
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

19

Current Trends in Parallel Computing

Rafiqul Zaman Khan

Department of Computer Science
Aligarh Muslim University

Aligarh, UP, INDIA.

Md Firoj Ali
Department of Computer Science

Aligarh Muslim University
Aligarh, UP, INDIA

ABSTRACT

In this paper a survey on current trends in parallel computing

has been studied that depicts all the aspects of parallel

computing system. A large computational problem that can not

be solved by a single CPU can be divided into a chunk of small

enough subtasks which are processed simultaneously by a

parallel computer. The parallel computer consists of parallel

computing hardware, parallel computing model, software

support for parallel programming. Parallel performance

measurement parameters and parallel benchmarks are used to

measure the performance of a parallel computing system. The

hardware and the software are specially designed for parallel

algorithm and programming. This paper explores all the aspects

of parallel computing and its usefulness.

Keywords
Parallel computing, parallel computing hardware, parallel

model, parallel benchmarks.

1. INTRODUCTION

A processor has its own physical limits in maximum processing

speed. To overcome this limitation multiple processors are

connected co-operating with each other to solve grand

challenge problems. The parallel computing refers to the

processing of multiple jobs simultaneously on multiple

processors. A large problem can be divided into multiple

independent tasks of nearly same size by applying an

appropriate task partitioning technique and each of the tasks

will be executed on different processors simultaneously.

Numerous application problems today needs more and more

computing power than a usual sequential computer. A large

problem either may take long time or indefinite time to finish

when it is processed on a single processor. The time taken to

finish the problem may be too much to have any importance or

it may be obsolete for real time computing. So the clear solution

of the above problem is the parallel computing that ensures a

cost-effective solution by connecting more number of

processors through the high speed communication mediums.

Parallel computing model is mainly of two types. First one is

shared memory and second one is distributed computing. In

shared memory architecture a number of processors are

connected to a common shared memory. Data or instructions

are shared through locks and semaphores. It is easy to program

but sometimes mislead the results. In distributed computing the

independent processors having their own memory are connected

through a fast communication medium. Data and information

are shared through message passing. It is difficult to implement

but yields better computing performance. There is another

model known as hybrid model which imbibes both the concepts

from shared memory model and distributed model.

Assigning the tasks to the processors is not just the solution of

the problem in parallel. Some faster processor may sit idle

while a slower processor may busy in a parallel computing

system resulting slower computing speed due to the uneven

distribution of tasks. The number of tasks on a processor is

called work load. Some processors may have more work load

than others and hence some processors may be overloaded and

lightly loaded causing an imbalance in task idle time. For an

efficient parallel computing system the task idle time will be as

small as possible. The work load from the overloaded

processors can be shared by the lightly loaded processors by

invoking an appropriate balancing algorithm. The workload

should be equally shared when the computing system is

homogenous otherwise faster processors should process more

numbers of jobs than slower processors per unit time to keep

better performance of the system.

2. PARALLEL COMPUTING

HARDWARE ARCHITECTURE

A revolutionary change has been done in the last decade in

hardware development related to the computation. There exist

several parallel computing hardware architectures. Depending

upon the cost and the type of computational problem parallel

computing hardware architecture can be divided mainly into

two categories: common parallel computer architecture and

super computer architecture. A classification of parallel

computer is shown in Fig 1. Super computers are very

expensive and take long time to produce. Each parallel

application does not need dedicated super computer and most of

the organizations can not buy a super computer due to its high

cost. Fortunately a new alternative concept has emerged that is

known as common parallel computing in which a large number

of systems which consists of cheap and easily available

autonomous processor like workstations or PCs. So it is

becoming extremely popular for large computing purpose such

as scientific calculations as compared to super computers.

2.1. Common Parallel Computing

Architecture

In this architecture non-dedicated computers which are easily

available are connected through a high speed communication

media to act as a parallel computer. The architecture requires

very less effort and can be built with negligible cost if the

general purpose computers are available. The combined

processing power and the storage capacity solve many big

problems in parallel easily those were not possible to solve

otherwise. Common parallel computers have been divided into

three categories: multiprocessor computer, shared memory and

distributed memory computing architecture.

In multiprocessor architecture more than one CPU is

incorporated to a single computer. The compiler is responsible

for parallelizing the code automatically. This type of

architecture is not so efficient but better than a computer with

single CPU.

In shared memory architecture a number of processors are

connected to a common central memory. Shared memory

architecture is also well known as Symmetric Multi Processor

(SMP) [6] which has identical PEs, equal access to the other

PEs and operating system kernel can run on any machine.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

20

Since all processors are sharing a single address space, the data

sharing is fast but processes can corrupt each others data at the

same time. So the semaphores and locks are used to save the

data from corruption. There is a lack of scalability between PEs

and memory which means that we can not add PEs as many as

we need to a limited memory. This problem arises mainly due

to the bus contention [12, 16]. The examples of SMP machines

are IBM R50 SGI Power Challenge, DEC Alpha Server 8400.

Distributed shared memory (DSM) is another type of shared

memory architecture. In DSM memory is dedicated to each

processor but the memories are connected through a bus to form

a shared memory and the inter process communication takes

place through shared variables. Although the memory is

distributed in DSM, the system hardware and software make it

as single address architecture. DSM removes the problem of

bus contention and provides better performance than SMP.

DSM architecture machines are Stanford DASH, SGI Origin

2000 and Cray T3D.

In distributed shared memory all the PEs which are connected

through a network have their own independent local memory in

distributed memory MIMD computer. Each PE is a full

computer connected through a network. This architecture is also

known as loosely coupled because the PEs are not tightly

integrated as in shared memory architecture. As a PE can not

directly access the memory of other PEs, it is called No Remote

Memory Access (NORMA). PEs can communicate with the

others through the communication network by message passing.

The network that connects the PEs may be of different

topologies like bus, tree, mesh, cube etc. Cluster of workstation

(COW) and PC cluster fall under this category [7, 9, 14]. A

cluster is a collection of independent computers that are

physically interconnected through LAN with the high

performance network technology like FDDI, Fiber Channel,

ATM switch etc.

2.2. Super Computing Architecture

Super computing has extremely high execution rate and

extremely high I/O throughput. It needs very large primary and

secondary memory. So the cost and the time are the two crucial

factors for producing super computers. The principal

architectures of super computing are Massively Parallel

Processor (MPP) and Parallel Vector Processor (PVP) [9, 14].

MPP system is the collection of hundred or thousand of

commodity processors interconnected by high speed and low

latency communication network. The memory of the processors

in MPP is distributed but the processors are synchronized by the

blocking message passing operations. Each process has its own

physical address space and communicates with the others

through message passing primitives. Intel paragon, Cray T3E

and TFLP are the examples of this category. PVP uses specially

designed few vector processor of capacity having at least 1

Gflop/s performance thus PVP can maintains an extremely well

performance for some particular applications and naturally they

are expensive than MPP. PVP makes the use of huge number

of vector registers and instruction buffer instead of cache. Cray

C-90, Cray T-90 and NEC SX-4 are the example of PVP

machines. A list of top ten supercomputers [13] has been shown

in TABLE 1.

3. PARALLEL COMPUTING MODEL

The need of parallel computing model arises to solve any

problem in order to facilitate analysis and prediction. The

models are used for developing efficient problem solving tools

and thus a model is utilized to solve a particular class of a

problem. A good computational model can make any

complicated problem easier to the program designer and

developer. It also simplifies the way of mapping load

effectively onto real computers.Different parallel computing

models are used to solve parallel problems. According to the

memory model the parallel computational model can be divided

into three categories: shared memory computational model,

distributed computational model and hierarchical memory

model. We introduce the above models in brief.

3.1. Shared Memory Parallel Computing

Models

In shared memory architecture a number of processors are

connected to a common central memory. Since all processors

are sharing a single address space, the data sharing is fast but

processes can corrupt each others data at the same time. So the

semaphores and locks are used to save the data from corruption.

There is a lack of scalability between PEs and memory which

means that we can not add PEs as many as we need to a limited

memory.

3.1.1. PRAM Model

 PRAM model is relatively older and widely used shared

memory computing model for the design and analysis of

parallel algorithms and was first developed by Fortune, Wyllie

and Goldschlager. A limited numbers of processors share a

common global pool of memory. The processors can operate

synchronously and allowed to access the memory concurrently

and take only one unit of time to be completed. Imposing the

restrictions on memory access, the PRAM model has different

instances. CRCW PRAM model [15] that permits simultaneous

read and write to the same memory cell. CREW PRAM [15] is

another model that permits simultaneous read to the same

memory cell but permits only one processor to write on a cell at

a time. Another model which does not permit the concurrent

access of any given memory cell is known as EREW PRAM.

Another model which uses limited communication bandwidth

by calculating maximum memory contention in each phase of

algorithm is known as QSM model. Though the PRAM model

is easy to implement, it suffers from memory and network

contention problem.

3.2. Distributed Memory Parallel Computing

Models

There are numbers of distributed memory parallel computing

models in which each complete computer having their own

memory are connected through a communication network.

Model BSP and LogP models are the most well known models

under these Models. These models remove the shortcomings of

the shared memory computational memory. We introduce both

of them in brief.

3.2.1. BSP Model

The bulk synchronization parallel model (BSP) has three

components- p numbers of processors/ memory, supersteps with

periodicity L and the bandwidth factor g which is defined as the

ratio of computation to communication [17]. In each superstep,

each processor or memory can carry out computation on local

data to it. After each L unit of time a global check is done to

verify whether all components are finished. If all components

are still not finished, another next superstep is allowed to finish

all the components. The bandwidth limitation exists with BSP

model that it can sent maximum message by a limiting factor

h=L/g which is known as h- relations. This model is useful as it

includes three parameters and separately treats the

communications and computations

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

21

3.2.2. LogP Model

LogP model consists of four parameters- P numbers of

computers, L (latency of message passing), O (overheads

involved in message passing) and g (minimum time interval

between successive messages) [8]. At most L/g messages can

be transmitted from one processor to another at any instant. If a

process has more than this number of messages to transmit, it

stalls until the message can be sent without exceeding the

capacity limit. This model is asynchronous in nature and thus

message passing latency is unpredictable. In this model all this

parameters are not considered at the same time, some of them

can be neglected For example, some algorithms that does not

communicate data frequently, the bandwidth and capacity limit

can be ignored.

3.3. Hierarchical Memory Computational

Models

The speed of processor is more and more than the speed of

memory. So the cost of memory access should be considered.

Since the access time of different memory location is different,

a more precise communication cost can be evaluated and the

performance of the model can be predicted more efficiently.

This model is very suitable when the bulk of data movement

among different level of memory hierarchy occurs for some

class of problems.

Hierarchical memory model (HMM) [1] and hierarchical

memory model with block transfer (HMM with BT) [2] are the

two early models of parallel computational model with memory

hierarchy. In HMM model, there are K levels of memory each

of which contains 2K memory locations; access to memory

location x takes f(x) time for some function f. HMM with BT

model is slightly different from HMM in the sense that HMM

with BT model transfer data in large block ended at address a

with length l will have cost f(a) + l.

3.3.1. UMH Model

 This model is different from the above models. The cost

function for the memory access is the function of memory level

numbers not data addresses. Another difference is that UMH

model allows the simultaneous data transfer on different level

buses while HMM and HMM with BT only allow one transfer

at a time.

3.3.2. HPM Model

HPM is a memory hierarchical model for general homogeneous

parallel computer systems with hierarchical parallelism and

hierarchical memories. It contains hierarchy of enhanced

RAMS that co-operate with each other. In HPM model, the

level K is used for memory access and level K+ is used for

message passing. Its organization of hierarchical memories has

many common features as UMS and DRAM models.

4. PARALLEL PROGRAMMING DESIGN

and IMPLEMENTATION

There are three main approaches for designing the parallel

algorithm. First one is the parallelization of a sequential

problem which has the chance of parallelism inside it. The

inside parallelism can be exploited to make it parallel. The

second one is the way of parallelization of any new problem at

the start time. The third one is that taking any well known

algorithm and solves the problem accordingly.

There are several ways of designing a parallel algorithm. The

most widely used techniques are portioning, divide and

conquer, pipelining etc. in partitioning, a problem is divided

into sub-problems of nearly equal size which will be non-

overlapping. The sub-problems will be then solved

concurrently. In divide and conquer the problem will be broken

first into sub-problems. The sub-problem will be solved

recursively and the result of the sub-problems merged at the

end. Pipelining is the simple but good technique for parallel

algorithm. The problem will be divided into segments and the

output of one segment is the input of another next segment and

they produce the result at the same rate.

Decomposition, assigning, mapping and scheduling are the

common way to implement the parallel algorithm. A proper

division of a large problem into a number of sub-problems can

facilitate the effective implementation of a parallel algorithm.

There are two main techniques for the decomposition of a

problem. First one is domain decomposition and second one is

functional decomposition.

In domain decomposition the data associated with the problem

is divided into small pieces of data of nearly equal in size. Now

the algorithm is divided in such a way that to operate on each

task. Different tasks are given to operate on different data. In

domain decomposition tasks start simultaneously.

Functional decomposition divides the algorithm into

independent tasks which can be processed simultaneously. If

the data needed for the tasks is also independent, the division is

perfect otherwise the communication will be considerable to

avoid the repetitions of data. All tasks commence concurrently

but some of the tasks will have to wait until data is obtainable.

5. SOFTWARE SUPPORT for

PARALLEL PROGRAMMING

Designing a parallel programming is always challenging matter.

More and more focus is imposed on designing parallel

programming design. Two methodologies are widely used for

the purpose of parallel programs. They are auto-parallelization

compiler and library based software.

Auto parallelization does its work in two fashions. First one is

complete automatic compiler which finds the parallelism during

the compilation of source code. This approach mainly aims to

parallelize the loops like for and do. Second one is program

directed which uses compiler directives to make the code

parallel.

The library based parallel software embedded its library to the

sequential programming languages to support the parallel

execution of a problem. MPI and OpenMP are the most widely

acceptable standard for parallel programming. MPI is a

common message passing library which has the primitive

function like send() /receive() by which MPI process

communicate with the other process through message passing.

OpenMP is a parallel framework for supporting compiler

directives, library support routine. Apart form this LINDA,

CPS, P4 etc are the example of parallel programming software.

6. PARALLEL PERFORMANCE

MEASUREMENT

We will introduce some performance measurement parameters-

execution time, speedup, efficiency and scalability. Each

parameter has its own way of describing the characteristics of

the parallel program.

6.1. Execution Time

Execution time is the time taken to execute an algorithm. For

better performance execution time is always tried to keep

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

22

minimum that is lower the value of execution time better is the

performance of a system. Generally execution time is denoted

by Ts and Tp where Ts represents the execution time for a fastest

sequential problem and Tp represents the execution time for a

parallel problem on p processors. There is a relation between Ts

and Tp that will found in other parameters below.

6.2. Speed-up

Speed-up measures how many times a parallel program works

faster than a sequential one when both programs solve the same

problem. Speed-up is denoted by Sp which is the ratio of Ts and

Tp and can be represented as

Tp

Ts
Sp

Hence Sp measures the benefit of parallel computer over

sequential computer. The highest value of Sp can be equal to

the number processors used in parallel computer when there

will be no communication among the processors which is

impractical situation in parallel computing. So due the

communication cost the speed-up is always less than equal the

number of processors used in parallel computer.

According to the Amdahl’s law [3], it is very difficult to get

ideal parallel system to get the value of Sp is equal to p due to

the presence of some sequential code which can not be

parallelized and must be processed sequentially by a single

processor. Suppose r is the part of a program that can be

parallelized and the rest s = 1-r part is sequential in nature. Then

the speed up becomes

prs

Sp
/

1




When p  , Sp
s

1
 which implies that the maximum

speed-up can be achieved is less than equal to 1/s whatever may

be the number of processors present in the system.

6.3. Efficiency

Efficiency measures the number of operations performed by the

processors during the parallel execution. The efficiency can be

formulated as

 100
p

Sp
Ep

Where Sp is speed-up and p is the number of processors used

in parallel system. Ep represents the contribution of the

processors to the parallel execution.

7. PARALLEL BENCHMARKS USED in

HPCC

Another way of measuring the performance of a parallel system

is done by applying parallel benchmarks. Benchmarks are freely

available standardized computer programs that are mostly used

by the HPC community to measure the system performance.

The new benchmarks are being created for making it

standardized so that every industry, manufacturer and customer

can use the benchmarks to evaluate the performance of a

computer system. There are mainly three types of benchmarks:

synthetic benchmarks, kernel benchmarks and real application

benchmarks. Synthetic benchmarks are small programs and it

does not perform any real computation but work out the basic

functions of a machine. It compares the relative efficiency of

processors. Example of this category is Whetstone benchmark,

Dhrystone and wPrime etc. In Kernel benchmarks a part of a

large program is extracted and this part of program is

responsible for most of the execution time of that problem.

Examples are LINPACK, NAS etc. In real application

benchmarks the code segment is the application program itself.

It is very effective in measuring the overall system performance

but needs more time resources. Examples are Perfect

Benchmarks, SPEC benchmarks etc. we represent some of the

benchmarks which are mostly used to evaluate the performance.

7.1. Whetstone Benchmarks

Whetstone benchmark was the first international benchmark in

history [10]. It was intended to measure the performance of a

computer system and to simulate the floating point intensive

application problems. It consists of nine small loops of different

statement of particular type like integer arithmetic, floating

point arithmetic, ‘if’ statements etc. It uses global variables and

a high percentage of execution time is spent in mathematical

library functions. The result of this benchmark is represented in

MWIPS (mega whetstone institution Per Second).

7.2. Dhrystone Benchmarks

It was built to measure the performance of non numeric

applications. It consists of measurement loops. Each loop

includes twelve procedures and ninety four statements. One

hundred one statements are dynamically executed during one

Dhrystone [18]. Dhrystone benchmarks do not contain any

floating point operations and most of its operations involve

string operations. These benchmarks are widely acceptable by

the business vendors because the working set of the program

fits properly in the cache of modern computer machines.

7.3. LINPACK

These benchmarks are used to measure the performance of a

computer system when a dense system of linear equations is

solved by applying Gaussian elimination method [11]. The

benchmarks are involved in calculating high percentage of

floating point calculation in double precision. Most of the

execution takes place just 15-line subroutine of the program.

The result of these benchmarks is expressed in MFLOPS. These

benchmarks are widely used by TOP500 and China TOP100

[7].

7.4. NAS Kernel

NAS consists of seven kernels which has the size of 1000 lines

in total. These are developed by the NASA Ames Research

Center. Each kernel is independent to each other and does not

depend on the result of other kernel. Each kernel has a loop that

iteratively calls a particular subroutine [4]. The performance of

these benchmarks is expressed in MFLOPS.

7.5. Perfect Benchmarks

The objective of these benchmarks is to measure the

performance of super computer. The Perfect benchmarks

contain 13 programs of nearly 60,000 lines of Fortran collected

from the different scientific and engineering fields [5]. Each

code is able to measure the CPU and wall-clock time. These

benchmarks produce the result and compare the result by self

contained validation test with the stored values to evaluate the

correctness of the result.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

23

7.6. HPCC Benchmarks

HPCC benchmarks consist of seven computational kernels:

STREAM, HPL, DGMM, PTRANS, FFT, RandomAccess and

b_eff. HPCC benchmarks are applied to measure performance

from single computer to largest supercomputer. HPCC

Benchmarks measures processor’s memory bandwidth, memory

speed, random updates of memory, transfer of data, latency and

bandwidth of communication. The summary of the above

benchmarks are shown in TABLE II.

8. CONCLUSION

In this paper all the necessary aspects of parallel computing has

been represented. Hardware architecture for parallel computing

as supercomputing architecture and common parallel computing

architecture are discussed. We also discussed about Shared and

Distributed memory models. We also observed that Shared

memory model is faster but suffers from memory contention

which is overcome by the Distributed memory model. Parallel

computing needs the special software for performing the

parallel processing. MPI, OpenMp and PVM etc are the

parallel software library for executing any parallel application.

Some popular parallel bench marks are briefly discussed in this

paper for measuring the performance of different types of

parallel problems. Each benchmark is specific to each type of

problem and thus a suitable benchmark would be chosen from

Table 2 depending on the nature of the problem.

Fig.1: A Classification of Parallel Computer

Table 2. Summery of the above benchmarks

S.N

o

Benchmar

k

Benchmark

Type

Application

Type

1 Whetstone Synthetic Floating point

intensive

application

problems

2 Dhrystone Synthetic Non numeric

applications

3 LINPACK Kernel Dense system

of linear

equations

4 NAS Kernel Kernel Numerical

Aerodynamic

Simulation

5 Perfect Application Measures

performance of

super computer

6 HPCC Extend

version of

LINPACK

Measures

performance

from single

computer to

largest

supercomputer

Parallel

Computer

Common

Parallel

Computer

Super

Computer

Multiprocessor Shared

Memory

Distributed

Memory

SMP DSM COW PC Cluster

MPP PVP

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

24

Table1. Top ten supercomputer of the world

2.341.042122400USARoadrunner

BladeCenter QS 22/LS 21

IBMDOE/NNSA/LANL10

4.591.050138368FranceTera 100

Bull bullx super-node

S6010/S6030

BullCommissariata

1’Energie Atomique

(CEA)

9

2.911.054153408USAHopper

Cray XE 6, 6C 2.1GHz

CrayDOE/SC/LBNL/

NERSC

8

4.101.088111104USAPleiades SGI Altix ICE

8200EX/8400EX

SGINASA/ Ames

Research

Center/NAS

7

3.981.110142272USACielo Cray XE6, 8C 2.4 GHzCrayDOE/NNSA/LANL/

SNL

6

1.401.19273278JapanTS UB AME-2

HP ProLiant, Xenon 6C, NVidia,

Linux/ Windows

NEC/ HPGS IC, Tokyo

Institute of

Technology

5

2.581.271120640ChinaNebulae TC 3600 Blade,

Intel X5650, NVidia Tesla C2050

GPU

Dawning National

Supercomputing

center Shenzhen

4

6.951.759224162USAJaguar Cray Xt5, HC 2.6 GHzCrayOak Ridge National

Laboratory

3

4.042.566186368ChinaTianhe-1 A

NUDT TH MPP

NUDTNational

Supercomputing

center in Tianjin

2

12.6610.51795024JapanK Computer

SPARC64 VIIIfx 2.0 GHz,

Tofu Interconnect

FujitsuRiken

Advanced Institute

for Computational

Science

1

Power

(MW)

R max

(PFlops)

coresCountry Computer Manufacturer Site Rank

9. REFERENCES
[1] Aggarwal A., Alpern B., Chandra A. and Snir M. “A

Model for Hierarchical Memory”. Proc of 19th Annual

ACM Symp. on Theory of Computing, ACM, pp.

305-314, May 1987.

[2] Aggarwal A., Alpern B., Chandra A. and Snir M.

“Hierarchical Memory with Block Transfer”. Proc of

28th Annual IEEE Symp. on Foundations of Computer

Science, pp. 204-216, 1987.

[3] Amdahl G. M. “Validity of the Single-processor

Approach to Achieving Large Scale Computing

Capabilities”. In AFIPS Conference Proc., Atlantic

City, New Jersey, pp.483-485, 1967.

[4] Baily D.H and Barton J.T. “The NAS Kernel

Benchmark Program”. Tech. Rep., Numerical

Aerodynamic Simulation (NAS) System Division,

NASA Ames Research Center, June, 1986.

[5] Berry M, chen D, Koss P, Kuch D, Lo S and Pang Y.

“The PERFECT Club Benchmarks: Effective

Performance Evaluation of Super Computers”. Tech.

Rep., PERFECT Club, July, 1994.

[6] Chen G, Sun G, Zhang y and mo Z. “Study on

Parallel Computing”. Journal of Computer Science

and Technology, vol. 201, no. 5, pp. 665-673, Sept.

2006.

[7] Chen G. and An H. et al. “Parallel Algorithm Practice

”. Higher Education Press, 2003.

[8] Culler D, Karp R, Patterson d et al. “LogP: Towards a

Realistic Model of Parallel Computation”. In Proc.

ASPLOS IV, Nw York, 1993, pp. 1-12.

[9] Culler D.E. et al. “Parallel Computer architecture”.

Morgan kaufman Publishers, 1999.

[10] Curnow H.J and Wichman B.A. “A Synthetic

Benchmark”. Computer Journal, vol19, no. 1, Feb

1976.

[11] Dongrra J.J. “Performance of Various Computers

Using Standard Linear Equation Software”. Tech.

Rep. CS-89-85, University of Tennessee and Oak

Ridge National Laboratory, November, 1995.

[12] Flynn M. J. “Computer Architecture: Pipelined and

Parallel Processor Design”. Jones and Barlett, 1995.

[13] https://www.top500.org

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.2, December 2012

25

[14] Hwang k. et al. “Scalable Parallel Computing”.

McGraw-Hill, 1998.

[15] Jaja J. “An Introduction to Parallel Algorithms”.

Addison-Wesley, 1992.

[16] Protic J. et al. “Distributed Shared Memory: Concept

and Systems”. IEEE Parallel and Distributed

Technology, Summer 1996.

[17] Valiant L. “A bridging Model for Parallel

Computation”. Communication of ACM, 1990, 33:

103-111.

[18] Weicker R.P. “DHRYSTONE: A Synthetic Systems

Programming Benchmark”. Communications of the

ACM, vol. 27, no.10, pp. 1013-1030, October, 1984.

