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ABSTRACT 

Image denoising problem can be addressed as an inverse 

problem. One of the most recent approaches to solve an 

inverse problem is a sparse decomposition over overcomplete 

dictionaries.  In sparse representation, images are represented 

as a linear combination of dictionary atoms. In this paper, we 

propose an algorithm for image denoising based on 

Orthogonal Matching Pursuit (OMP) for determining sparse 

representation over Gabor Wavelet adaptive dictionary by K-

SVD algorithm. The results of this algorithm have more 

efficiency of image recovery than using DCT dictionary.  

General Terms 

Your general terms must be any term which can be used for 

general classification of the submitted material such as Pattern 

Recognition, Security, Algorithms et. al. 

Keywords 

Sparse representation, K-SVD, Gabor wavelet dictionary and 

OMP. 

1. INTRODUCTION 

Sparse representations [4,10] for signals became one of the 

hot topics in signal and image processing in recent years. 

Using an overcomplete dictionary matrix        that 

contains  signal-atoms for columns       
 

, a signal 

     can be represented as a sparse linear combination 

of these atoms. The sparse representation        satisfy 

the inequality (1), the vector      contains the 

representation coefficients of the signal  . 

                      
(1)

 

In sparse approximation methods, typical norms used for 

measuring the deviation, are the    -norms for   
    … and  . In this paper, we concentrate on the case 

of     . If n   and  is a full-rank matrix, an 

infinite number of solutions are available for the 

representation problem, hence constraints on the solution 

must be set. The solution with the fewest number of nonzero 

coefficients is certainly an appealing representation. This 

sparsest representation is the solution of either 

               subject to            (2)  

Or 

                subject to                   (3) 

Where           is the    norm, counting the nonzero 

entries of a vector. This problem is adequately addressed by 

the pursuit algorithms where the simplest ones are the 

matching pursuit (MP) [6] and the OMP algorithms [2,8]. 

These are greedy algorithms that select the dictionary atoms 

sequentially. These methods are very simple, involving the 

computation of inner products between the signal and 

dictionary columns, and possibly deploying some least 

squares solvers. Then after finding a sparse representation, the 

initial dictionary by DCT or Gabor Wavelet has been set then 

the dictionary by K-SVD algorithm has been updated for 

determining the best dictionary and sparse representation as in 

the following sections. In section 2, the pursuit algorithm 

OMP has is devoted  to find the sparse representation. In 

section 3, the K-SVD algorithm is introduced to update  the 

dictionary. In section 4, the Gabor Wavelet dictionary 

equations and its advantages and applications, in final, 

application with results is illustrated by using our algorithm in 

image denoising. 

2. ORTHOGONAL MATCHING 

PURSUIT 
The Orthogonal Matching Pursuit (OMP) algorithm [2, 7] is a 

greedy algorithm with attempts to find a sparse representation 

of a signal given a specific dictionary [3]. The algorithm 

attempts to find the best basis vectors (atoms) iteratively such 

that in each iteration the error in representation is reduced. 

This achieved by selection of the atom from the dictionary 

which has the largest absolute projection on the error vector. 

This essentially implies to the atom that adds the maximum 

information and hence maximally reduces the error in 

reconstruction. In the linear equation       , a signal 

vector  is given and a dictionary   . The algorithm 

attempts to find the code vector    in the first three steps of 

the algorithm OMP. After that we use KSVD algorithm to 

update the dictionary D.A full description of the algorithm is 

given in algorithm 1: 
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Algorithm 1   OMP 

Input: 

• signal y and matrix D. 

• stopping criterion e.g. until a level of accuracy is reached. 
Output: 

• Approximation vector c. 
Algorithm 

1. Start by setting the residual r0 = y, the time t = 0 and 

index set V0 =   

2. Let      where     gives the solution of max                               

    <   ,    >,where     are the row vectors of D 

3. Update the set     with    :   =        {   } 

4. Solve the least-squares problem 

   
   

                

 

   

   

5. Calculate the new residual using c 

                 

 

   

 

6. Set            
7. Check stopping criterion if the criterion has not been 

satisfied then return to step 2. 

3. K-SVD ALGORITHM 

We now turn to the process of updating the dictionary [3] 

together with the nonzero coefficients . Assume that both  

and   are fixed and we put in question only one column in 

the dictionary    and the coefficients that correspond to it, 

the k- th row in  . denoted as    
  (this is not the vector    

which is the k-th column in   ). The objective function is 

defined in eq.(4) 

                 
    subject to 

                                      (4) 

, the penalty term can be rewritten as: 

          
         

 

   

  
 
   
 

 

        
   

  
 
      

  

 

 

 

         
  

 

 
                        (5)   

Here, it would be tempting to suggest the use of the SVD to 

find alternative    and   
 . The SVD finds the closest 

rank-1 matrix (in Frobenius norm) that approximates error 
   , and this will effectively minimize the error as defined 

in eq. (5). However, such a step will be a mistake, because the 

new vector   
  is very likely to be filled, since in such an 

update of    we do not enforce the sparsity constraint.      

represents the group of indices pointing to examples      

that use the atom   , i.e., where   
     is nonzero. Thus 

                     
             (6) 

Taking the restricted matrix    
 , SVD decomposes it to 

  
         We define the solution for    as the 

first column of  , and the coefficient vector   
  as the first 

column of  multiplied by       . Note that, in this 

solution, we necessarily have that the columns of   remain 

normalized and the support of all representations either stays 

the same or gets smaller by possible nulling of terms. A full 

description of the K-SVD algorithm [1] is given in algorithm2  

Algorithm 2 K-SVD 

Task : Find the best  dictionary to represent  the data  samples  
       

    as Sparse compositions ,by  solving 

               
  

 
  subject to           . 

Initialization :  set the dictionary matrix                   

                        with  
  normalized columns . Set      

Repeat  until  convergence (stopping rule): 

 Sparse Coding  Stage: Use any  pursuit  algorithm  

to compute the Representation   vectors       for 

each example     , by approximating   the  solution 

of 

                  
 
    subject to            

                      

 Codebook  Update Stage :  For each column  

                     Update it by 

1. Define the group of examples  that   use 

this atom  , 

                          
         

 
2. Compute the  overall  representation  error 

matrix ,   ,by 

                       
 

     . 

3. Restrict      by choosing  only the 
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columns corresponding to   ,and 

Obtain    
   

4. Apply SVD decomposition   
  

        Choose the updated dictionary 

column    to be the first column of U. 

Update the coefficient vector   
  to be 

the first column of V multiplied  by 

        

 Set           

 

4. GABOR WAVELETS DICTIONARY 

(GW) 

Wavelet transform could extract both the time (spatial) and 

frequency information from a given signal. Among kinds of 

wavelet transforms, the Gabor wavelet transform [5,9] has 

some impressive mathematical and biological properties and 

has been used frequently on researches of image processing, 

where the equation of Gabor wavelet is given by (7) : 

           
  

    
 
 
  
   

                                   
  

                       
  

  
      (7)

 

 Where    is the radial frequency in radians per unit length 

and  is the wavelet orientation in radians. The Gabor 

wavelet is centered at (x=0, y=0) and the normalization 

factor is such that         i.e., normalized by    

norm,  is a constant. 

Among various wavelet bases, Gabor functions provide the 

optimal resolution in both the time (spatial) and frequency 

domains, and the Gabor wavelet transform seems to be the 

optimal basis to extract local features for several reasons [9]:  

 Biological motivation: The simple cells of the 

visual cortex of mammalian brains are best modeled 

as a family of self-similar 2D Gabor wavelets.  

 Mathematical and empirical motivation: Gabor 

wavelet transform has both the multi-resolution and 

multi-orientation properties and are optimal for 

measuring local spatial frequencies. Besides, it has 

been found to yield distortion tolerance space for 
pattern recognition tasks.  

Depending on these advantages of Gabor wavelet transform, it 

has been used in many image analysis applications, such as 

face recognition, texture classification, facial expression 

classification, and some other excellent researches. Therefore, 

we used Gabor Wavelet dictionary for best sparse 
representation with image denoising. 

5. APPLICATIONS AND RESULTS 

In this work, we used an overcomplete Gabor Wavelet 

dictionary as an initial dictionary of size 64x256 in which 

each basis was arranged as an atom in the dictionary. The 

dictionary was learned by alternating between sparse coding 

with the current dictionary and dictionary updated with the 

current sparse representation. For doing this, we used the K-

SVD algorithm.  We evaluated the performance of our method 

by calculating the PSNR and compare our results with the K-

SVD methods using DCT dictionary, which showed that our 

method gave better results over the K-SVD especially with 

high noise. This is illustrated in figure 1 which contains (a) 

the noised Lena image ( =25, PSNR=28.6692dB), (b) the 

original image and (c) the result of our method and (d) the 

result of K-SVD based on DCT dictionary. In figure 2, we 

applied our algorithm on another example with different noise 

on Barbara image. In table1, more results with different noise. 

 

Fig1: (a) The noised image by adding Gaussian noise with 

  =25. (b) The original image. (c) The denoised image by 

using K-SVD based on OMP and Gabor Wavelet 

dictionary and (d) the denoised image by using K-SVD 

based on OMP and DCT dictionary. 

 

 /PSNR 

Lena Barbara  

Omp_D

CT 

Omp_G

W 

Omp_DC

T 

Omp_G

W 

5/34.16 38.2629 39.3964 38.8966 38.9773 

10/28.14 34.9692 36.9633 32.2396 33.532 

15/24.61 31.6891 32.7867 28.7425 29.8403 

25/20.18 28.6692 29.1952 26.8638 27.8683 
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Fig2 : (a) The noised image by adding Gaussian noise 

with   =25. (b) The original image. (d) denoised image by 

using K-SVD based on OMP and Gabor Wavelet 

dictionary and (c) the denoised image by using K-SVD 

based on OMP and DCT dictionary. 

7. CONCLUSION 
In this paper, we addressed the image denoising problem 

based on sparse coding using overcomplete dictionary. We 

presented K-SVD algorithm based on OMP and using Gabor 

wavelet dictionary for finding the sparse representation of 

data set. We found that Gabor wavelet dictionary is better 

than DCT dictionary for image denoising and sparse 

representation. 
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