
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

51

Encryption of Compressed MultiMedia Data

Mohammad
Jafarabad

Ph.D student, Xidian
University, xi'an, China

Mahnaz Rafie
Young Researchers Club,

Ahvaz Branch, Islamic
Azad University, Ahvaz,

Iran

Samira Khodkari
Payam Noor University,
Dastjerd Branch, Qom,

Iran

Zahra Alizadeh
Payam Noor University,
Dastjerd Branch, Qom,

Iran

ABSTRACT
To send multimedia data over an insecure communicational

network with limited bandwidth, we need an organized

management for creating and sending information. So far,

there have been a few methods proposed from the

combination of compression with symmetric encryption, for

sending these files. In this paper, using pipeline compression

with implementation upon Huffman algorithm, instead of

usual compression, is proposed. Moreover, instead of utilizing

symmetric encryption algorithms with a low level of security,

the public key encryption algorithms are used. The chosen

asymmetric encryption algorithm, for implementing some

operations on multimedia data, is similar to RSA encryption

and uses the ab mod m expression to generate the key.

Moreover, in this paper there has been a circuit proposed with

the goal of increasing the speed of the located multiplier in

this mathematical expression. Also, considering the existence

of the adder in encryption multiplication circuit, and

compression circuit, the use of an special adder is

recommended for improving the speed of these parallel

multimedia computations.

Keywords
Multimedia data, multiplication, compression, asymmetric

encryption, coding.

1. INTRODUCTION
In recent century, multimedia systems have made a dramatic

progress such as accessing to modern services like Internet

TV, Video Conference, Video Telephony, Video Sharing

Websites. With the daily increasing number of multimedia

systems' users, the security issue becomes even more

important than before because as information technology

grows and advances in network-based communications,

spying software, hackers, and viruses would try harder to

access the information. For instance, nowadays in big

companies, instead of using cable CCTV cameras they use

wireless cameras with the ability to transfer voice and video,

simultaneously. Considering the existing security threats

during data transfer wirelessly, designing some systems for

monitoring the security of the data transfer is necessary.

By 2015, over 60 percent of the stored data throughout the

world will be multimedia data. [6] Sending these data using

the network is time consuming. Taking into account the

security issues, encryption must be applied on the data prior to

sending procedure, which will impose an increase in the size

of multimedia. A solution for this problem is to use

compression. Applying compression (data size decreasing)

and encryption (data size increasing) upon the data prior to

sending, and implementing decryption and decompression on

the receiver side, requires a specific period of time. So far,

there have been many algorithms proposed for symmetric

encryption, which have been used for encrypting the

multimedia data.

[7], [17] On the other hand, since asymmetric encryption

algorithms lower the speed, they have been used rarely for

multimedia data. Considering the vital role of security and

speed together, it is possible to propose some methods to

improve public key encryption speed, and pipeline

compression operation. The rest of the article will be as

follows: in section 2 the basics of implementing compression

algorithm on multimedia data is discussed. Section 3 is about

an introduction for encryption, especially public-key

encryption. Moreover, section 4 is devoted for proposing a

method to combine encryption procedures with compression,

and related issues to information coding. Also the hardware

implementation of the aforementioned method is proposed. In

section 5 we have main idea and comparison with previously

proposed methods. Finally, section 6 is for the conclusion.

2. FAST DATA COMPRESSION

2.1 pipeline compression
Data compression is the representation of an information

source (e.g. a data file, video signal, speech signal, an image)

as accurately as possible using the fewest number of bits. [11]

The gigantic volume of the data traffic across the network,

high price of bandwidth, and large volume of multimedia data

are the reasons that the need for compression is even more

than before, these days. Most of the multimedia data that need

to be stored on a memory or sent over the network, consist of

some long sub-strings with similar properties. This means that

a series of similar sub-strings are sent, periodically. While

sending data in lower volumes, distinguishing these sub-

strings is not affordable, however when sending these

repetitive sub-strings for a long time is required, we need a

method for organizing, and decreasing the size of the data

being sent. To transfer a one-hour audio file with 44 K

sample/sec and 16-bit stereo, using two channels we must

transfer 3600*44000*2*2 bits of data, which is equal to 633.6

MB, size of data which could be reduced up to ten times using

the compression algorithms in MP3 format. Additionally, to

send a colorful image of 500*500 pixels without compression

we need 750 KB which could drastically decrease 10 to 20

times using JPEG format. Moreover, for transferring a one-

minute real time video file, full size, and colorful we need

60*30*640*480*3 bits of data, which is equal to 1.659 GB

which could reach up to 200 GB for a two-hour movie.

MPEG21 employs some compression techniques, and reduces

this massive volume to 3.9GB, that is equivalent to one

DVD.[11] Nowadays, different algorithms for compressing

the information on multiple channels are in use, and in some

cases, multiple compression algorithms are used for one type

of data, simultaneously. Compression techniques try to reduce

the data rate without losing the desired quality, however,

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

52

sometimes it is highly required to compress the information as

much as possible. For example, for a multimedia data,

compressing in FLV, MPEG, WMV, MP4, AVI and other

formats could be employed. For instance, for compressing a

movie we can eliminate many of the middle frames, and using

the consecutive frames technique reduce the size of the data.

Compression algorithms are categorized in two main groups

of lossy and lossless. In lossless algorithms, after

decompressing, all of the information could be recovered

without any change, and that is why this algorithm is also

known as the reversible compression. However, in lossy

compression, it is probable to lose a fraction of data while

doing decompression procedure, and as a result, an accurate

copy of the resource file cannot be obtained. [16] These

implemented irreversible changes on the data, are to reduce

the size of the information. Digital images, and multimedia

files are some of the sources, which use lossy compression

technique to decrease the size. The original data cannot be

retrieved from the compressed data unless the compression

algorithm is known. However, this does not mean that these

systems possess a high level of security because using

hardware methods the compressed data could easily be

decompressed. The foundation of all coding algorithms,

including compression and encryption, is based on

mathematical calculation.[8] If we could compress a

multimedia data for times, as a result, a drastic decrease in the

size of the data will be acquired. Figure 1 demonstrates the

pipeline compression.

Figure 1. Pipeline compression

Here, we will propose a method for pipeline compression that

could be implemented on Huffman compression algorithm. In

the following, we will explain one of the most important

coding algorithms named Huffman Algorithm, which is used

to code the multimedia data for compression.

2.2 pipeline Huffman coding
In 1951, Huffman chose the problem of finding the efficient

binary code as a topic of research for one of his courses in

MIT University. He succeeded to introduce the idea of

ordering based on repetition as an efficient solution for the

problem. In his method, Huffman has eliminated the

drawback previously seen in semi-optimal Shannon-Fano

coding. Instead of building the tree in up-down direction, he

built it in down-up direction. [12] Huffman coding is a

method to code a sequence of data items with the minimum

number of bits necessary, and it is based on the fact that the

probability of the symbols in the compressed files has already

been obtained. [13] However, if prior to implementing the

Hufman algorithm these probabilities were unknown, it is

necessary to firstly calculate the occurrence frequency of each

of the symbols, and then by drawing the Huffman tree the

compression could be accomplished. There have been many

papers about hardware implementation of Huffman code

published ([12], [5], [13], [10]). In this paper, the proposed

method in [11] is used to implement the pipeline algorithm.

Figure 2. A Huffman tree is partitioned by the cut lines xx, y-y,

and z-z. [11]

Figure.2 suggests a method to cut the Huffman tree for

executing the pipeline procedure, and eventually demonstrates

its implementation in an MPEG video system. For each one of

the clusters in Huffman tree a specific table is considered on

which the Huffman algorithm will be executed, in a parallel

manner.

Figure 3. A Huffman circuit [11]

The address-producer block or Look-Up Table (LUT) is the

central block of the whole design. This block, depicted in

Figure.3, is used to produce the addresses in LUT for the

symbols. The input data to the address-producer block is a 16-

bit codeword slice which is obtained from the FIFO RAM.

This slice will be broken into a group of codewords, and each

one these codewords is equal to one Huffman tree with

minimum weighted path length from the root[9]. In this

example, each codeword is an address, which refers to the

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

53

next cluster in Huffman tree. The address producing stage

initiates with dividing the 16-bit codeword slice into groups

with the equal size of Lm, which is the length of the longest

branch of the cluster in the tree. In our example, the length of

the longest branch of the cluster is equal to four (Lm=4), and

as a result, the input data will be divided in four groups. Since

all we have is 16-bit data, we will have four groups of 4-bit

data. The input data will simultaneously move towards the B0,

B1, B2, and B3 registers. Next step is to use a 4 to 1

multiplexer to transfer one of these registers to the 7-bit

register C.

To design LUT table, two Barrel shifters, and two 2x4

Decoders re used. The remaining steps of the hardware

implementation of Barrel Shifter until reaching the LUT

address register is covered in [12]. As depicted in Figure.3, in

the structure of LUT one ADDER is also used to calculate the

summation result of LUT relative address and LUT offset

address. In section 4, for improving this diagram a method is

proposed.

3. SYMMETRIC ENCRYPTION AND

PUBLIC KEY CRYPTOGRAPHY
Encryption is the knowledge of studying and recognition of

principles and methods of transferring or storing data in a

secure manner. Essentially, encryption is about changing the

context of a message, using one encryption key, and one

encryption algorithm. [14] Here, both the encryption and

decryption procedures are handled using the same key. In this

method, firstly, sender or receiver generates a secure key, and

then they generate a copy of this key and send it to the other

end using a secure communication channel. The only

drawback of this algorithm is that in the first step a key, which

is the most important part of encryption, must be exchanged

between the communication parties. In the case that the

intruder could access the exchanged key in the first phase of

starting communication, they can decrypt all the information

that is going to be sent or received after that, easily.

Public key encryption is another method of encryption, which

is for increasing the security level. In this method, the receiver

generates the private and public keys. After that, it will make a

few copies of the public key and sends them to the senders.

Moreover, it is possible to use one specific pair of keys for

each sender. Sending the public key over the network causes

no security issue. After receiving the public key, the sender

codes its data and sends it to the receiver. This coded data on

sender side is also known as cipher text. The sender generates

the cipher text, however, even the sender itself is not able to

turn it back to the plain text format. The sender must send the

cipher text to the receiver so that the receiver could decrypt it

using the private key. The essential point about this method of

encryption is that for initiating the data transfer operation, the

receiver must generate the key. Stages of production and

transfer of keys in asymmetric encryption decrease the speed

of encryption, but also increases the security compared to

symmetric methods.

4. COMBINATION OF

ENCRYPTION AND PIPELINE

COMPRESSION OPERATIONS
Establishment of absolute security in sending video files over

network requires the simultaneous use of encryption and

decryption operations. [4] In the proposed method of this

paper, the encryption and compression algorithms will be

applied on multimedia data, separately. Taking into account

that the encryption and compression happen on one side, and

decryption and decompression take place on the other side of

communication, there must be an order to perform these

operations.

Figure 4. Combination of encryption and compression

For example, in Figure.4-A, first the encryption and then the

compression is done by the sender. However, on receiver side,

the data is first decompressed but the decryption operation

cannot be handled because decompression of multimedia data

is lossy which means that some fraction of the sent cipher text

is lost, thus decryption is not possible. However, if the

consecutive process of encryption and compression is done

according to Figure.4-B, then there will be no problem in

decryption phase. The reason, as depicted in the Figure 4, is

that the encryption operation is implemented on the

compressed data, and the same data without any alteration

will be decrypted on receiver side. Considering that the

encryption operation is lossyless, the compressed data is

directly available, without any change, on the output. In the

end, the decompression operation can be executed to restore

the file. As shown in Figure4.B, a video stream is converted to

MPEG stream with decreasing the size and in a highly secure.

4.1 Encryption with MPEG standard
The MPEG file is a set of frames which can be categorized in

three major groups, namely: I-frames (Intra frame), B-frames,

and P-frames (Predict table frame). Figure.5 shows the order of

these frames in a slice layer.

Figure 5. I-frames , B-frames and P-frames

 I-frames provide the least amount of compression, however, if

in video streams compression only I-frames were used there

would be no need to other frames in decoding. The second type

of frames is P-frames, in which we utilize the data located in

previous frames to establish compression, which results in

higher level of compression compared to I-frames. The third

type of frames is B-frames, which use the previous and

forward frames for compression. The highest level of

compression is achieved using B-frames. One of the methods

to encrypt video files is to implement the encryption operation

on all of the frames. Moreover, this would provide us with the

highest security level but due to the increase in calculation

complexity, we would suffer from a drastic decrease in speed.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

54

To avoid this speed reduction, a threshold has to be defined

between speed and security, which requires selection of a

specific group of frames for encryption.

There have been three major solutions proposed for choosing

an appropriate set of frames for encryption. [15] First solution

was proposed based on a theory that it is not possible to restore

B-frames and P-frames without having any information about

I-frames. Here, we only encrypt the I-frames which results in

80-85 percent saved processing time. In the second method, all

I-macroblocks will be encrypted within I,P, and B frames

which brings about 65-75 percent processing time but with

lower speed compared to previous algorithm. Finally, we have

encryption of I-frames and headers of predicted macroblocks.

This algorithm is the most secure and yet the slowest

encryption algorithm for video streams with the processing

time equal to 25-65 percent.

4.2 Speed and security improvement for

encryption and compression on video

streams
Encryption and compression operations require high

computational time, which leads to a decrease in the speed of

system. In the proposed method, public key encryption is used

to encrypt the multimedia data. This results in higher security

compared to previous methods of symmetric encryption, which

were used for multimedia data. As a result, using the public

key acquires higher level of security. Additionally, in this

method the encryption is implemented only on I-frames

because with changing the encryption algorithm, we trust the

level of security and do not need to encrypt the I-macroblock.

Taking into account previously discussed issues; the main

focus in the proposed method is on the speed. The speed of

public key algorithms depends on the computational

complexity of ab mode m. According to Figure.3, compression

algorithm also needs an adder, which we suggest that adder to

be a Wallace tree adder, to improve the speed. Moreover, for

improving the speed of public key encryption, we use a fast

multiplier.

The proposed multiplier reduces the delay and consumed

power in the circuit. Additionally, to improve the speed of the

multiplier, we have implemented the multiplier using the

Wallace tree adders. Although calculations such as finding

prime numbers or calculations in Euler's theorem, Fermat's

theory, and Euclid's theory are some part of encryption

process, but the highest cost in important cryptography

systems such as RSA and Diffie-Hellman is related to

calculating the result of ab mod m. There are three methods to

calculate this expression.

The first group of these methods contain some procedures ,

which improve the speed of exponential operation. As a few

examples we can refer to sliding window and M-ary methods.

In these methods, the bits are clustered in a special way and by

scanning them from left to right the fastest calculation method

is achieved. For instance, in [33] by using 4-ary method, M506

is obtained only by using 14 multiplication operations.

The second way includs some methods, which utilizes

multiplication operations in order to accomplish the

exponential operations. It means that they compute ab as

multiplying a by itself b times, and then they use a method to

reduce the number of partial products. The Booth algorithm is

one of these methods which take advantage of re-coding the

multiplicand and the multiplier to decrease the complexity of

multiplication computation.

The third group of methods which are more important in this

article are some methods that decrease the number of partial

products by a new scheme of adders. It means that instead of

decreasing the number of partial products we decrease the

process of adding those product, which leads to increasing the

number of adders in the circuit.

5. THE MAIN PROPOSED IDEA
In previous sections, encryption and related computations were

described. Also, some good ways to speed up the coding

process were introduced. In this project we plan to use the

methods outlined in Part B Section IV, such as implementing

the encryption process by using full adder technique.

Moreover, Section 2 provides a rapid compression

implementation. In the rest of the section, the pipeline

Huffman coding was proposed for rapid implementation of the

multimedia data compression. In the circuit presented in [11],

the Huffman tree was obtained by an adder. So far, the method

of implementing the encryption and compression algorithms,

using adders, is described. Other methods (Multiplication –

exponent) also have been compared until now. In this section

we plan to propose one of the appropriate adders to use in

these 2 algorithms. Designing of a suitable adder is obtained by

utilizing a good VLSI design. An optimal VLSI design should

increase the speed and energy-efficiency of the adders, and

decrease the required area for each one of them. Among the

studied papers in this field, a scheme that was proposed in [18]

is for implementing the adders simultaneously in encryption

and compression. A 64 bit adder with UMC 2.5 V, 1-Poly, 5-

Metal, CMOS technology is designed in [18] which is 20%

faster than conventional architecture adder. The reasons for

choosing encryption, compression and advantages of each

method were discussed in previous sections. Now we introduce

the reason of using full adders in multimedia systems. The

multimedia processor chips use digital signal processing for

arithmetic operations such as adders. High delays of some

adders lead to a decrease in video file processing speed. Using

the proposed adder in [18], we can increase the process speed

for adding operation in multimedia file. Using this type of

adder can be the best proposal for the implementation of

concurrent operations of file compression and encryption in

multimedia data. Also this adder has 8% less delay and 12%

more speed compared to Brent – Kung Adder.

6. CONCLUSION
Implementing compression and encryption on multimedia data

is a complex issue. Utilizing mathematical computations could

be a contributing factor to decreasing the complexity of these

calculations. In this paper, we have proposed a method for

implementing the Huffman tree using the pipeline procedure

for compression. In this method, we cluster the Hauffman tree

and implement it by using an adder, and also for encryption we

utilize a multiplier to handle the arithmetic operations. In this

paper, a multiplier is used to improve the operational speed.

Furthermore, we have proposed to use Wallace adder in

encryption and compression, simultaneously. Considering the

advantages of compression, public key encryption, and optimal

multiplication algorithms in [1], [2], and [3], the proposed

method will trump the previous techniques. The better

operation of the system based on increasing security, and

reducing the computational speed are achieved without any

change in breaking the mathematical encryption functions, and

also with the highest level of compression.

http://www.google.com/url?sa=t&rct=j&q=fermat+theory&source=web&cd=4&ved=0CGUQFjAD&url=http%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FFermat%2Btheory&ei=1aXRT5TeD83Ssgb8kazeDw&usg=AFQjCNFEpXFXQiyBUkZ4-XHzux3--IKleg
http://www.google.com/url?sa=t&rct=j&q=fermat+theory&source=web&cd=4&ved=0CGUQFjAD&url=http%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FFermat%2Btheory&ei=1aXRT5TeD83Ssgb8kazeDw&usg=AFQjCNFEpXFXQiyBUkZ4-XHzux3--IKleg
http://www.google.com/url?sa=t&rct=j&q=fermat+theory&source=web&cd=4&ved=0CGUQFjAD&url=http%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FFermat%2Btheory&ei=1aXRT5TeD83Ssgb8kazeDw&usg=AFQjCNFEpXFXQiyBUkZ4-XHzux3--IKleg

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.19, December 2012

55

7. REFERENCCES
[1] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone,

Handbook of appild cryptography. The CRC Press series

on discrete mathematics and its applications. CRC Press,

2000 N.W. Corporate Blvd., Boca Raton, FL 33431-

9868, USA, 1997.

[2] A.K. Jain, “Fundamentals of Digital Image Processing”,

Prentice-Hall, Inc., A Division of Simon & Schuster

Engelwood Cliffs, New Jersey, 1989.

[3] C. Adams and S. Lloyd, Understanding PKI: Concepts,

Standards, and Deployment Conciderations, 2nd Edition

(Addison-Wesley, 2003), 322 pp. [Korean edition:

INFOBOOK (Person Education), 2003].

[4] C.C. Lu and S.Y. Tseng, “Integrated Design of AES

(Advanced Encryption Standard) Encrypter and

Decrypter”, in Proceedings of the IEEE International

Conference on Application-Specific Systems, PP. 277-

285, July 2002.

[5] R. Hashemian, “Design and Hardware Implementation of

a Memory Efficient Huffman Decording”, in

Proceedings of the IEEE Transaction on Consumer

Electronics, Vol.40, No.3, PP.345-352, Agust 1994.

[6] G. Engels and S. Sauer, Object–oriented Modeling of

Multimedia Applications, Handbook of Software

Engineering and Knowledge Engineering, Vol. 2, PP. 21-

53, World Scientific, Singapore, 2002.

[7] G. Boato, N. Conci, V. Conotter, F.G.B. De Natale, and

C. Fontanari, “Multimedia Asymmetric Watermarking

and Encryption”, Electronics Letters, Vol .44, No.9, PP.

601-602, April 2008.

[8] H.D. Lin and D.G .Messerschmitt, “Designing a High –

Throughput VLC Decoder PartII-Parallel Decording

Methods”, In Proceedings of the IEEE Transactions on

Circuits and Systems for Video Technology, Vol. 2, PP.

197-206, June 1992.

[9] H. Park and V.K. Prasanna, “Area Efficient VLSI

Architectures for Huffman Coding”, in Proceedings of

the IEEE Transactions on Circuits and Systems, Analog

and Digital Signal Processing, Vol .40, No. 9, PP. 568-

575, September 1993.

[10] I. Hifn, The First Book of Compression and Encryption,

hifn whitepaper, www.hifn.com/docs/a/the-first-book-of-

compression-and-encryption.pdf.

[11] J. Kim, J. Kim, and C.M. Kyung, “A Lossless Embedded

Compression Algorithm for High Definition Video

Coding”, in Proceedings of the 2009 IEEE International

Conference on Multimedia and Expo, ICME 2009, PP.

193-196, New York City, NY, USA, 2009.

[12] L.Y. Liu, j.F. Wang, R.J. Wang, and J.Y. Lee, “Design

and Hardware Architectures for Dynamic Huffman

Coding”, IEE Proceedings, Computers and Digital

Techniques, Vol. 142, No. 6, PP. 411-418, Novomber

1995.

[13] M. Benes, S.M. Nowick, and A. Wolfe, “A Fast

Asynchronous Huffman Decoder for Compressed-Code

Embedded Processors”, in Proceedings of the 4th

International Symposium on Advanced Research in

Asynchronous Circuits and Systems (ASYNC '98), PP.

43-56, San Diego, CA, USA, IEEE Computer Society

1998.

[14] M. Hassaballah, M.M. Makky, B. Youssef, and B.

Mahdy, “A Fast Frastal Image Compression Method

Based Entropy”, in Proceedings of the Electronic

Letters on Computer vision and Image Analysis, Vol. 5,

No. 1, PP. 30-40, 2005.

[15] M. Ogata, T. Tsuchiya, T. Kubozono, and K. Ueda,

“Dynamic Range Compression based on Illumination

Compensation”, in Proceedings of the International

Conference on Consumer Electronics, ICCE, Vol. 47,

No. 3, PP. 282-283, 2001.

[16] S. Dikbas and F. Zhai, “Lossless Image Compression

using Adjustable Fractional Line-Buffer”, in

Proceedings of the Signal Processing: Image

Communication, Vol .25, No. 5, PP. 345-351, January

2010.

[17] X. Yi, C.H. Tan, C.K. Slew, and M.R. Syed, “Fast

Encryption for Multimedia”, in Proceedings of the IEEE

Transactions on Consumer Electronics, Vol. 47, No. 1,

PP. 101-107, February 2001.

[18] S.X. Guang, M.Z. Gang, and L.F.Chang, “A 64 bit

Parallel CMOS Adder for High Performance

Processors”, in Proceedings of the 2002 IEEE Asia-

Pacific Conference on ASIC, Vol. 40, No. 3, PP. 205-

208, June 2002.

