
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

20

Software and Hardware Architecture of
H.264/AVC Decoder

Taheni Damak

University of Sousse,
Higher Institute of Computer

and Communication
Techniques, Hammem Sousse,

Tunisia

Hassen Loukil, Ahmed
Ben Atitallah

University of Sfax,
Higher Institute of Electronic

and telecommunication of Sfax,
Tunisia

Nouri Masmoudi
University of Sfax,

National School of Engineering,
Sfax, Tunisia

ABSTRACT

This paper discusses combined software and hardware

architecture of a H.264/AVC video compression decoder. The

software version of the decoder was implemented using NIOS

II processor on a FPGA board (Stratix III of Altera). The mixed,

software and hardware, architecture was proposed to ameliorate

the decoder speed throughputs. According to the time execution

profiling and data dependencies, the decoder partitioning was

applied. Thus, the inverse 4x4 Intra process is replaced by a

hardware accelerator. It includes inverse 4x4 Intra prediction,

inverse transform and inverse quantization. The experimental

results at 317 MHz show improvement on the decoding

throughput by 20% between software solution and mixed one.

Keywords

H.264 /AVC decoder, software and hardware implementation,

inverse 4x4 intra prediction, inverse transform, inverse

quantization.

1. INTRODUCTION
H.264/ AVC [1] codec is a multimedia application that aims at

high-quality video contents at low binary rate throughput.

H.264 encoder ensures video quality performances by the way

of various video coding tools and techniques. In addition, many

algorithmic researches are proposed to participate in standard

improving in term of quality and bitrates.

While providing a perfect image quality, H.264/AVC requires a

reduced execution time. Therefore, architectural researchers and

engineering works are made on decoders to respect real time

constrains.

 The design methodology for realizing a multimedia system on

a chip can be roughly partitioned into three axes covering pure

software design, pure hardware implementation and mixed

software and hardware solution. Software architectures, like

work presented in [2], are flexible and take advantage of high

design level (data specification level). It is roughly based on

processor like RISC CPU or Digital Signal Processor (DSP).

However, hardware implementation, e. g. [3] and [4], is more

efficient because it can provide parallel tasks execution. But it

takes more design time. In addition, it is less flexible then

software solution. Examples of hardware boards are FPGA and

ASIC. Due to software and hardware solution [5-6-7], both fast

development and high performances can be achieved.

In this paper a combined solution is proposed to implement

H.264 decoder on FPGA. NIOS II is the used processor. The

inverse 4x4 intra chain is the hardware accelerator. The

proposed decoder, called LETI decoder, was developed on the

basis of H.264 baseline Joint Video Team (JVT) and it was

optimized to reduce time execution. Software version of LETI

decoder was presented in previous work [2] on DSP platform.

The rest of paper is organized as following: The second section

presents related work to introduce the art state of this work.

Section 3 details decoder modules to demonstrate complexity of

each one. In order to describe proposed implementation

solution, section 4 gives the design methodologies in two parts:

software implementation and Hardware architecture. Results of

hardware implementation are presented in section 5. Then, the

results are compared with literature in section 6. The following

section (section 7) discuses the validation of the hardware

component in SW/HW architecture of H.264 decoder. Finally, a

conclusion is presented in section 8.

2. RELATED WORKS
Research on parallelization of H.264/AVC standard is mostly

done for encoders due to their higher performance requirements

when comparing to decoders. But data dependencies between

blocks and varying macroblock sizes let parallelization more

and more difficult. Many works in this axis have been reported

in literature. The authors of [8] use pipeline architecture to

implement the H.264 encoder with VLSI technology. Other

example of hardware encoder implementation is given in [9].

For H.264/AVC decoders, majority of research focuses on CPU

specific optimizations and hardware/software combinations.

Guan-Yilin et al. [6] present a baseline decoder on ARM966

board, by mixing software optimization and hardware

development. The decoder partitioning was done according to

the target frame rate and complexity profiles. The hardware

acceleration module includes motion compensation, inverse

transform and loop filtering. For QCIF video source, the overall

throughput is improved by 27%. In fact, a speed improvement

leads to 7.4 fps an average.

In [5] also, software / hardware architecture for H.264 baseline

profile is proposed, but on single chip decoder SOC. It is called

OR264 (OR1K based H264 decoder). The software is used to

control the decoding flow. All others blocks are hardware

designed and operate in parallel.

In the same research axis, some works use a mixed architecture

with an Operating System (OS) as described in [10]. Xenomai

is the OS used in [10]. Software part is executed on Power PC

hard processor on Xilinx Virtex 5 FPGA. Only deblocking filter

is presented as hardware module.

Other architectural kind of decoder implementation takes place:

[3] and [4] give the example of pure hardware design. In [3] a

complete video decoder is implemented on FPGA. As results

only inverse quantization, inverse transform, and deblocking

filter stages are presented. In [4] some blocks of the

H.264/AVC are implemented on Xilinx FPGA. The transform,

the quantization and the inverse quantization are the hardware

intellectual propriety (IP) presented in [4]. Those two works,

and others, are interesting in the way that modules developed

can be compared with the proposed work.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

21

3. LETI H.264 DECODER STRUCTURE
H.264/ AVC [1] video compression standard takes advantage

from spatial and temporal redundancy in a video sequence.

Therefore, it defines various prediction modes to predict each

macroblock depending on its texture properties.

In encoder processing, residual macroblocks consists of

difference between original macroblocks and the corresponding

predicted one. Residual is the final data organized in bitstream.

Decoder is responsible to reconstruct a video sequence from the

compressed data created by encoder. As shown in Figure 1, first

step is entropy decoding. It receives the compressed bitstream

to reconstruct video parameters and residual coefficients. Then,

two primary paths are considered in decoder process. First one

is the decoding of residual macroblocks by inverse quantization

and inverse transform. Second path is the generation of the

predicted macroblocks according to prediction mode fixed by

encoder. The addition of the outputs of these two paths is the

reconstruct macroblock. A deblocking filter is then applied to

have a better video quality. For more details, following sub-

sections describe every module of decoder.

3.1 Entropy decoding
After decoding Network Abstraction Layer (NAL) parameters,

the data elements are entropy decoded by two ways: Context-

based Adaptive Variable Length Decoding (CAVLD) and Exp-

Golomb. CAVLD is used to produce quantized coefficients

array. Exp-Golomb is used for others syntaxes elements such as

prediction mode and quantization parameter.

CAVLD is more time consuming than Exp-Golomb[11]. It is

used to reconstruct and to reorder data on 4x4 block of 16

integers. By the mean of standard code tables, each 4x4 block is

decoded into five syntax elements: Coefftoken, Sign, Level,

TotalZeros, and Run [1][12].

In last work [13], a software algorithm, called Zero Length

Prefix (ZLP), was proposed to optimize Coefftoken step. More

than 20% of execution time was reduced. Consequently the

decoder time execution was improved. The ZLP algorithm is

integrated in this work.

3.2 Inverse quantization
CAVLD output is a residual quantified macroblock.

Following step is inverse quantization to produce a set of

coefficients (Wij). Since quantization is a losing information

step, inverse quantization reconstructs data. It is a

multiplication operation as described in equation 1, where Zij

is inverse quantization input, Wij is its output and Qstep is a

quantization factor given by standard according to Qp value.

Qp is the quantization parameter fixed by encoder. It is

decoded from the bitstream using Exp-Golomb codes.

stepijij QZW .

(1)

In order to manipulate only integer value in transform step,

H.264 standard have postponed real multiplication operation

from transform to quantization [12].Details of this operation is

given in inverse transform sub section. The final inverse

quantization equation given by standard is described by

equation 2, where Vij is the rescaling factor defined by the

standard.

To implement this equation, a number of shifts equal to “

floor(Qp / 6)” was used instead of arithmetic multiplication.

Shift operation is less time consuming than multiplication

operation.

3.3 Inverse transform
In previous video coding standards, Inverse Discrete Cosine

Transform (DCT) was used. However, H.264/AVC uses a

separable Inverse Integer Cosine Transform (ICT). It has

similar properties as a 4x4 inverse DCT [12]. Both DCT and

ICT are matrixes multiplication. But they use different matrix

coefficients values.

Inverse transform step is applied for each 4x4 block. For

16x16 Intra prediction mode, a suppliant Hadamard transform

is adding for DC Coefficients. Most of the energy is

concentrated in the DC coefficients for a 16x16 intra coded

macroblock. This extra transform helps to de-correlate the DC

coefficients to take advantage of the correlation among

coefficients. As shown in Figure 2, DC coefficients of each

4x4 block are assembling in a matrix to applied inverse

Hadamard transform given by equation 4. An inverse DC

quantization is also applied on DC matrix.

3.4 Inverse prediction
Because of redundancy in video sequence, H.264/AVC

standard is based on two principal prediction modes [1].

Temporal resemblance between frames is treated as inter

prediction. Spatial resemblance in same frame is treated as

intra prediction. In LETI decoder, first frame of a sequence is

necessarily Intra (4x4 or 16x16) coded because it hasn’t

reference frame. For next P frames, each macroblock can be

coded intra (4x4 or 16x16) or inter prediction.

Bistream

Buffering

Entropy

Decoding

Inverse

Quatization

Inverse

 Transform
Deblocking

Filter

Intra prediction

4 x4 Intra

16 x16 Intra

Inter prediction

Motion

Compensation
MV

Reference

frame buffering

Output videoBitsteam

Fig 1: H.264/AVC decoder.

)6/(2.. QPfloor

ijijij VZW 

(2)

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

22

  F E)(T F R
T

With
5

2
b and

2

1
a 

(3)

(4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

DC

Fig 2 : DC coefficients positions in a macroblock.

The 4x4 intra prediction modes are suitable for significant

details within a frame. Each 4x4 block is predicted

independently from spatially neighboring coefficients. One of

nine prediction modes illustrated by Figure 3 [12] is used.

According to adjacent block availability, modes can be

applied or not. Vertical prediction mode (called also Mode 0)

cannot be applied only if top neighboring block at least is

available, because this mode copies pixels above the 4x4

block as indicated in Figure 3. For horizontal prediction mode

(Mode 1), the pixels to the left of the 4x4 block are copied

horizontally if available. Adjacent pixels availability is not

necessary to perform DC prediction mode (mode 2). The

remaining 6 modes are diagonal prediction modes. They use

defined equation to privilege specified direction. Directional

modes are suited but they entail additional complexity in the

decoding process [15].

The 16x16 intra predictions is characterized by four prediction

modes: horizontal mode, vertical mode, DC mode and planer

mode. Except of planer mode, all modes have respectively the

same propriety of 4x4 modes but they are applied on a 16x16

macroblock. In planer mode, a curve fitting equation is used

to form a prediction block having a brightness and slope in the

horizontal and vertical directions that approximately matches

the neighboring pixels. After statistic work [16], planer mode

has been eliminated from LETI encoder because of its

supplementary incising complexity relative to its video quality

contribution.

In inter prediction case; motion vector is first extracted from

bitstream. Then, motion compensation module is applied. It

consists of adding motion vector coordinates to corresponding

block in reference frame. Result is reconstructed block. Block

size can change from one motion vector to other. Different

block sizes are supported in H.264/AVC standard, as shown

in Figure 4. In LETI decoder only one frame reference is

applied and smaller block size for motion vector is 8x8[17].

Fig 3: 4x4 Intra prediction modes.

0 1

2 3

0

1

0 1

0 1

2 3

0

0
0

1
0 1

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4

8
x
8

 T
y
p

e

M

B
 T

y
p

e

Fig 4: Inter prediction block size type.

The data obtained from the intra or inter prediction is added to

the inverse transformed residual coefficients. This sum is

copied to the decoded buffer which is used as an input for

deblocking filter step.

3.5 Deblocking filter
The deblocking filter performs in-loop filtering to reduce

blocking artifacts created by image partitioning and

quantization. After inverse quantization and inverse








































































































2/1112/1

1111

12/12/11

1111

babbab

abaaba

babbab

abaaba

TTTT

TTTT

TTTT

TTTT

2/1111

112/11

112/11

2/1111

22

22

22

22

33323130

23222120

13121110

03020100





































































1111

1111

1111

1111

TTTT

TTTT

TTTT

TTTT

1111

1111

1111

1111

15DC14DC13DC12DC

11DC10DC9DC8DC

7DC6DC5DC4DC

3DC2DC1DC0DC

DCLuma
R

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

23

transform, the deblocking filter compares the edge values of

each 4x4 block with its adjacent block to select the level of

filtering. In LETI decoder, Strong or Standard filter is selected

according to the block edge, macroblock position in frame and

prediction mode. The design algorithm of deblocking filter

used in this work is shown with details in [18].

4. DESIGN METHODOLOGY

4.1 Software implementation
Inspired by H.264/AVC JM (Joint Model, version 12), the

LETI decoder has been developed. It is a baseline decoder

with optimized algorithms to overcome standard complexity.

Software implementation of LETI decoder was on NIOS II

processor, at 160 MHz and with 64 Kbytes cache memory.

Synthesis was done on Stratix-III EP3SL150F1152C3 Altera

board. Results show that occupied surface is 9 408 ALUTs. It

represents 8% of FPGA surface. CIF (352x288) video

sequences were successfully reconstructed with a speed of

2.43 fps (frame per second). Qp parameter was fixed to 30.

Software implementation was necessary before passing to the

mixed implementation to evaluate time execution of each

module in decoder. This profiling can give idea about

modules complexity. As shown in Figure 5, deblocking filter

presents the lion share by 30% of overall decoder time

execution. Then inverse quantization and inverse transform

have second place by 21%.

The principal aim of our researches is to define software /

hardware solution of H.264 decoder. All decoder modules will

be designed as hardware IP and only control operations will

be done on software part of architecture. To attain this

purpose, deblocking filter was first implemented as hardware

IP in previous work [18] using ESL tools. The second IP is

the subject of this proposed work.

In order to have a better partitioning between software and

hardware, most demanding modules in term of time execution

need to be transformed on hardware accelerator. Despite the

importance of time execution, it is not the only constraint to

be used to define block that need to be accelerated. Data

dependencies and possibility of parallelization in algorithm

are also major factors. In fact, inverse quantization, inverse

transform and inverse prediction present a good tradeoff

between time execution and algorithm constraints. Therefore

those three modules have been chosen as hardware IP.

Fig 5: LETI decoder profiling.

As indicated previously, inverse prediction presents two

kinds. In order to define which kind need to be accelerated, a

profiling of intra process is made. In Figure 6, time percentage

that 4x4 intra and 16x16 intra process take from overall intra

time execution in decoder is presented. As clearly shown, 4x4

intra is more used then 16x16 intra.

Fig 6: Intra prediction profiling.

Consequently module accelerator was defined as following:

inverse 4x4 intra prediction, inverse quantization and inverse

transform for 4x4 intra process.

4.2 Hardware architecture of inverse 4x4

Intra process
Inverse 4x4 intra prediction, inverse quantization and inverse

transform are successive decoder modules. Enclosing them in

one IP is a way to minimize data transfer between hardware or

software part. Architecture of inverse 4x4 Intra chain is given

by Figure 7. Accelerator inputs are inverse quantization

inputs, prediction modes and macroblock position. Output is

only a reconstruct macroblock.

To calculate equations of prediction mode, the inverse 4x4

intra prediction module needs 16 prediction modes and the

macroblock position within a frame (MBX, MBY).

Neighboring pixels are generated by a suppliant component

called “Neighboring pixels”.

Inverse quantization process inputs include the CAVLC

outputs coefficients of 16 blocks. First of all, coefficients are

organized in a 16 coefficients buffer. Then they are sending to

inverse quantization component with a control signal. After

16 transfers of 16 coefficients each time, all inputs

coefficients of inverse quantization are ready to start

execution. For IP output, a buffer is also used to put

coefficients by a set of 16. This memory model is used for

input and output to minimize memory size. Instead of putting

all 256 coefficients in memory waiting bus transfer, only 16

coefficients are waiting. In addition, this option doesn’t affect

execution time or transfer time. Details of each module in

accelerator are presented in following subsection.

4.2.1 Inverse 4x4 intra prediction

It determinate predicted pixels of all prediction modes in same

time. Calculation of each mode is divided on three steps, as

illustrated in Figure 8:

-Step 1: The block, called Basic equations, includes commune

equations of all prediction modes. Equations are applied using

neighboring pixels. Then others equations, called derivate

equations, are applied for each corresponding mode. Basic

and derivate equations have been generated from standard

equations.

- Step 2: The shift module is applied on basic and derivate

equation outputs to devise equations respectively by 2 and by

4.

- Step 3: Multiplexer is added to select the corresponding

prediction mode, given by Exp-Golomb.

32%

19% 21%

15%

13% deblocking filter

entropy coding

inverse quant_transf

pred_reconst

others

5%

95%

INTRA_16X16_luma
INTRA_4X4_luma

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

24

MBX, MBY

Prediction modes

CAVLC outputs

coefficients

QP

Input

Buffur

Inverse 4x4

quantization

Inverse 4x4

transform +

Inverse 4x4

Intra prediction

Neighboring pixels

Reconstruct

Macroblock

Output

Buffur

Fig 7: Architecture of inverse 4x4 intra process IP.

Basic

equations

M

U

X

Reset_0

Clk

R_pixels_x

x= A:M
8

9

10

11

Capture

pixels

Capture

res

Basic

equations

 shifted

Derivate

equations

 shifted

9 Pred_0_x

x=0:15

Done
Control

unit
Start

Derivate

equations

Shift

module

Prediction calculation block

Pred mode

Fig 8: Inverse 4x4 Intra prediction component.

4.2.2 Inverse quantization

Inverse quantization input is 16 coefficients of a block seized

4x4. The proposed implementation takes advantage from

hardware parallelism. Inverse quantization of 16 coefficients

is trailed in the same time by 16 “Dequant_coef” components

as shown in Figure 9. In addition to residual coefficient, clk,

reset and start signals, QE parameter is also an input to

“Dequant_coef”. QE is a result of Qp parameter divided by 6.

As shown in equation 2 in the third section, (Qp/6) appears in

inverse quantization equation. Because of division complexity

in hardware, a ROM block memory that contains all (Qp/6)

possible values has been prepared. In consequence, “ROM

dequant” component takes Qp parameter in input and provides

QE that presents (Qp/6).

Dequant_coef

ROM

dequant Ckl Start Reset

QE

Res_out_0

Dequant_coef
Res_out_1

.

.

.

.

.

.
Dequant_coef

Res_out_14

Dequant_coef
Res_out_15

Done_0

Done_1

Done_14

Done_15

Res_0

Res_1

QP

.

.

.

Resl_14

Res_15

Ckl Start Reset

Ckl Start Reset

Ckl Start Reset

Fig 9: Inverse quantization component.

Details of “Dequant_coef” components are given in Figure 10.

This module is responsible of inverse quantization equation

given by equation 2 previously presented. Equation includes

multiplication of residual coefficient by Vij parameter.

Vij_ROM in “Dequant_coef” module is a ROM memory

block that generates Vij value. MUX block assures Vij and

residual coefficient multiplication. Then a number of QE

shifts is applied.

Shift

MUX

Vij_ROM

Control unit

Reset

Clk

Start

Adress Clk
Clk

Start 1

Start 2
Clk

Res_in_x

Res_out_x

Done_x

QE

Fig 10: Dequant_coef component.

4.2.3 Inverse transform

Inverse transform is a double matrix multiplication. Equation

3 illustrates standard matrix. The same matrix is used in both

multiplications. Therefore, the same component, called

ICT_1D in Figure 11, is repeated in inverse transform

component. Control module synchronizes the couple of

components.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

25

ICT_1D

Clk

Reset

coef

quant_x

x=0:15

Start

23 ICT_1D

control

9 Coef

tran_x

x=0:15

 Done

Fig 11: Inverse transform component.

“ICT_1D” component is a 4x4 matrix product. Thus, it

consists of four multiplications of the four lines of first matrix

by corresponding columns of second matrix. In the proposed

design shown in Figure 12, IICT_0, IICT_1, IICT_2, IICT_3

components are implemented to assure the four parallel

multiplications.

According to the standard, matrix coefficients are: 1, -1, 1/2 or

-1/2. Therefore, no concrete multiplication operation is used.

Only right shift, addition and subtraction are applied. Example

of column multiplication is presented in Figure 13.

A component for addition is implemented in accelerator to

add inverse transform output with predicted coefficients.

IICT_0

y0

y3

y1

y2

x0

x3

x1

x2
IICT_1

y0

y3

y1

y2

x0

x3

x1

x2

IICT_2

y0

y3

y1

y2

x0

x3

x1

x2
IICT_3

y0

y3

y1

y2

x0

x3

x1

x2



























3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

xxxx

xxxx

xxxx

xxxx



























3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

yyyy

yyyy

yyyy

yyyy



























3,0

2,0

1,0

0,0

x

x

x

x



























3,1

2,1

1,1

0,1

x

x

x

x



























3,2

2,2

1,2

0,2

x

x

x

x



























3,3

2,3

1,3

0,3

x

x

x

x



























0,3

0,2

0,1

0,0

y

y

y

y



























1,3

1,2

1,1

1,0

y

y

y

y



























2,3

2,2

2,1

2,0

y

y

y

y



























3,3

3,2

3,1

3,0

y

y

y

y

IICT_1D

reset

CLK

Done

start

Fig 12: IICT_1D component.

Fig 13: IICT_x component.

5. IMPLEMENTATION AND

PERFORMANCES RESULTS
The designed inverse 4x4 intra block is an IP developed in

VHDL language ((VHSIC hardware description language) at

the RTL level. It was simulated using Mentor Graphics

ModelSim and synthesized using the Altera Quartus II tools.

Two different implementations were done for this module by

two different technologies: FPGA circuit (Stratix-III

EP3SL150F1152C3) [19] and ASIC technology (TSMC

0.18μm standard-cells) [20].

Area cost of inverse 4x4 intra module on Stratix-III seizes

only 5 883 ALUTs from a total of 113 600 ALUTs. That

means a percentage of 5% of total FPGA surface. Frequency

used is 317.76 MHz. For memory, 1% is only occupied in this

work (6 208 bits from 5 630 976 bits). This memory is used

for input and output macroblock. For details, synthesis results

of each component of the inverse 4x4 intra module and the

whole design, on Stratix-III FPGA, are presented in Table.1. It

contains the hardware cost in term of ALUTs (Adaptive Look-

Up Tables), frequency, block RAM (Random-Access

Memory) and block DSP (Digital Signal Processing).

Table 1. Synthesis results on StratixIII.

Modules ALUTs Frequenc

y (Mhz)

RAM

(bits)

Block

DSP

Inverse

prediction

580

(<1%)

> 500 0 0

Inverse

quantization

1755

(2%)

340 0 32

 (8%)

Inverse

transform

1776

(2%)

459 0 0

Addition 288

(<1%)

> 500 0 0

Neighboring 411

(<1%)

440 0 0

Chain Intra

4x4

5 883

(5%)

317.76 6 208 32 (8%)

The lion share component in term of surface is inverse

transform and then inverse quantization. Those modules are

principal and they can be re-used in inter chain for later

implementation. Only inverse quantization uses DSP block

because of multiplication operation as given in equation 1 and

2. Prediction module area is the sum of inverse prediction

component and neighboring component. Prediction module

takes 991 ALUTs. For syntheses on TSMC 0.18 µm

technology, results are given in Table 2.

Table 2. Synthesis results of inverse 4x4 intra

components on ASIC TSMC 0.18 µm.

 Frequency Gates

Inverse Prediction 336.5 Mhz 5706

Inverse quantization 172.5 Mhz 18937

Inverse transform 195.9 Mhz 13199

Addition 531.5 Mhz 2755

Neighboring 387.8 Mhz 3709

Chain Intra 4x4 172.5 Mhz 98505

Concerning speed, time execution of each implemented

component on Stratix III board has been calculated to evaluate

speed of inverse 4x4 intra process. Results are proposed in

Table 3 by number of cycle. Time execution of inverse 4x4

intra module is not the sum of modules times because of the

used parallelization design. Figure 14 explains the order of

parallel execution module. Inverse quantization and inverse

transform are running sequentially because of data

dependency in 5 cycles. Inverse prediction component can be

done in parallel with inverse quantization and inverse

transform. It takes 8 cycles with neighboring module. To

added predicted and transformed coefficients, the addition

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

26

component has 8 cycles of latency. As a result, inverse 4x4

intra module takes 10 cycles to be executed.

Table 3. Modules number of cycle.

Modules Number of cycle

Inverse prediction 6

Inverse quantization 3

Inverse transform 2

Addition 2

Neighboring 2

Inverse

transform

Neighboring Inverse prediction

Addition

0 1 2 3 4 5 6 7 8 9 10 cycles

Inverse

quantization

Fig 14 : Running order of inverse 4x4 intra.

6. COMPARISON WITH PREVIOUS

WORKS
In this section, comparison between the performances of each

proposed internal module and the whole inverse 4x4 intra

design with other existing designs found in literature (Table 4)

are presented. Comparison is not always evident and feasible

because of various constrains of designs. Used technology,

frequency, voltages and other considerations can change from

a work to another.

In term of area consumption, the proposed design improves

performances of others works. It takes the lower area in both

proposed architectures. In Stratix III case, all blocks are

optimized compared to [21], expected of inverse quantization.

In 0,18 µm technology, proposed work also offers the better

area cost results compared to [5].

The design in [4] is implemented on XilinxC2V1500 board.

Only inverse transform and inverse quantization are applied in

this work. Those two blocks are compared with the proposed

TSMC 0.18μm architecture results because area results are

given in kgates. The proposed design is less than 24% of the

area occupied by [4]. However, architecture of [4] is faster

than the proposed one. The throughput of only inverse

transform and inverse quantization of the proposed design is

720 Mpixels/s. It presents less than the half of [4] throughput.

 To resume, architecture in [4] consume large area to offer

better execution speed. In the proposed case, area was reduced

to be able to add others H.264 decoder IP in perspective

works. In addition, by 360 Mpixels/s, more than 30 frames per

second for CIF sequences are decoded. The real time for this

module is assured with current throughput. Therefore,

proposed throughput results were kept.

Compared to [5], our speed in both technologies is more

efficient in term of area and speed.

7. VALIDATION OF SW/HW

ARCHITECTURE OF H.264 DECODER
After validation of inverse 4x4 intra hardware module

separately, it was implemented with software decoder on same

board. Proposed co-design architecture is given in Figure 15.

The main purpose of software /hardware architecture is to

increase the throughput rate of H.264/AVC decoder. The use

of a hardware accelerator is an advantage to exploit the

parallel and pipelined architectures.

Software part is executed on NIOS II soft-core. NIOS II is a

32-bit embedded RISC processor with 6 levels of pipeline.

Embedded system communication between processor and

accelerator is assured by Avalon bus. It can be seen as a set of

predefined signals for connecting one or more IP blocks. The

Avalon 32-bits bus provides connection between components

masters or slaves. It has a multi-master architecture allowing

flexibility in system design.

Avalon bus width is 32- bits. But most accelerator inputs

(position parameters, 16 prediction modes and Qp parameters)

are defined on only 8 bits each one, as described previously in

section 4. To economize time transfer, each 4 parameters have

concatenated to send them in one time. Thus, 5 transfers are

necessary instead of 19. For residual quantized coefficient, it

is defined on 16 bits. They can be sent to accelerator 2 by 2

coefficients. As results, CIF sequence is successfully

reconstructed with same PSNR (Peak Signal to Noise Ratio)

quality compared with pure software PSNR. Validation was

done on bitstreams of several CIF sequences such as Forman

and Akiyo. Qp was fixed to 30.

Synthesis results are presented in Table 5. Proposed

architecture takes 13.61% of FPGA surface. Occupied

memory is 39%. Thus, board capacity allows others

accelerator implementations.

Coprocessor

Intra 4x4 process

NIOS II

CPU

RAM Interface

IRQ

controler

 A

V

A

L

O

N

B

U

S

Timer

UART

D
at

a_
in

D
at

a_
ou

t

co
nt

ro
l s

ig
na

ls

Data_out

Wait_request

CS

Data_in

rd/ wr

Fig 15: Embedded system architecture.

Table 4. Results of previous works.

Technology

Occupied area Throughput

Mpixels/s Inverse 4x4 intra

prediction

Inverse

quantization

Inverse

transform

[4] FPGAXilinxC2V1500 - 135.306 kgates 1586

[5] HW chip 0.18µm 71 kgates 53 kgates 30.3

 [21] STRATIX II 37440 LUTs 1151 LUTs 4152 LUTs -

 Proposed

work

Stratix III 991 LUTs 1776 LUTs 1755 LUTs 360

TSMC 0.18μm 9.415 kgates 18.937 kgates 13.199 kgates 276

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

27

Table 5. Proposed architecture synthesis results.

Total Pins 201 (27%)

ALUTS number 15.470 (13.61%)

Registers number 12259(9.3 %)

Memory (bits) 2.196.832 (39%)

Blocks DSP number 36 (9%)

In term of time execution, software intra process takes

26.51ms in one frame of Forman sequence. Concurrently,

accelerator is executed in 5.31 ms with transfer time. Despite

of transfer time importance, accelerator is faster than software

execution by a factor of five. Similar results are proved for

Akiyo bitstream. Results are given in details in table 6.

Table 6. Time execution for Forman and Akiyo.

Time execution(ms) Forman Akiyo

Software 26.51 22.08

HW/SW 5.31 4.94

Gain 5 4.5

8. Conclusion
In this paper, co-design architecture of H.264 decoder was

developed. Hardware accelerator is 4x4 intra chain. It contains

4x4 intra prediction, inverse quantization and inverse

transform. Hardware design is optimized to assure tradeoff

between video time constrain and hardware on chip area. As

results, accelerator speed is greater than 20% software speed.

In addition, real time for CIF@30frames/s is assured for the

proposed accelerator. FPGA area is still available to add other

accelerator. Next block to be implemented as hardware IP is

Inter prediction. Since inverse transform and inverse

quantization which are developed in this work, are the same

for intra 4x4 and inter chain, all inter chain will be

implemented when design inter prediction block.

9. References
[1] Wiegand (Ed.), T, “ Draft ITU-T Recommendation

H.264/AVC and Draft ISO/IEC 14496-10 AVC”, Joint

Video Team of ISO/IEC JTC1/SC29/WG11 &ITU-T

SG16/Q.6 Doc. JVT-G050, Mar.

[2] Werda. I, Dammak. T, Grandpierre. T, Ben Ayed MA,

Masmoudi N, “ Real-time H.264/AVC baseline decoder

implementation on TMS320C6416”, Springer-Verlag

2010, J Real-Time Image Processing.

[3] Warsaw .T, Lukowiak. M, “Architecture design of an

H.264/AVC decoder for real-time FPGA

implementation”, Application-specific Systems,

Architectures and Processors (ASAP'06), 2006 IEEE.

[4] Fan C.-P. and Cheng Y.-L., “FPGA implementations of

low latency and high throughput 4x4 block texture

coding processor for H.264/AVC”,Journal of the Chinese

Institute of Engineers, vol. 32, no. 1, pp. 33–44, 2009.

[5] Kun Y, Chun Z, Guoze DU, Jiangxiang XIE, Zhihua W,

“A Hardware-Software Co-design for H.264/AVG

Decoder”, Solid-State Circuits Conference, 2006.

(ASSCC). IEEE Asian pages : 119-122.

[6] WANG S-H, PENG W-H, “A Software-Hardware Co-

Implementation of MPEG-4 Advanced Video Coding

(AVC) Decoder with Block Level Pipelining”, vol. 41,

no. 1, pp. 93-110, 2005.

[7] Ben Atitallah A., Kadionik P., Masmoudi N., Lévi H.

“Design FPGA implementation of a HW/SW Platform

for Multimedia Embedded Systems”, Automation for

Embedded Systems Journal, Pages 1-19, Springer 2008.

[8] Babionitakis K., Doumenis G., Georgakarakos G.,

Lentaris G., Nakos K., Reisis D., Sifnaios I.,

Vlassopoulos N., «A real-time H.264/AVC VLSI

encoder architecture», Journal of Real-time Image

Processing , vol. 3, no. 1-2, pp. 43-59, 2008.

[9] Tran X-T., Tran V-H, “An Efficient Architecture of

Forward Transforms and Quantization for H.264/AVC

Codecs”, REV Journal on Electronics and

Communications, Vol. 1, No. 2, April – June, 2011.

[10] Kthiri M., Kadionik P., Le Gal B., Lévi H., Ben Atitallah

A., “Performances analysis and evaluation of Xenomai

with a H.264/AVC decoder”, ICM 2011.

[11] Damak T., Werda I., Samet A., Masmoudi N., “DSP

CAVLC implementation and Optimization for

H.264/AVC baseline encoder”, 15th IEEE International

Conference on Electronics, Circuits, and Systems,

ICECS 2008, MALTA.

[12] Richardson, I.E.G ,”H.264/AVC and MPEG4 video

compression. Video Coding for Next Generatiopn

Multimedia”, Wiley editor, 2003.

[13] Damak T., Werda I., Ben Ayad M-A, Masmoudi N, “An

Efficient Zero Length Prefix Algorithm for H.264

CAVLC Decoder on TMS320C64”, 2010 International

Conference on Design & Technology of Integrated

Systems in Nanoscale Era (DTIS).

[14] Malavar, H. Hallapuro, A. Karczewicz, M. Kerofsky, L.

“Low complexity transform and quantization in

h.264/AVC”, IEEE Transactions on circuit and system

for video technology, Vol. 13, No. 7, pp. 598-603, 2003.

[15] Soon-kak Kwon, A. Tamhankar, K.R. Rao, “Overview

of H.264/AVC / MPEG-4 Part 10”, Journal of Visual

Communication and Image Representation, Vol. 17, No 2

, pp 186–216, Apr. 2006.

[16] Kessentini A., Kaaniche B., Werda I., Samet A.,

Masmoudi N., “Low complexity intra 16x16 prediction

for H.264/AVC” International Conference on Embedded

Systems & Critical Applications ICESCA,2008, Tunisia.

[17] Werda I., Chaouch H, Samet A, Ben Ayed M-A,

Masmoudi N., “Optimal DSP Based Integer Motion

Estimation Implementation for H.264/AVC Baseline

Encoder”, The International Arab Journal of Information

Technology, Vol. 7, No. 1, January 2010.

[18] Damak T., Werda I., Masmoudi N., Bilavarn S., “Fast

prototyping H.264 deblocking filter using ESL Tools”,

2011 8th International Multi-Conference on Systems,

Signals & Devices,SSD.

[19] Stratix III device, http://www.altera.com/

[20] Artisan Components. TSMC 0.18μm 1.8-Volt SAGE-

XTM Standard Cell Library Databook, 2001.

[21] Lindroth T, Avessta N, Teuhola J, Seceleanu T,

“Complexity Analysis of H.264 Decoder for FPGA

Design”, ICME 2006.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4197565
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4197565
http://academic.research.microsoft.com/Journal/11709/journal-of-real-time-image-processing
http://academic.research.microsoft.com/Journal/11709/journal-of-real-time-image-processing
http://www.altera.com/

