. It is a
list of triangular planes that describes a computer generated
solid model. This is the standard input for most RAPID
prototyping machines. The .stl file defines an objects
surfaces as a set of adjacent triangles (Figs. 2 and 3). The
file basically contains the X, Y and Z Cartesian coordinates
of each vertex of the triangles, as well as the coordinates
of the vectors normal to the triangles. With the tessellated
format, each edge is shared only by two triangles. The
tessellated model is an approximation to the real model
and the accuracy of the tessellated model depends on
the number of triangles used. In most CAD packages the
number of triangles generated for the tessellated model can
be controlled. Models used in this paper, were generated
using the CAD package Pro/Engineer and its programming
toolkit Pro/Toolkit.

Standard collision detection software (such as RAPID) re-
quires polygonal models composed entirely of triangles that
are an approximated model of the original model. Thus, the
tessellated representation of a 3D model can be passed to
the collision detection program. Also, most CAD software
supports the tessellated format.

(2) RAPID
RAPID (Robust and Accurate Polygon Interface Detection)
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Fig. 3: Tessellated model of the original model given in Fig. 2

[[15] is a C++ library developed at the Department of Com-
puter Science, University of North Carolina, for interference
detection (or collision detection) of large environments com-
posed of unstructured models.

—It is applicable to polygon soups [15] - models that con-
tain no adjacency information and obey no topologi-
cal constraints. The models may contain cracks, holes,
self-intersections, and non-generic (e.g., coplanar and
collinear) configurations.

—It is numerically robust - the algorithm is not subject to
conditioning problems and requires no special handling
of non-generic cases (such as parallel faces).

—RAPID library is free for non-commercial use. It has a
very simple user interface: the user needs to be familiar
with only about five function calls.

RAPID accepts only polygonal models composed entirely
of triangles, but does not require the model to have any
particular structure. For example, some collision detection
systems require the shapes to be well-formed solids - the
surfaces must be “closed” so that there are a well-defined
inside and outside.

Hose Routing with Multi-Colony Ant Systems

Multi-hose routing with MCAS-MHR-1 and MCAS-MHR-

2 is implemented in following steps.

(a) Generate the tessellated representation of the original
3D model.

(b) Generate a network of valid paths using randomly gen-
erated points in the free space and n commodities.

(c) Obtain the best layout of hoses between the commodi-
ties using either MCAS-MHR-1 or MCAS-MHR-2.

In the first step, the tessellated representation of the obsta-

cles is obtained as a text file from the CAD package. In the

second step, this text file is passed to a program which incor-
porates the collision detection library RAPID. The following
inputs are also supplied to this program:

—world size of the paths to be explored, given by the
maximum and minimum of each axis coordinate -
AX"min7 )(maz7 Ymin, Y"maz7 Zmin7 and Zmaex,

—number of commodities n,

—coordinates of the each commodity (S}, ;) where j =
1,2,...,n,

—radius () of the all hoses as they bundle together, and

—a text file containing the tessellated model of the original
3D model.

This program then generates a random network of valid
paths from randomly generated points from the world and n
commodities (See Fig. 4). When connecting two points, the
program checks, with the aid of the C++ library, RAPID,



Fig. 4: Random network generated using 200 points in a CAD model

that the path between the two points is collision free (the
axis of the hose cylinder lies on the line connecting the two
points). For simplicity, a rectangular hexahedron is used
that is centred on the line segment between the two points
such that the cylindrical hoses (bundle) could be laid within
it. This network data are stored in a text file for the use of
the next step.

During the third step, the best layout of hoses between the n
commodities is obtained using one of the proposed methods
MCAS-MHR-1 or MCAS-MHR-2. The following inputs
are supplied to these two methods:

—text file containing the random network of valid paths
generated in the second step,
—number of commodities n,

—coordinates of the each commodity (S;, E;) where j =

17 27 N,
—values for parameters «, 3, (only for MCAS-MHR-2),
and p,

—initial pheromone levels of edges (constant),

—number of ants to be released for each colony (or com-
modity),

—termination criteria,

—frequency at which the global pheromone update rule is
applied (Nturms),

5. EXPERIMENTAL RESULTS

MCAS-MHR-1 and MCAS-MHR-2 were implemented and
their strengths and weaknesses were investigated empirically.

The parameter settings for both algorithms were: number
of ants for each colony = 5, initial pheromone level on each edge
= 1, pheromone decay parameter p = 0.01, « = 1 and 8 = 5.
Other parameter settings are included in the relevant experiment
results.

The termination criterion for each experiment was set to
100 cycles.

All the simulations were carried out on a Pentium IV PC
(Processor speed = 3.0 GHz, RAM = 512 MB) in the Microsoft
Windows XP environment using Microsoft Visual C++ (.Net
version).
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Fig. 5: Test graph 1 Finding the optimum paths between commodi-
ties (S1, F1) and (S2, E2): Best solution is (S1 EFE;1,S2 EFE>).

Table 1. : Possible solutions for test graph 1

Solution No Path from 51 to E1 Path from 5: to Ex
1 S51ABE1 $:CDE2
2 S1ABE1 S2EFE2
3 S51ABEL S5:ES1ABEIFE;
4 S1EFE] S:CDE2
5 S,EFE, S:EFE;
6 S1EFE1 S:ES1ABEIFE:
7 S1ES:CDE2FE; S:CDE2
8 S1ES;CDE:FE,; SEFE;
g S1ES:CDE:FE: S:ES1ABEIFE:

5.1 Experiment 1: Demonstrating the potential of
MCAS-MHR-1 and MCAS-MHR-2 on a test
graph

The purpose of this experiment is, demonstrating the potential
of the proposed two algorithms MCAS-MHR-1 and MCAS-
MHR-2 on a graph whose optimal solutions between the given
commodities are already known.

The test graph 1 (See Fig. 5) is used to find the best shared paths
between the commodities (S1, E1) and (Sa, E>). There are 9
possible solutions for this simple graph (See TABLE 1). When
considering the shortest paths between the two commodities
(S1,E1) and (Sa, F3), the choice would be the solution 1.
However, if paths need to be shared as much as possible while
the total length of the paths is minimizing, algorithms must
select the solution 5.

TABLE 2 shows the percentage of runs that reach to the
each solution over 100 runs after 100 cycles on different values
of wy,ws and v (only for MCAS-MHR-2).

These results shows that both algorithms reach to the dis-
joint solution (solution 1) when the shared length between
two paths are not considered for pheromone updating (See
TABLE 2, Fig. 6 and Fig. 7). However, both algorithms reach
to the solution 5 more than 70% of runs (except one case)
when there is a contribution from the shared length between
two paths for the pheromone updating (See Fig. 6 and Fig. 7).
Highest percentage obtained for MCAS-MHR-1 is 84% and it
is happened when w; = 0.9 and wy = 0.1. Comparing with
MCAS-MHR-1, MCAS-MHR-2 gives slightly better results
in most of the v values. For example, when w; = 0.9 and
wy = 0.1, MCAS-MHR-2 reaches to the solution 5, 91%,
88%, 89% and 93% of the runs for the ~ values 1, 2, 4 and
5 respectively. Therefore, it possible to conclude empirically,
performances of MCAS-MHR-2 are better as a result of using
additional information (foreign pheromones).
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Table 2. : Percentage of each solution found on test graph 1 for different values of w;, ws and ~ (for MCAS-MHR-2 only)

NMCASMART
v w2 N0} 09,00) 08,03 07,03
Soltion | I [2]| 3|4 5|6 7 [8 8| 12 (3[4 5 [6]7[8][9[1 2345 6|78 [0 |1[2[F[F[ 5 6]T[8]°9
) 0 (0|00 |0|0|0|0|0| @ |00 0 |8|2|0|0|0|33 |0|d|0|e@|0|0]0[0|2 (0|20 mM[2Z[0[0]0D
3
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Fig. 6: Percentage of runs of MCAS-MHR-1 that reaches to the each solution of test graph 1

5.2 Experiment 2: Applying MCAS-MHR-1 and
MCAS-MHR-2 on a complex 3D model

The purpose of this experiment is, applying proposed two al-
gorithms MCAS-MHR-1 and MCAS-MHR-2 on a complex 3D
environment and comparing the results of the two algorithms.

Both versions of algorithms were tested on following
Pro/Engineer 3D model (See Fig. 8) using different values
of wl, w2 and 7y (only for MCAS-MHR-2) for random networks
of 200 points and 400 points. Other parameters of the algorithms
were fixed as mentioned in the beginning of this section. Two
algorithms were used for finding the best shared paths of 4
commodities. All simulations were carried out for 100 cycles.

For each trial, final path length of each commodity, con-
necting points of each path, time spent on running the trial
(in seconds), total shared length of paths, strength; and
strengthsy (defined in eqgs. (12), (13) and (14) were recorded in
text files.

Let’s take {Qi‘j)|i = 1,2,3,4} is the best solution produced in
the jth trial (j = 1,2, ...,100). Here Qgﬂ means path between
ith commodity of the best solution of the jth trial. Further, let’s
take {R;|¢ = 1,2,3,4} is the overall best solution among the
best solutions [{QY]i = 1,2,3,4},5 = 1,2,...,100] pro-
duced in 100 trials and ¢;(7 = 1,2, ...,100) is the computation
time of the th trial.

Tables 3 - 6 summarize the following descriptive statistics
obtained for the two algorithms over 100 trials after 100 cycles
for different values of w;,ws and v (MCAS-MHR-2 only)
values for 200 point and 400 point networks.

—Average total length (Average total length of the paths of the
best solutions over 100 trials)




International Journal of Computer Applications (0975 - 8887)
Volume 59 - No. 2, December 2012

MCAS-MHR-2 for Test Graph 1 (Gama = 0)

100

MCAS-MHR-2 for Test Graph 1 (Gama = 1)

MCAS-MHR-2 for Test Graph 1 (Gama = 2)

H . 100 10 100 1o
= 1 H 90 20 3
= - s0 4 = s 1l f
70 E; 70 : ¥ ™ :
y H Bowi=i2 . owl=140 N 1l owil=10
B z N B owi=03 ﬁ’ N : gwi=08 % : \ A mw1 =09
E = K B4 mwi-08 g = A Ew1=08 E = i ow1-0.8
- : ;a Gwi-27 :; N 1 mw1=07 = N : gw1=07]
= :m & 20 1} 1 = 1} ,
y B M M
> 1 Iﬂ 1 10 \'lﬁ : B 1; ;E - - o
[+) n m
1+ 0z 2 4 = & 7 & = o 4 2z 3 4 5 & T 8 9 1z 3 4 5 & 7 & 9
solution solution Solution
MCASMHR-2 for Test Graph 1 (Gama = 3) MCAS-MHR-2 for Test Graph 1 (Gama = 4) MCAS-MHR-2 for Test Graph 1 (Gama = 5)
100 TR 100 100
= |M N N N | —
20 1 ] A 50 H
&0 11 = &0 1N i 80 \ ir
N N M N H
i) H | H [ B
P v H owi=10 o T:) N El Owi=10 o TD I EA
2 B owi=09 7 0 B mwi=03 7 O B
E 50 Bt L ‘5 ) Bl = i H
a0 N 1 gwi=02 a0 i B awi=0& g a0 H
& v i Gwi=0T & H i awi=0T N =
Sl ] = i % o
20 Bt 20 1§ M 20 I HA
g : A i i ] ST 3
M =1 . H i H
ol . E.m . o MB e IH 1\ I .
1 2 3 4 5 B T 8 ] i 2 3 4 5 & T 8 ] 1 2 3 4 5 8 T 8 35
Solution Solution Solution
Fig. 7: Percentage of runs of MCAS-MHR-2 that reaches to the each solution of test graph 1
where the total length of the paths of the overall best solution)

4
QY =>_1Q)
=1

—SD total length (Standard deviation of the total lengths of the
paths of the best solutions over 100 trials) - SD(Q%)

—Averaged shared length (Average shared length of the best so-
lutions over 100 trials)

100
xS
5= oo
where
4 4
S; =33 1Q7 nQY)
i=1 k=1
k#1

—SD shared length (Standard deviation of shared lengths of the
best solutions over 100 trials) - SD(S}')

—P;- % avg. shared length (Percentage of the average shared
length to the average total length)

P -100

Q| v

—Total length of the overall best solution

R =>"I(R:)

—Total shared length of the paths of the overall best solution

R" = ZZZ(Ri N Ry)

i=1 k=1
k#i

—P5 - % shared length of the overall best solution (Percentage
of the shared length of the paths of the overall best solution to

Rﬁ

= s

-100

—Average time per trial

100

>t
=1
100

The best solution out of 100 runs is selected using the strengtho
[see eqs. (13) and (14)]; i.e. the solution with highest value of
strengths is selected as the best solution. Here [(-) is the length
of the argument and R; N Ry, is the common edges between the
paths R; and Ry.

Fig. 9 shows how the average total lengths and the aver-
age shared lengths of MCAS-MHR-1 are changed over the
different values of weights. Average shared length increases
with w; decreases. However, average total length also increases
with low values w;.

Fig. 10 and Fig. 11 show how the average shared lengths
and average total lengths of MCAS-MHR-2 differ over the
different values of wi,ws, and . As in the MCAS-MHR-1,
average shared length and average total length increase with
wy decreases. It can be noted that for each value of ~, average
shared length and average total length increase as w; decreases.

It is noticeable that in both algorithms, average total length is
increases as w; decreases; thus the designer of the algorithm
must select the values for w; and wy carefully. Low values
of w; implies that both total length and shared length of the
solution increase and high values of w; implies that both total
length and shared length decrease. Hence the designer should
select w; and wy such that it balances the optimality of both
total length and shared length of paths.

When comparing the average shared lengths for the differ-
ent ~y values for specific weights (See Fig. 10), it is noted that
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Fig. 8: Tested Pro/Engineer Model

v = 2 gives highest average shared length or closer to highest
average shared length in most of the cases of both 200 points
and 400 points networks. Therefore, MCAS-MHR-2 with v = 2
is selected to compare with MCAS-MHR-1.

Fig. 12 compares the average shared lengths of MCAS-
MHR-1 and MCAS-MHR-2 (with v = 2) against the different
weights for the 200 and 400 points networks. For the 200 points
network, this shows that MCAS-MHR-2 produces a significant
average shared lengths for weights w; = 0.9999 and 0.999
when comparing with the values of MCAS-MHR-1. However, it
is not shown a significant difference for average shared lengths
for MCAS-MHR-1 and MCAS-MHR-2 for the 400 points
network. However, when comparing the average total lengths
(see Fig. 13), there is no much difference between the two
versions.

Total length and shared length of the overall best solutions
of MCAS-MHR-1 and MCAS-MHR-2 (y = 2) are compared in
Fig. 14 and Fig. 15. In both of the 200 and 400 points networks,
MCAS-MHR-1 gives higher shared values than MCAS-MHR-2
(4 out of 6). But when comparing the total lengths MCAS-
MHR-2 produces less total length values in most cases.

When comparing the computational times of the two algo-
rithms (see Fig. 16), computation time of MCAS-MHR-1 is less
for more complicated network (400 points network).

When comparing the memory requirements, since MCAS-
MHR-2 uses a single pheromone matrix for each colony and it
needs more memory than of MCAS-MHR-1. Thus, the memory

requirement of MCAS-MHR-2 grows with the number of
commodities used in the algorithm.

6. CONCLUSION

In this paper, two versions of multi-colony ant systems (called
MCAS-MHR-1 and MCAS-MHR-2 respectively) have been
introduced for routing multiple hoses/pipes in parallel. Two
versions use a separate colony for each commodity. First version
uses a single pheromone matrix for all colonies whilst the second
version uses a separate pheromone matrix for each colony. Thus,
ants in the second version are able to smell different pheromones
individually laid by ants in the other colonies. But ants in the
first version cannot recognize pheromones individually as all
pheromones laid by ants on different colonies on an edge are
summed up to a single value. Further a modification is intro-
duced to the random propositional rule in version 2 to attract
ants towards edges that were used by ants of other colonies.
When pheromone updating, both methods evaluate the quality
of a solution based on not only the total lengths of paths but also
the shared length of paths.

Aim of this work is to apply these methods to multi-hose
routing with maximum use of common edges. Initially, two
methods have been tested on a simple test graph (See Experi-
ment 1) using two commodities. In Experiment 2, two methods
have been applied for multi-hose routing in a complex 3D CAD
model using two randomly generated networks of size 200
points and 400 points and 4 commodities.
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Table 3. : Descriptive statistics of MCAS-MHR-1 for 200 points network

o SD(QF) 3 SD(ST) B R® R" P, T (Sec)
wy=L0,w;=0.0 35689 306 119.6 1925 3335 349032 14850 426 5627
W;=.9999, w;=.0001 35843 374 2387 2643 6.66 359512 BET32 24 68 37.03
W;=.999,w;=.001 37356 1264 5887 2304 1576 396028 120094 3055 63 .66

Table 4. : Descriptive statistics of MCAS-MHR-1 for 400 points network

0 SD(0F) 5 SD(ST) £ RE R" P T (Sec.)
wy=L0,w3=0.0 334236 3638 3823 11085 1.74 3238.01 24134 7435 12861
W;=.9999 w;=.0001 334785 4247 2211 11543 245 323844 24134 745 12952
W;=.999,w;=.001 348053 96.66 33830 19507 072 3577.07 82875 2317 12828

In both algorithms, importance of the total length and shared
length must be identified; accordingly respective weights (w;
and wy) must be selected. It is difficult to select pre-defined
values for w; and wy for the all routing problems. Best way to
get a better result is to run the algorithms with different values
of wy and wsy and select the appropriate solution from solutions
produced over different values of w; and ws.

According to the results found, MCAS-MHR-2 performs
well with v = 2 and gives better shared lengths compared to
other ~y values.

When comparing overall best solutions in different runs,
MCAS-MHR-1 gives better shared lengths whilst MCAS-
MHR-2 produces better total lengths in most cases.

When comparing the average shared lengths, MCAS-MHR-2
performs slightly better than of MCAS-MHR-1. Obviously this
is a result of use of foreign pheromones in random propositional
rule used in MCAS-MHR-2. However, MCAS-MHR-2 uses
an additional parameter () and needs a separate pheromone
matrix for each of the commodity; hence increases the memory
requirement of the algorithm as the number of commodities
increases.

Computational times for the two algorithms do not show a
much difference for the simple network (200 points network).
However, MCAS-MHR-1 takes less computational time for the
400 points network.

According to the results found in both versions, there is
no significant difference in quality of the solutions between
the two versions: MCAS-MHR-1 and MCAS-MHR-2. Thus,
MCAS-MHR-1 is recommended for this type of problems as it
takes less computation time, lesser no of parameters and needs
low memory requirements.

Both of these algorithms are run on a single PC and next
step is to implement each colony on different PCs (grid comput-
ing) and speed up the algorithms. Further, these two versions use
a classical approach of multi-objective optimization (weighted
sum approach) and another possibility of improving them is to
use of Pareto optimization techniques.
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Table 5. : Descriptive statistics of MCAS-MHR-2 for 200 points network

Weights 7 o SDO?) 5 SD(S7) E R* R" P, T (Sec.)

0 3567.02 30.70 133.25 202.09 374 3488.68 0.00 0.00 36.10
g 1 3568.54 2046 7527 153.89 211 348008 518.03 1485 56.20
;* 2 357283 3152 9233 166.40 238 330090 0.00 0.00 3504
2: 3 356244 3330 120.53 178.93 338 346098 104.40 3.02 35.56
g 4 357330 28.56 148.12 215.83 415 3514.67 0.00 0.00 3547

5 3567.67 35.66 121.38 188.76 340 3461.35 43.69 126 3521
_ 0 3588.27 4337 239.78 251.01 6.68 340348 800.54 2202 36.26
é 1 3587.12 45.09 259.04 233.30 722 3532.09 688.93 19.50 36.34
% 2 3591.61 4289 293.69 248.87 818 3574.13 %1093 2549 36.11
é; 3 358727 4332 282.10 247.06 7.86 33N 990.17 2172 35.86
TI:. 4 3581.76 3796 236.63 227.05 6.61 355492 740.03 20.82 3573
g 5 359344 38.78 31084 24390 8.635 3550.06 1004.835 2831 35.56

0 374173 156.75 612.55 250.36 16.33 381251 1296.03 3399 36.09
é 1 373579 128.62 616.77 229.78 16.51 4063.98 1369.88 33.69 35.82
;* 2 373034 114.60 630.97 267.38 1743 3600.02 1128 .69 3127 35.00
2: 3 3741.96 107.70 615.63 238.94 16.43 377427 114143 3024 3529
g 4 373744 111.86 617.79 273.20 16.33 4084.38 1395.68 3417 3521

5 3740.83 145.18 613.56 250.67 16.46 3548.82 1016.93 28.66 3572

Table 6. : Descriptive statistics of MCAS-MHR-2 for 400 points network

Weights |7 o SD(Q7) 5 SD(ST) R R R P T (Sec)

0 3339.39 3859 34.80 8136 1.04 323044 0.00 0.00 135.04
=] 1 3342.62 10.62 4178 92,60 125 3196.64 24134 157 133.79
;« 2 3345.17 35.52 2450 7098 0.73 3261.64 0.00 0.00 135.93
=} 3 3342.08 3589 4493 9400 134 3261.90 0.00 0.00 13479
; 4 3340.79 3723 53.81 9621 161 323437 24134 746 135.75

5 3335.33 4524 31.06 78,62 0.93 3107.33 412.80 1291 13547
~ 0 3343.75 10.04 70.17 105.89 210 326422 380.03 1164 135.97
§_ 1 3335.58 1888 101.50 142.10 3.03 3244.43 31650 15.92 135.30
;« 2 3340.84 4395 92.01 125.33 275 402.77 1233 13409
2\“ 3 3333.03 4521 85.96 138.72 2356 323226 24134 747 136.08
TI_\. 4 3331.63 1297 107.48 160.30 32 3334.68 43643 13.69 136.87
g 5 3346.46 45.10 82.42 146.13 246 3196.40 24134 1.33 135.22

0 3466.34 102.51 280.11 194.28 834 3528.08 76850 2178 135.19
é_ 1 3472.51 80,97 346.19 195.18 9.97 354269 85735 2421 13447
;« 2 3471.20 9279 348.81 185.79 10.03 3482.27 747.83 2148 133.83
g 3 3470.18 11492 319.52 197.79 921 3532.38 1015.93 28.76 134356
; 4 3477.17 102.54 355.33 187.84 10.22 3612.18 988.48 2737 135.03

5 3477.33 08,62 34055 196.03 10.05 3475.03 84010 2417 133.75

Part A: Systems and Humans, Vol. 33, No 5, Sep. 2003. pp. [13] Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm
560-572. Intelligence: From Natural to Artificial Systems. Oxford
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Fig. 13: Comparison of average total lengths of MCAS-MHR-1 and MCAS-MHR-2 (v = 2) of the 200 and 400 points networks

against different values of weights
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Fig. 14: Comparison of shared lengths and total lengths of the best solution of MCAS-MHR-1 and MCAS-MHR-2 (v = 2) of the

200 points network against different values of weights
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Fig. 15: Comparison of shared lengths and total lengths of the best solution of MCAS-MHR-1 and MCAS-MHR-2 (v = 2) of the

400 points network against different values of weights
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