
International Journal of Computer Applications (0975 – 8887)  

Volume 59– No.17, December 2012 

38 

A Novel Methodology to Protect from Attacks using 

Multiple Hashing Algorithms 

 
Boreddy Nikhil Reddy 
Bachelor of Engineering 

Manipal Institute of Technology 
Manipal,Karnataka, India 

Nimit Acharya 
Bachelor of Engineering 

Manipal Institute of Technology 
Manipal,Karnataka, India 

Kishore Bhamidipati 
Asst. Professor – Senior Scale 
Manipal Institute of Technology 

Manipal, Karnataka, India 

 

ABSTRACT 

Many hashing techniques have been developed to secure data 

and store information like passwords, in the form of hash 

codes, which appear as a sequence of random characters. The 

hashing algorithms used have the pitfall that they can be 

reverse engineered using large tables that contain hash codes 

for frequently used passwords. In this paper a methodology is 

presented to protect against such attacks by using multiple 

hashing algorithms together.  

General Terms 

Security, Hashing 

Keywords 

Security, Hashing, MD5, SHA1 and Secure Passwords. 

1. INTRODUCTION 
In this age of Information Technology protecting the identity 

of an individual is of immense importance. The corporations 

spend a lot of resources to enhance the level of security for a 

client in order to protect his credentials. As the techniques to 

secure data become more advanced, even the techniques to 

breach security are advancing. So there is a need to constantly 

improvise the methodologies used to protect data.  

Depending on the requirements as well as the usage of data, 

security is implemented through various methods. Encryption 

and hashing are two different techniques used to secure data 

or credentials in data warehouses. Encryption is used to secure 

messages during message transfer. Both the sender and 

receiver share a pass-phrase (key). Any encryption 

methodology changes the plain text into cipher which is 

totally random jumbled characters which make no sense. The 

plain text can only be got back after providing the privately 

shared pass-phrase to the appropriate algorithm used. So 

basically the sender encrypts the data and sends the cipher to 

the receiver who has to provide the pass-phrase in order to 

decrypt the cipher and view the plain text. On the other hand, 

hashing is a one-way cipher such that it is not possible to 

decrypt the cipher using any known technique. It is a message 

digest, meaning it generates a unique fixed length cipher for a 

particular input and which is not possible to reverse 

engineering provided you have only the cipher. Typically it is 

used to store passwords in the databases, such that only the 

hashed passwords are stored. When the user provides the plain 

text password it is hashed using the same algorithm and then 

compared with the one in the database and the user is 

authenticated. 

In this paper an advanced hashing technique is presented to 

increase the level of security and to counter brute force 

attacks. There are few hashing algorithms which are 

commonly used such as MD5, SHA1, SHA2 etc. The main 

advantage of hashing is that even if the attacker manages to 

gain access to the database it is not possible to reverse 

engineer the hashes and to get back the plain text passwords.  

But now it has become easier to crack the traditional hashing 

algorithms using rainbow tables and this is explained in detail 

in the next section so an advanced hashing technique is 

proposed which carries out hashing 2 times and also takes into 

account the unique user names to protect the integrity of the 

system.  

In the following section, the traditional MD5 algorithm as 

well as SHA1 algorithms and how they work using examples 

are discussed. In section 3.0 a new methodology which makes 

use of both MD5 and SHA1 algorithms is described. After 

that in section 4.0 the results of the implementation and 

comparison with the results obtained using the normal 

systems in use are discussed. In 5.0 statistical data is provided 

thereby proving that implementation is feasible as well as 

advantages. This is followed by 6.0 where references are 

cited. 

2. EXISTING SYSTEMS 

2.1 MD5 Hashing 
It stands for Message-Digest 5 Algorithm. It is a 

cryptographic hash which produces a 128-bit hash value. We 

interpret that value as a hexadecimal number which is 32 

digits long. 

         

Fig 1: The above figure shows one operation of MD5[1] 

MD5 processes a variable length input and generates fixed 

length 128-bit output. The input message is divided into 

chunks of 512-bit blocks. If the message length is not 



International Journal of Computer Applications (0975 – 8887)  

Volume 59– No.17, December 2012 

39 

divisible by 512 then it is padded to make it divisible by 512. 

Then if processes the equal chunks as shown above. And it 

basically uses a complicated bit manipulation using XOR 

gates to generate fixed length output.  

2.2 SHA1 
It stands for Secure Hash Algorithm. It was initially designed 

by United State National Security Agency. It produces an 

output of 160-bits which we interpret as 40 hexadecimal 

digits. 

           

Fig 2: The above figure shows one iteration of SHA1[1] 

implementation 

Even this algorithm accepts a variable length input and 

produces a fixed length i.e., 160 bit output. It processes a 

block with 512-bits for each iteration.  It is more complicated 

computationally when compared to MD5 and the bit 

manipulation is achieved by the following operations add, 

and, or, xor, rotate and mod. 

2.3 Problems With the Existing System 
Most of the existing systems hash passwords using either of 

the explained hashing algorithms. But since the hashing 

algorithms like MD5 have been around since a long time, this 

has allowed the attackers to construct rainbow-table which are 

actually pre-computed tables for reversing cryptographic 

hashes. After getting the hash from the database the attackers 

simply look up the hash in the pre-computed table and obtain 

a match and hence the clear text password is revealed. Since it 

is impossible to construct rainbow-tables for all possible 

plain-text passwords, mostly the rainbow-tables are 

constructed for commonly used passwords or strings up to a 

certain length. An example for an existing rainbow-table is 

given below 

 

 

Fig 3: Example of MD5 Rainbow Tables 

Judging by the size and success rate of MD5 we observed that 

present implementation of password only hashing is easy to 

breach. Similarly even there are methods to crack SHA1 

which have been theoretically proved. More advanced 

techniques like SHA2 and SHA3 are being used for few 

applications and are more secure. But using the method of 

rainbow tables it is easy to crack the password generated by 

using such hashing algorithms primarily because domain of 

passwords is restricted in terms of length and no hashing 

algorithm is resistant to attacks via rainbow tables. 

To counter these drawbacks in this paper we propose a 

methodology to increase the security and protect the database 

against attacks using rainbow-tables. 

3. PROPOSED METHODOLOGY 
The proposed model aims at overcoming the drawbacks of a 

single level hashing and making it practically impossible to 

crack the passwords. The algorithm works as follows:-  

While user registration  

• The user enters the user name and password along with other 

details 

• The user name is checked for its uniqueness as there should 

not be any collisions in the database 

• The password is hashed using MD5 and stored as 

hexadecimal digits in temporary memory 

• The MD5 hash of the password is appended to the unique 

user name 

• This entirely new string is given as input for SHA1 

algorithm and a 20-byte output is obtained 

• This 20-byte output is stored as 40-hexadecimal digits in the 

final database for future authentication of the user 

While Log-In process 

• The user enters user name and password 

• The user name is first validated 

• The hashed value corresponding to that user name is fetched 

from the database which will be subsequently used for 

comparison 



International Journal of Computer Applications (0975 – 8887)  

Volume 59– No.17, December 2012 

40 

• The password is hashed using MD5 Algorithm and 32-

hexadecimal digit string is obtained 

• This obtained string is appended to the validated user name 

and new string is formed  

• This new string thus obtained is given as input for the SHA1 

algorithm and the 40-hexadecimal digit output is obtained 

• This output string is matched against the one fetched from 

the database and if they are equal the user’s identity is 

established and he is given access according to his access 

rights 

• If the authentication fails a suitable error message is 

displayed 

            

Fig 4: Operation of our proposed methodology 

4. RESULTS  
The implementation of the proposed model has been done in 

Java 7. In implementation a database of 2999 entries of user 

names and plain text passwords in which no 2 of them are 

same was taken. Then MD5 and SHA1 algorithms were 

applied separately only on passwords and stored the values in 

a different table which contained only these hashes and 

corresponding user name. 

The results stated below are obtained from our 

implementation on a system with specification as follows:  

• Windows 7 Enterprise 32-bit  

• Intel Core 2 Duo @ 2.00 GHz   2.00 GHz 

• IDE used : NetBeans 7.1.1 

• Database Server : MySQL 5.5.24 

 

The mean time taken for hashing 2999 plain text passwords 

from the data base using MD5 algorithm and storing the 

hashes along with corresponding user name in a table is 

184555ms. 

To perform the same using SHA1 algorithm it took 

225907ms. 

 To hash the passwords using the proposed algorithm it took 

308912ms on an average.  This value was averaged over 

several iterations and maintaining the same system conditions. 

The snapshot given below shows the output from one such 

iteration which took 347879ms to hash and store the 

passwords. 

 

Fig 5: Snapshot to show the time taken in hashing 

Example 1: Consider one of the entries in the database with 

user name as stark and password as start 

Our approach 

• Start is given as input to the MD5 algorithm and the 

intermediate hash string is 

ea2b2676c28c0db26d39331a336c6b92 

• This intermediate hash string is append to the user name 

which is stark resulting in a string 

starkea2b2676c28c0db26d39331a336c6b92 

• The above obtained string is given as input to SHA1 

algorithm and the final hash is obtained which is 

5f1605378bb61acc540b116506ac65abeb9598d8 in this case 

and this value is stored in the database 

The following figures show the user name and password for 

first 10 records and the corresponding final hash obtained 

after applying out algorithm. It is impossible to obtain the 

plain text password from the finally hashed string using any 

existing rainbow tables. 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 59– No.17, December 2012 

41 

                                       

 

 

 

 

Fig 6: Sample Input 

 

 

 

 

 

 

 

Fig 7: Output obtained for the above given inputs 

5. COMPARISON 
Table 1. Time taken to compute hashes using different 

algorithms 

Algorithm 
Time Taken for 

2999 entries(in ms) 

MD5 184555 

SHA1 225907 

Proposed Algorithm 

(MD5+SHA1) 

347879 

 

Table 2. Number of possible hashes algorithm wise 

Algorithm 
Possible number of 

hashes 

MD5 232 

SHA1 240 

Proposed Algorithm* 

(MD5+SHA1) 

232*240=272  

*assuming user name set covers a large yet unique alpha 

numeric set of characters. 

 

 

Fig 8: Possible hash space graph 

The graph clearly shows the difference of the size of possible 

hashes using different algorithms. The difference indicates the 

superiority of the proposed algorithm with rest to the already 

existing ones.  

6. CONCLUSION 
By the hashing of the large database of 2999 records we 

observe that our algorithm does impose an overhead over a 

simple MD5 or SHA1 hashing algorithm but this overhead is 

extremely small for each record. This small overhead is 

needed to enhance the security and prevent attacks using 

rainbow tables. Considering the high computation speed of 

any modern computer the extra time taken for hashing and 

storing one record is almost negligible. In our algorithm 

basically a 40 character plus string is being hashed using 

SHA1 to product the final hash from this final hash it is 

impossible to obtain the intermediate hash because such a 

large rainbow table having records up to length 40 is not 

available and it is not feasible to construct such a big table 

even including the random arrangement of hexadecimal digits. 

The collisions that may occur in MD5 algorithm are taken 

care of by using a unique user name and adding it to the 

intermediate hash there by resulting in a unique final hash no 

matter what the input is. 

7. REFERENCES 
[1] Wikipedia 

[2] VH Shear, WO Sibert, DM Van Wie - US Patent 

6,292,569, 2001 - Google Patents. Systems and methods 

using cryptography to protect secure computing 

environments 

[3] M Bagnulo, J Arkko, Support for Multiple Hash 

Algorithms in Cryptographically Generated Addresses 

(CGAs) - 2007 

[4] Hoffman, P. and B. Schneier, "Attacks on Cryptographic 

Hashes in Internet Protocols", RFC 4270, November 

2005. 

[5] Bellovin, S. and E. Rescorla, "Deploying a New Hash 

Algorithm", NDSS '06, February 2006. 

[6] Aura, T., "Cryptographically Generated Addresses 

(CGA)", RFC 3972, March 2005. 

[7] Bagnulo, M. and J. Arkko, "Cryptographically Generate 

Addresses (CGA) Extension Field Format", RFC 4581, 

October 2006. 

[8] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "Secure 

Neighbor Discovery (SEND)", RFC 3971, March 2005. 

http://www.google.co.in/patents?hl=en&lr=&vid=USPAT6292569&id=nrwIAAAAEBAJ&oi=fnd&dq=to+protect+against+attacks+using+multiple+hashing+algorithms&printsec=abstract
http://www.google.co.in/patents?hl=en&lr=&vid=USPAT6292569&id=nrwIAAAAEBAJ&oi=fnd&dq=to+protect+against+attacks+using+multiple+hashing+algorithms&printsec=abstract
http://www.google.co.in/patents?hl=en&lr=&vid=USPAT6292569&id=nrwIAAAAEBAJ&oi=fnd&dq=to+protect+against+attacks+using+multiple+hashing+algorithms&printsec=abstract
http://scholar.google.co.in/citations?user=rC-Z6OAAAAAJ&hl=en&oi=sra
http://scholar.google.co.in/citations?user=KSg1XGEAAAAJ&hl=en&oi=sra
http://www.hjp.at/doc/rfc/rfc4982.html
http://www.hjp.at/doc/rfc/rfc4982.html
http://www.hjp.at/doc/rfc/rfc4982.html
http://www.hjp.at/doc/rfc/rfc4270.html
http://www.hjp.at/doc/rfc/rfc3972.html
http://www.hjp.at/doc/rfc/rfc4581.html
http://www.hjp.at/doc/rfc/rfc3971.html

