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ABSTRACT 

This paper discusses combined software and hardware 

architecture of a H.264/AVC video compression decoder. The 

software version of the decoder was implemented using NIOS 

II processor on a FPGA board (Stratix III of Altera). The mixed, 

software and hardware, architecture was proposed to ameliorate 

the decoder speed throughputs. According to the time execution 

profiling and data dependencies, the decoder partitioning was 

applied. Thus, the inverse 4x4 Intra process is replaced by a 

hardware accelerator. It includes inverse 4x4 Intra prediction, 

inverse transform and inverse quantization. The experimental 

results at 317 MHz show improvement on the decoding 

throughput by 20% between software solution and mixed one. 

Keywords 

H.264 /AVC decoder, software and hardware implementation, 

inverse 4x4 intra prediction, inverse transform, inverse 

quantization. 

1. INTRODUCTION 
H.264/ AVC [1] codec is a multimedia application that aims at 

high-quality video contents at low binary rate throughput. 

H.264 encoder ensures video quality performances by the way 

of various video coding tools and techniques. In addition, many 

algorithmic researches are proposed to participate in standard 

improving in term of quality and bitrates. 

While providing a perfect image quality, H.264/AVC requires a 

reduced execution time. Therefore, architectural researchers and 

engineering works are made on decoders to respect real time 

constrains. 

 The design methodology for realizing a multimedia system on 

a chip can be roughly partitioned into three axes covering pure 

software design, pure hardware implementation and mixed 

software and hardware solution. Software architectures, like 

work presented in [2], are flexible and take advantage of high 

design level (data specification level). It is roughly based on 

processor like RISC CPU or Digital Signal Processor (DSP). 

However, hardware implementation, e. g. [3] and [4], is more 

efficient because it can provide parallel tasks execution. But it 

takes more design time. In addition, it is less flexible then 

software solution. Examples of hardware boards are FPGA and 

ASIC. Due to software and hardware solution [5-6-7], both fast 

development and high performances can be achieved. 

In this paper a combined solution is proposed to implement 

H.264 decoder on FPGA. NIOS II is the used processor. The 

inverse 4x4 intra chain is the hardware accelerator. The 

proposed decoder, called LETI decoder, was developed on the 

basis of H.264 baseline Joint Video Team (JVT) and it was 

optimized to reduce time execution. Software version of LETI 

decoder was presented in previous work [2] on DSP platform. 

The rest of paper is organized as following: The second section 

presents related work to introduce the art state of this work. 

Section 3 details decoder modules to demonstrate complexity of 

each one. In order to describe proposed implementation 

solution, section 4 gives the design methodologies in two parts: 

software implementation and Hardware architecture. Results of 

hardware implementation are presented in section 5. Then, the 

results are compared with literature in section 6. The following 

section (section 7) discuses the validation of the hardware 

component in SW/HW architecture of H.264 decoder. Finally, a 

conclusion is presented in section 8.  

2. RELATED WORKS 
Research on parallelization of H.264/AVC standard is mostly 

done for encoders due to their higher performance requirements 

when comparing to decoders. But data dependencies between 

blocks and varying macroblock sizes let parallelization more 

and more difficult. Many works in this axis have been reported 

in literature. The authors of [8] use pipeline architecture to 

implement the H.264 encoder with VLSI technology. Other 

example of hardware encoder implementation is given in [9].    

For H.264/AVC decoders, majority of research focuses on CPU 

specific optimizations and hardware/software combinations. 

Guan-Yilin et al. [6] present a baseline decoder on ARM966 

board, by mixing software optimization and hardware 

development. The decoder partitioning was done according to 

the target frame rate and complexity profiles. The hardware 

acceleration module includes motion compensation, inverse 

transform and loop filtering. For QCIF video source, the overall 

throughput is improved by 27%. In fact, a speed improvement 

leads to 7.4 fps an average.  

In [5] also, software / hardware architecture for H.264 baseline 

profile is proposed, but on single chip decoder SOC. It is called 

OR264 (OR1K based H264 decoder). The software is used to 

control the decoding flow. All others blocks are hardware 

designed and operate in parallel. 

In the same research axis, some works use a mixed architecture 

with an Operating System (OS) as described in [10]. Xenomai 

is the OS used in [10]. Software part is executed on Power PC 

hard processor on Xilinx Virtex 5 FPGA. Only deblocking filter 

is presented as hardware module. 

Other architectural kind of decoder implementation takes place: 

[3] and [4] give the example of pure hardware design.  In [3] a 

complete video decoder is implemented on FPGA. As results 

only inverse quantization, inverse transform, and deblocking 

filter stages are presented. In [4] some blocks of the 

H.264/AVC are implemented on Xilinx FPGA. The transform, 

the quantization and the inverse quantization are the hardware 

intellectual propriety (IP) presented in [4]. Those two works, 

and others, are interesting in the way that modules developed 

can be compared with the proposed work. 
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3. LETI H.264 DECODER STRUCTURE 
H.264/ AVC [1] video compression standard takes advantage 

from spatial and temporal redundancy in a video sequence. 

Therefore, it defines various prediction modes to predict each 

macroblock depending on its texture properties.  

In encoder processing, residual macroblocks consists of 

difference between original macroblocks and the corresponding 

predicted one. Residual is the final data organized in bitstream. 

Decoder is responsible to reconstruct a video sequence from the 

compressed data created by encoder. As shown in Figure 1, first 

step is entropy decoding. It receives the compressed bitstream 

to reconstruct video parameters and residual coefficients. Then, 

two primary paths are considered in decoder process. First one 

is the decoding of residual macroblocks by inverse quantization 

and inverse transform. Second path is the generation of the 

predicted macroblocks according to prediction mode fixed by 

encoder. The addition of the outputs of these two paths is the 

reconstruct macroblock. A deblocking filter is then applied to 

have a better video quality. For more details, following sub-

sections describe every module of decoder. 

3.1  Entropy decoding 
After decoding Network Abstraction Layer (NAL) parameters, 

the data elements are entropy decoded by two ways: Context-

based Adaptive Variable Length Decoding (CAVLD) and Exp-

Golomb. CAVLD is used to produce quantized coefficients 

array. Exp-Golomb is used for others syntaxes elements such as 

prediction mode and quantization parameter.  

CAVLD is more time consuming than Exp-Golomb[11]. It is 

used to reconstruct and to reorder data on 4x4 block of 16 

integers. By the mean of standard code tables, each 4x4 block is 

decoded into five syntax elements: Coefftoken, Sign, Level, 

TotalZeros, and Run [1][12]. 

In last work [13], a software algorithm, called Zero Length 

Prefix (ZLP), was proposed to optimize Coefftoken step. More 

than 20% of execution time was reduced. Consequently the 

decoder time execution was improved. The ZLP algorithm is 

integrated in this work. 

3.2 Inverse quantization  
CAVLD output is a residual quantified macroblock. 

Following step is inverse quantization to produce a set of 

coefficients (Wij). Since quantization is a losing information 

step, inverse quantization reconstructs data. It is a 

multiplication operation as described in equation 1, where Zij 

is inverse quantization input, Wij is its output and Qstep  is a 

quantization factor given by standard according to Qp value. 

Qp is the quantization parameter fixed by encoder. It is 

decoded from the bitstream using Exp-Golomb codes. 

stepijij QZW .
 

 

(1) 

In order to manipulate only integer value in transform step, 

H.264 standard have postponed real multiplication operation 

from transform to quantization [12].Details of this operation is 

given in inverse transform sub section. The final inverse 

quantization equation given by standard is described by 

equation 2, where Vij is the rescaling factor defined by the 

standard.  

To implement this equation, a number of shifts equal to “ 

floor(Qp / 6)” was used instead of arithmetic multiplication. 

Shift operation is less time consuming than multiplication 

operation. 

3.3 Inverse transform 
In previous video coding standards, Inverse Discrete Cosine 

Transform (DCT) was used. However, H.264/AVC uses a 

separable Inverse Integer Cosine Transform (ICT). It has 

similar properties as a 4x4 inverse DCT [12]. Both DCT and 

ICT are matrixes multiplication. But they use different matrix 

coefficients values.  

Inverse transform step is applied for each 4x4 block. For 

16x16 Intra prediction mode, a suppliant Hadamard transform 

is adding for DC Coefficients. Most of the energy is 

concentrated in the DC coefficients for a 16x16 intra coded 

macroblock. This extra transform helps to de-correlate the DC 

coefficients to take advantage of the correlation among 

coefficients. As shown in Figure 2, DC coefficients of each 

4x4 block are assembling in a matrix to applied inverse 

Hadamard transform given by equation 4. An inverse DC 

quantization is also applied on DC matrix. 

3.4 Inverse  prediction 
Because of redundancy in video sequence, H.264/AVC 

standard is based on two principal prediction modes [1]. 

Temporal resemblance between frames is treated as inter 

prediction. Spatial resemblance in same frame is treated as 

intra prediction. In LETI decoder, first frame of a sequence is 

necessarily Intra (4x4 or 16x16) coded because it hasn’t 

reference frame. For next P frames, each macroblock can be 

coded intra (4x4 or 16x16) or inter prediction.  
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Fig 1: H.264/AVC decoder. 
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Fig 2 : DC coefficients positions in a macroblock. 

The 4x4 intra prediction modes are suitable for significant 

details within a frame. Each 4x4 block is predicted 

independently from spatially neighboring coefficients. One of 

nine prediction modes illustrated by Figure 3 [12] is used. 

According to adjacent block availability, modes can be 

applied or not. Vertical prediction mode (called also Mode 0) 

cannot be applied only if top neighboring block at least is 

available, because this mode copies pixels above the 4x4 

block as indicated in Figure 3. For horizontal prediction mode 

(Mode 1), the pixels to the left of the 4x4 block are copied 

horizontally if available. Adjacent pixels availability is not 

necessary to perform DC prediction mode (mode 2). The 

remaining 6 modes are diagonal prediction modes. They use 

defined equation to privilege specified direction. Directional 

modes are suited but they entail additional complexity in the 

decoding process [15]. 

The 16x16 intra predictions is characterized by four prediction 

modes: horizontal mode, vertical mode, DC mode and planer 

mode. Except of planer mode, all modes have respectively the 

same propriety of 4x4 modes but they are applied on a 16x16 

macroblock. In planer mode, a curve fitting equation is used 

to form a prediction block having a brightness and slope in the 

horizontal and vertical directions that approximately matches 

the neighboring pixels. After statistic work [16], planer mode 

has been eliminated from LETI encoder because of its 

supplementary incising complexity relative to its video quality 

contribution. 

In inter prediction case; motion vector is first extracted from 

bitstream. Then, motion compensation module is applied. It 

consists of adding motion vector coordinates to corresponding 

block in reference frame. Result is reconstructed block. Block 

size can change from one motion vector to other. Different 

block sizes are supported in H.264/AVC standard, as shown 

in Figure 4. In LETI decoder only one frame reference is 

applied and smaller block size for motion vector is 8x8[17]. 

 

 

 

Fig 3: 4x4 Intra prediction modes. 
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Fig 4: Inter prediction block size type. 

The data obtained from the intra or inter prediction is added to 

the inverse transformed residual coefficients. This sum is 

copied to the decoded buffer which is used as an input for 

deblocking filter step. 

3.5 Deblocking filter 
The deblocking filter performs in-loop filtering to reduce 

blocking artifacts created by image partitioning and 

quantization. After inverse quantization and inverse 
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transform, the deblocking filter compares the edge values of 

each 4x4 block with its adjacent block to select the level of 

filtering. In LETI decoder, Strong or Standard filter is selected 

according to the block edge, macroblock position in frame and 

prediction mode. The design algorithm of deblocking filter 

used in this work is shown with details in [18].  

4. DESIGN METHODOLOGY   

4.1 Software implementation 
Inspired by H.264/AVC JM (Joint Model, version 12), the 

LETI decoder has been developed. It is a baseline decoder 

with optimized algorithms to overcome standard complexity. 

Software implementation of LETI decoder was on NIOS II 

processor, at 160 MHz and with 64 Kbytes cache memory. 

Synthesis was done on Stratix-III EP3SL150F1152C3 Altera 

board. Results show that occupied surface is 9 408 ALUTs. It 

represents 8% of FPGA surface. CIF (352x288) video 

sequences were successfully reconstructed with a speed of 

2.43 fps (frame per second). Qp parameter was fixed to 30. 

Software implementation was necessary before passing to the 

mixed implementation to evaluate time execution of each 

module in decoder.  This profiling can give idea about 

modules complexity. As shown in Figure 5, deblocking filter 

presents the lion share by 30% of overall decoder time 

execution. Then inverse quantization and inverse transform 

have second place by 21%.  

The principal aim of our researches is to define software / 

hardware solution of H.264 decoder. All decoder modules will 

be designed as hardware IP and only control operations will 

be done on software part of architecture. To attain this 

purpose, deblocking filter was first implemented as hardware 

IP in previous work [18] using ESL tools. The second IP is 

the subject of this proposed work. 

In order to have a better partitioning between software and 

hardware, most demanding modules in term of time execution 

need to be transformed on hardware accelerator. Despite the 

importance of time execution, it is not the only constraint to 

be used to define block that need to be accelerated. Data 

dependencies and possibility of parallelization in algorithm 

are also major factors. In fact, inverse quantization, inverse 

transform and inverse prediction present a good tradeoff 

between time execution and algorithm constraints. Therefore 

those three modules have been chosen as hardware IP.  

 
Fig 5: LETI decoder profiling. 

As indicated previously, inverse prediction presents two 

kinds. In order to define which kind need to be accelerated, a 

profiling of intra process is made. In Figure 6, time percentage 

that 4x4 intra and 16x16 intra process take from overall intra 

time execution in decoder is presented. As clearly shown, 4x4 

intra is more used then 16x16 intra.  

 
Fig 6: Intra prediction profiling. 

Consequently module accelerator was defined as following: 

inverse 4x4 intra prediction, inverse quantization and inverse 

transform for 4x4 intra process. 

4.2 Hardware architecture of inverse 4x4 

Intra process 
Inverse 4x4 intra prediction, inverse quantization and inverse 

transform are successive decoder modules. Enclosing them in 

one IP is a way to minimize data transfer between hardware or 

software part. Architecture of inverse 4x4 Intra chain is given 

by Figure 7. Accelerator inputs are inverse quantization 

inputs, prediction modes and macroblock position. Output is 

only a reconstruct macroblock.  

To calculate equations of prediction mode, the inverse 4x4 

intra prediction module needs 16 prediction modes and the 

macroblock position within a frame ( MBX, MBY ). 

Neighboring pixels are generated by a suppliant component 

called “Neighboring pixels”.  

Inverse quantization process inputs include the CAVLC 

outputs coefficients of 16 blocks. First of all, coefficients are 

organized in a 16 coefficients buffer. Then they are sending to 

inverse quantization component with a control signal. After 

16 transfers of 16 coefficients each time, all inputs 

coefficients of inverse quantization are ready to start 

execution. For IP output, a buffer is also used to put 

coefficients by a set of 16. This memory model is used for 

input and output to minimize memory size. Instead of putting 

all 256 coefficients in memory waiting bus transfer, only 16 

coefficients are waiting. In addition, this option doesn’t affect 

execution time or transfer time. Details of each module in 

accelerator are presented in following subsection.  

4.2.1 Inverse 4x4 intra prediction 

It determinate predicted pixels of all prediction modes in same 

time. Calculation of each mode is divided on three steps, as 

illustrated in Figure 8: 

-Step 1: The block, called Basic equations, includes commune 

equations of all prediction modes. Equations are applied using 

neighboring pixels. Then others equations, called derivate 

equations, are applied for each corresponding mode. Basic 

and derivate equations have been generated from standard 

equations. 

- Step 2: The shift module is applied on basic and derivate 

equation outputs to devise equations respectively by 2 and by 

4. 

- Step 3: Multiplexer is added to select the corresponding 

prediction mode, given by Exp-Golomb. 
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Fig 7: Architecture of inverse 4x4 intra process IP. 
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Fig 8: Inverse 4x4 Intra prediction component. 

4.2.2 Inverse quantization  

Inverse quantization input is 16 coefficients of a block seized 

4x4. The proposed implementation takes advantage from 

hardware parallelism. Inverse quantization of 16 coefficients 

is trailed in the same time by 16 “Dequant_coef” components 

as shown in Figure 9. In addition to residual coefficient, clk, 

reset and start signals, QE parameter is also an input to 

“Dequant_coef”. QE is a result of Qp parameter divided by 6. 

As shown in equation 2 in the third section, (Qp/6) appears in 

inverse quantization equation. Because of division complexity 

in hardware, a ROM block memory that contains all (Qp/6) 

possible values has been prepared. In consequence, “ROM 

dequant” component takes Qp parameter in input and provides 

QE that presents (Qp/6).  
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Fig 9: Inverse quantization component. 

Details of “Dequant_coef” components are given in Figure 10. 

This module is responsible of inverse quantization equation 

given by equation 2 previously presented. Equation includes 

multiplication of residual coefficient by Vij parameter. 

Vij_ROM in “Dequant_coef” module is a ROM memory 

block that generates Vij value. MUX block assures Vij and 

residual coefficient multiplication. Then a number of QE 

shifts is applied. 
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MUX

Vij_ROM

Control unit

Reset

Clk

Start

Adress Clk
Clk

Start 1

Start 2
Clk

Res_in_x

Res_out_x

Done_x

QE

 

Fig 10: Dequant_coef component. 

4.2.3 Inverse transform 

Inverse transform is a double matrix multiplication. Equation 

3 illustrates standard matrix. The same matrix is used in both 

multiplications. Therefore, the same component, called 

ICT_1D in Figure 11, is repeated in inverse transform 

component.  Control module synchronizes the couple of 

components. 
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Fig 11:  Inverse transform component. 

“ICT_1D” component is a 4x4 matrix product. Thus, it 

consists of four multiplications of the four lines of first matrix 

by corresponding columns of second matrix. In the proposed 

design shown in Figure 12, IICT_0, IICT_1, IICT_2, IICT_3 

components are implemented to assure the four parallel 

multiplications.  

According to the standard, matrix coefficients are: 1, -1, 1/2 or 

-1/2. Therefore, no concrete multiplication operation is used. 

Only right shift, addition and subtraction are applied. Example 

of column multiplication is presented in Figure 13.  

A component for addition is implemented in accelerator to 

add inverse transform output with predicted coefficients. 
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Fig 12: IICT_1D component. 

  

Fig 13: IICT_x component. 

5. IMPLEMENTATION AND 

PERFORMANCES RESULTS 
The designed inverse 4x4 intra block is an IP developed in 

VHDL language ((VHSIC hardware description language) at 

the RTL level. It was simulated using Mentor Graphics 

ModelSim and synthesized using the Altera Quartus II tools. 

Two different implementations were done for this module by 

two different technologies: FPGA circuit (Stratix-III 

EP3SL150F1152C3) [19] and ASIC technology (TSMC 

0.18μm standard-cells) [20]. 

Area cost of inverse 4x4 intra module on Stratix-III seizes 

only 5 883 ALUTs from a total of 113 600 ALUTs. That 

means a percentage of 5% of total FPGA surface. Frequency 

used is 317.76 MHz. For memory, 1% is only occupied in this 

work (6 208 bits from 5 630 976 bits). This memory is used 

for input and output macroblock. For details, synthesis results 

of each component of the inverse 4x4 intra module and the 

whole design, on Stratix-III FPGA, are presented in Table.1. It 

contains the hardware cost in term of ALUTs (Adaptive Look-

Up Tables), frequency, block RAM (Random-Access 

Memory) and block DSP (Digital Signal Processing). 

 

Table 1. Synthesis results on StratixIII. 

Modules ALUTs Frequenc

y (Mhz) 

RAM 

(bits) 

Block 

DSP 

Inverse 

prediction 

580 

(<1%) 

> 500  0 0 

Inverse 

quantization 

1755 

(2%) 

340 0 32 

 (8%) 

Inverse 

transform 

1776 

(2%) 

459 0 0 

Addition 288 

(<1%) 

> 500  0 0 

Neighboring 411 

(<1%) 

440  0 0 

Chain Intra 

4x4 

5 883 

(5%) 

317.76 6 208 32 (8%) 

 

The lion share component in term of surface is inverse 

transform and then inverse quantization. Those modules are 

principal and they can be re-used in inter chain for later 

implementation. Only inverse quantization uses DSP block 

because of multiplication operation as given in equation 1 and 

2. Prediction module area is the sum of inverse prediction 

component and neighboring component. Prediction module 

takes 991 ALUTs.  For syntheses on TSMC 0.18 µm 

technology, results are given in Table 2. 

Table 2. Synthesis results of inverse 4x4 intra 

components on ASIC TSMC 0.18 µm. 

 Frequency  Gates 

Inverse Prediction 336.5 Mhz 5706 

Inverse quantization 172.5 Mhz 18937 

Inverse transform 195.9 Mhz 13199 

Addition 531.5 Mhz 2755 

Neighboring 387.8 Mhz 3709 

Chain Intra 4x4 172.5 Mhz 98505 

Concerning speed, time execution of each implemented 

component on Stratix III board has been calculated to evaluate 

speed of inverse 4x4 intra process. Results are proposed in 

Table 3 by number of cycle.  Time execution of inverse 4x4 

intra module is not the sum of modules times because of the 

used parallelization design. Figure 14 explains the order of 

parallel execution module. Inverse quantization and inverse 

transform are running sequentially because of data 

dependency in 5 cycles. Inverse prediction component can be 

done in parallel with inverse quantization and inverse 

transform. It takes 8 cycles with neighboring module. To 

added predicted and transformed coefficients, the addition 
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component has 8 cycles of latency. As a result, inverse 4x4 

intra module takes 10 cycles to be executed. 

Table 3. Modules number of cycle. 

Modules Number of cycle 

Inverse prediction 6  

Inverse quantization 3  

Inverse transform 2 

Addition 2   

Neighboring 2  

Inverse

transform

Neighboring Inverse  prediction

Addition

0        1         2        3        4        5        6        7        8        9        10 cycles

Inverse

quantization

 
Fig 14 : Running order of inverse 4x4 intra. 

6. COMPARISON WITH PREVIOUS 

WORKS 
In this section, comparison between the performances of each 

proposed internal module and the whole inverse 4x4 intra 

design with other existing designs found in literature (Table 4) 

are presented. Comparison is not always evident and feasible 

because of various constrains of designs. Used technology, 

frequency, voltages and other considerations can change from 

a work to another. 

In term of area consumption, the proposed design improves 

performances of others works. It takes the lower area in both 

proposed architectures. In Stratix III case, all blocks are 

optimized compared to [21], expected of inverse quantization. 

In 0,18 µm technology, proposed work also offers the better 

area cost results compared to [5]. 

The design in [4] is implemented on XilinxC2V1500 board.  

Only inverse transform and inverse quantization are applied in 

this work. Those two blocks are compared with the proposed 

TSMC 0.18μm architecture results because area results are 

given in kgates. The proposed design is less than 24% of the 

area occupied by [4]. However, architecture of [4] is faster 

than the proposed one. The throughput of only inverse 

transform and inverse quantization of the proposed design is 

720 Mpixels/s. It presents less than the half of [4] throughput. 

 To resume, architecture in [4] consume large area to offer 

better execution speed. In the proposed case, area was reduced 

to be able to add others H.264 decoder IP in perspective 

works. In addition, by 360 Mpixels/s, more than 30 frames per 

second for CIF sequences are decoded. The real time for this 

module is assured with current throughput. Therefore, 

proposed throughput results were kept. 

Compared to [5], our speed in both technologies is more 

efficient in term of area and speed. 

7. VALIDATION OF SW/HW 

ARCHITECTURE OF H.264 DECODER 
After validation of inverse 4x4 intra hardware module 

separately, it was implemented with software decoder on same 

board. Proposed co-design architecture is given in Figure 15. 

The main purpose of software /hardware architecture is to 

increase the throughput rate of H.264/AVC decoder. The use 

of a hardware accelerator is an advantage to exploit the 

parallel and pipelined architectures. 

Software part is executed on NIOS II soft-core. NIOS II is a 

32-bit embedded RISC processor with 6 levels of pipeline. 

Embedded system communication between processor and 

accelerator is assured by Avalon bus. It can be seen as a set of 

predefined signals for connecting one or more IP blocks. The 

Avalon 32-bits bus provides connection between components 

masters or slaves. It has a multi-master architecture allowing 

flexibility in system design.  

Avalon bus width is 32- bits. But most accelerator inputs 

(position parameters, 16 prediction modes and Qp parameters) 

are defined on only 8 bits each one, as described previously in 

section 4. To economize time transfer, each 4 parameters have 

concatenated to send them in one time. Thus, 5 transfers are 

necessary instead of 19.  For residual quantized coefficient, it 

is defined on 16 bits. They can be sent to accelerator 2 by 2 

coefficients. As results, CIF sequence is successfully 

reconstructed with same PSNR (Peak Signal to Noise Ratio) 

quality compared with pure software PSNR. Validation was 

done on bitstreams of several CIF sequences such as Forman 

and Akiyo. Qp was fixed to 30.  

Synthesis results are presented in Table 5. Proposed 

architecture takes 13.61% of FPGA surface. Occupied 

memory is 39%. Thus, board capacity allows others 

accelerator implementations. 
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Fig 15: Embedded system architecture. 

Table 4. Results of previous works. 

  

Technology 

 

Occupied area Throughput 

Mpixels/s Inverse 4x4 intra 

prediction 

Inverse 

quantization 

Inverse 

transform 

[4] FPGAXilinxC2V1500 -                135.306 kgates 1586 

[5] HW chip 0.18µm 71 kgates 53 kgates 30.3 

    [21] STRATIX II 37440 LUTs 1151 LUTs 4152 LUTs - 

 Proposed 

work 

Stratix III 991 LUTs 1776 LUTs 1755 LUTs 360 

TSMC 0.18μm 9.415 kgates 18.937 kgates 13.199 kgates 276 
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Table 5. Proposed architecture synthesis results. 

Total Pins 201  (27%) 

ALUTS number 15.470  (13.61%) 

Registers number 12259(9.3 %) 

Memory (bits) 2.196.832 (39%) 

Blocks DSP number 36 (9%) 

In term of time execution, software intra process takes 

26.51ms in one frame of Forman sequence. Concurrently, 

accelerator is executed in 5.31 ms with transfer time. Despite 

of transfer time importance, accelerator is faster than software 

execution by a factor of five. Similar results are proved for 

Akiyo bitstream. Results are given in details in table 6. 

Table 6. Time execution for Forman and Akiyo. 

Time execution(ms) Forman Akiyo 

Software  26.51 22.08 

HW/SW  5.31 4.94 

Gain 5 4.5 

8. Conclusion  
In this paper, co-design architecture of H.264 decoder was 

developed. Hardware accelerator is 4x4 intra chain. It contains 

4x4 intra prediction, inverse quantization and inverse 

transform. Hardware design is optimized to assure tradeoff 

between video time constrain and hardware on chip area. As 

results, accelerator speed is greater than 20% software speed. 

In addition, real time for CIF@30frames/s is assured for the 

proposed accelerator. FPGA area is still available to add other 

accelerator. Next block to be implemented as hardware IP is 

Inter prediction. Since inverse transform and  inverse 

quantization which are developed in this work, are the same 

for intra 4x4 and inter chain, all inter chain will be 

implemented when design inter prediction block. 
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