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ABSTRACT 

Feature selection and classifier hyper-parameter optimization 

are important stages of any computer-aided diagnosis (CADx) 

system for mammography. The optimal selection for shape 

features, kernel parameter, and classifier regularization 

constant is crucial to achieve a good generalization and 

performance of least-squares support vector machines 

(LSSVMs). This paper presents a morphology-based CADx  

that uses a computationally attractive and unified scheme for 

accomplishing the model selection task.  A heuristic 

parameter search based on particle swarm optimization (PSO) 

not only reduces the dimensionality of the input feature space 

but also optimizes hyper-parameters of the classifier. The 

performance of the proposed shape-based CADx including 

PSO-LSSVM parameter selection method is examined using 

60 microcalcification clusters. Using different cross-validation 

procedures, the proposed PSO-LSSVM demonstrated a good 

generalization ability by producing classification accuracies 

higher than 92%.  The best classification accuracy of 97% 

was obtained using the leave-one-out cross-validation 

procedure.  Comparing the performance of PSO-LSSVM  

with  PSO-SVM method that  uses conventional SVM 

formulation, results demonstrated the attractive computational 

complexity and classification performance of PSO-LSSVM. 
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1. INTRODUCTION 
Mammography continues to be the golden diagnostic imaging 

tool for breast cancer screening. However, human based 

interpretation of mammograms is a time-consuming, error 

prone-task, challenging, and irreproducible even when it is 

accomplished by an expert radiologist. Reading mammograms 

becomes more demanding and difficult when mammographic 

abnormalities being diagnosed are clustered microcalcificat-

ions (MCs). MCs are subtle mammographic findings shown 

on 30-50% of cancer diagnosed using mammography and are 

indistinguishable from surrounding when present in dense 

breast tissue. Presence of MCs is a key to an early detection 

and diagnosis of breast cancer. These challenges and  the 

nature of  MCs  lead to unsatisfactory positive predictive 

value (PPV) of mammography-based breast cancer diagnosis 

[1]-[2]. Hence, computer aided diagnosis (CADx) technology 

is very crucial to assist radiologist in reading mammogram,  

improving the  PPV of mammography by providing 

radiologist with second opinion when double reading stage is 

not feasible most of the time [1].   

Existing CADx  systems [3]-[13] model the diagnosis of 

mammographic abnormalities including microcalcification 

clusters  as a two-class pattern recognition problem 

accomplished in four steps, namely, preprocessing and region 

of interest selection, feature extraction, feature selection, 

differentiating between malignant and benign patterns using  

different supervised learning machines.  Among these 

systems, CADx systems [4],[6]-[9],[11] combined shape 

features [3] of microcalcification clusters and kernel-based 

support vector machine (SVM) and neural network (NN) 

classifiers seem to be more effective. A common drawback of 

CADx systems [8]-[11], which used SVM for pattern 

classification, is the use of standard formulation of SVM 

learning [14]. A standard SVM classifier solves the learning 

problem that is a convex optimization with affine constraints 

using a quadratic programming (QP) method, which expected 

to be impractical for handling large-scale studies, optimization 

the classifier performance and estimating generalization 

ability using k-fold and leave-one-out cross-validation 

procedures, embedded feature selection,  and  hyper-

parameter  selection using exhaustive GA heuristic search 

[10].  

Least-squares support vector machines (LSSVMs) introduced 

by Suykens and Vandewalle [15] convert convex optimization 

associated with the standard formulation of SVM learning into 

a linear system that can be solved by a matrix inversion [15].  

This least square formulation [15,16] not only significantly 

reduces complexity of solving SVM learning problem but also 

provides an efficient mean for estimating the generalization 

ability of a nonlinear SVM classifier and for accomplishing 

feature selection using heuristic methods [17] more 

efficiently.   

SVM learning, including both least square or standard 

formulations, guarantees a minimum generalization error on 

training examples but not necessary on unseen examples. 

Moreover, the feature extraction stage usually produces 

redundant and irrelevant features that causes a curse of 

dimensionality and so a poor generalization capacity of a 
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supervised learning machine. Therefore, it is very essential to 

select appropriate learning model, the best feature subset and 

classifier’s parameters, to ensure an optimal generalization 

ability of the classifier. Instead of performing feature selection 

and classifier model selection task independently, an 

embedded feature selection approach efficiently incorporates 

feature selection during the classifier parameter optimization 

stage. 

 

This paper  presents a morphology-based CADx that employs 

an embedded feature selection and classification approach, 

called PSO-LSSVM,  to   optimize the generalization ability 

of the classification scheme by selecting optimal learning 

model that  consists of the  smallest and most discriminative 

shape features and  optimal parameters of  a kernel-based 

LSSVM classifier. The proposed PSO-LSSVM approach 

employs a particle swarm optimization (PSO) [18,19] 

heuristic search for accomplishing feature selection and for 

selecting the optimal parameters of a kernel-based LSSVM 

classifier. PSO and LSSVM techniques have been proven 

efficient for handling different optimization and pattern 

recognition problems [17].  Further, both LSSVM and PSO 

are simple and easy to implement, which offer tremendous 

computational savings compared to their counterparts GA and 

standard SVM, respectively. The main contribution of this 

paper is the use of PSO-LSSVM scheme for accomplishing 

feature selection and classification stages needed for 

morphology-based CADx of microcalcifications clusters.  

Further, this paper compares complexity and performance of 

the heuristic search based on LSSVM approach with that uses 

a standard SVM classifier.   

The remaining sections of this paper are organized as follows: 

The theoretical background of pattern classification using 

LSSVM and heuristic parameter selection will be presented in 

Section 2. The proposed morphology-based CADx system 

will be presented in Section 3. Sections 4 and 5 will present 

the experimental results and conclusions, respectively. 

2. BACKGROUND 

2.1  Least squares support vector 

machine 
In principle, least-squares support vector machine (LSSVM) 

[15,16] is similar to standard SVM [14] but the former 

accomplishes learning task by using least-square empirical 

error as an objective function while Hinge loss is used for the 

standard formulation of SVM learning [14]. This different 

loss function significantly affects modeling and complexity of 

the learning process in each method. The least-square 

objective function converts inequality affine constraints into 

linear ones, which modeled and optimally solved as a linear 

system. On the other hand, standard SVM formulation [14] 

models the learning problem as convex optimization with 

equality constraints. Such convex formulation commonly 

solved using more sophisticated solver such as quadratic 

programming (QP) [14].   

For further understanding of least-square SVM formulation, 

consider a binary classification problem where a set of    

training pattern                                with input 

pattern
n

i x   and a class label 1iy .  

Suykens and Vandewalle [15] reformulated SVM learning 

problem as follows:   
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where )( ix   is a none-linear function that maps a pattern 

vector ix into higher dimensions and ie  is the error 

corresponding to the misclassification of pattern ix . 

Comparing least-square formulation [16] with standard SVM 

formulation [14],  three main differences are found; 1) 

equality constrains are used instead of inequality ones, 2) 

squared misclassification error ie  used as cost function 

instead of Hinge loss function employed for conventional 

SVM, and  3) parameter   is equivalent to the regularization 

parameter C  used for processing of misclassification due to 

overlapping training data. 

Now, combining the cost function ),( ewJ  and the set of 

equality constraints expressed as 
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i is Lagrange multiplier  that  can be either positive or 

negative while it must be positive in the standard SVM 

problem [14].   

Applying Karush-Kuhn-Thucker (KKT) conditions [16] for 

optimality leads to the following   
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By re-arranging KKT conditions, the following linear system 

of equations obtained  
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Using a kernel trick with a kernel function )()(),( j
T

iji xxxxK   

that is a positive definite function satisfies mercer  conditions, 

  is rewritten as ),( jiji xxKyyΩ ],.....,[ 1 Lyyy ,

],.....,[ 1 Lα , and 1


 is a L-length  vector of all 1’s.  

Solving for dual space variables i  and  bias b  [15], the 
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decision function of  LSSVM  learning machine classifies  an 

input pattern pX  as follows 

1

( ( , ) ) (6)
L

p i p p i
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y sign K y b
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  X X

Several kernel functions are used in literature , the most  

popular kernel function  is Gaussian or  radial basis function 

(RBF) [11]. An RBF kernel function with bandwidth or 

control parameter    is given by 
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2.2 Embedded feature selection  
An embedded feature selection approach includes feature 

selection stage as another hyper-parameter to be selected 

during optimizing the generalization performance of a 

classifier. Although conventional grid search is 

straightforward method to accomplish model selection or 

parameter tuning task, such approach is impractical and 

computationally expansive when applied to a real valued 

search space or when more than two parameters need to be 

optimized.  More practical parameter optimization methods 

are analytic and heuristic techniques. The objective function 

of the model selection task (i.e. generalization error) is 

discontinues with many local optima, which does not allow 

applying analytical methods directly.  Instead, a smooth 

version of the objective function involved in the model 

selection commonly optimized using iterative gradient-based 

algorithms, which limits the optimality of the analytic 

solution.  

 

2.3 Particle swarm optimization 
Population based heuristic search techniques including genetic 

algorithms (GAs) and particle swarm optimization (PSO) [18, 

19] is more suitable for solving parameter selection problems. 

Generally, a heuristic optimization technique does not 

guarantee an optimal solution in most cases. However, such 

approaches  is  still more attractable than analytical one 

because  a heuristic search  can escape from local minima [2], 

produce a near optimal solution, and perform very well even 

when search space is very large.  Several studies have 

reported the efficacy of PSO over GAs and other evolutionary 

algorithms. Advantages of PSO based search  are mainly the 

simplicity of the search process, ease of implementation that 

is demonstrated by the small number of parameters to be 

adjusted during initialization and search process. PSO also 

accomplishes an optimization task without mutation and 

cross-over operations, which are essential steps of GAs [17].  

 

For a swarm of  M particles, the velocity of the  kth  particle 

is updated using the best personal fitness pBest
k

x  and the best 

global fitness gBest
x   achieved so far as follows  
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where w  representing the inertia of the movement  and is 

typically in the interval [0, 1], 1r  and 2r  are random numbers 

between [0,1], and 1c  and 2c  are non-negative constants are 

the  learning rates.  

Using velocity just computed in (8), the particle location is 

updated as   

   )1()()1(  ttt kkk vxx                                             (9) 

2.4 Performance evaluation 
Performance measures commonly used for evaluating CADx 

systems are classification accuracy, sensitivity (or true 

positive rate), specificity (true negative rate), and area under a 

receiver operating characteristic (ROC) curve. However, for 

small datasets the accuracy measure is more suitable.  The 

classification accuracy as given by (10) is the ratio of 

correctly classified (true positive and true negative) samples 

to the total number of samples.  
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Also, the false positive FPF  and true positive TPF  

fractions are defined as follows  
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where TN  and TP  are the numbers of true positive and true 

negative classifications, respectively. Also, FP  and FN  are 

the numbers of false positive and false negative 

classifications, respectively. 

To estimate these measures, an independent test data must be 

available. Taking into consideration that such test data is 

unseen and have not been used in the feature selection and 

classifier training stages. A k-fold cross-validation procedure 

is usually used to partition the dataset into test and training 

data.  Common values of k are 5 or 10.  An extreme case is 

obtained when k is equal to the size of the dataset. In this 

case, k-fold is denoted as a leave-one-out (LOO) cross-

validation. 

3. MORPHOLOGY BASED CADx 

      USING PSO-LSSVM 
In this paper, malignancy of microcalcification clusters is 

characterized using a three-stage CADx scheme presented in 

Figure 1. A preprocessing step for the automated diagnosis of 

mammographic abnormalities (microcalcification cluster) is 

the region selection stage, where a region enclosing each MC 

cluster is extracted from an input image utilizing a ground 

truth data  provided with each digital mammogram. As shown 

by Figure 1, the first stage is a morphology-based feature 

extraction stage that involves microcalcification segmentation 

[11]-[12] and morphology-based region analysis steps, which 

used 34 shape descriptors to represent each MC cluster.  This 

study employs a shape feature extraction process developed 

and applied in our previous work [12]. In [12], shape feature 

extraction involves a microcalcification segmentation that was 

done using a top-hat morphological transform followed by 

shape analysis of segmented MCs. This process produces a set 

of 34 shape features used to characterize the malignancy of 

each MC cluster. In this study, an index      with the index    
takes values between 1 and 34 is used to refer to shape 
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features from [12]. The set of shape attributes including 

region descriptors of individual microcalcifications (area, 

extent, solidity, compactness, equivalent diameter), boundary 

descriptors such as Fourier descriptor and normalized shape 

moments, and distribution of MCs in the cluster such as 

distance from a cluster centroid.  The number of MCs and the 

number of single-pixel calcifications in MC cluster  are also 

used to discriminate between benign and malignant one. 
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Model Selection 

Feature Selection 
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(Feature subset  &
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Feature Extraction 

     MC  Segmentation  

 Test  
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Fig 1: Characterization of MC clusters using morphology 

features and PSO-LSSVM  hyperparameter selection 

 

The shape feature extraction stage is followed by a heuristic 

parameter selection stage based on PSO in which feature 

selection, dimensionally reduction, and LSSVM parameter 

optimization are accomplished.  The outcome of the 

parameter selection stage is the learning model that consists 

indexes of the selected shape features and optimal parameters 

of nonlinear LSSVM classifier. The discrimination between 

malignant and benign MC clusters is accomplished using a 

supervised a nonlinear least-squares support vector machines 

(LSSVM). Indeed, this paper uses a PSO-LSSVM embedded 

feature selection (or model selection) approach to present a 

unified and an efficient approach for accomplishing feature 

selection and classifier optimization steps, which are very 

important for improving generalization ability of the proposed 

CADx.   

 

4. EXPERIMENTAL RESULTS  

4.1 Mammographic test data  

The proposed morphology-based CADx and PSO-LSSVM 

hyper parameter selection methods   are tested using 60 MC 

clusters.  This dataset is a mixed one that consists of two sets 

of MC clusters. The first set included 25 clusters (12 

malignant and 13 benign) from a mini-mammographic 

database provided by Mammographic Image Analysis Society 

(min-MIAS) [20]. The second group contains 35 MC clusters 

(17 malignant and 18 benign), which obtained from 30 digital 

mammograms produced by a full field digital mammography 

[12]. This paper presents a morphology-based characterization 

of microcalcification clusters that uses only shape features to 

discriminate a benign from malignant cluster. Hence, 

differences in spatial and contrast resolutions between MC 

clusters from different datasets will not impact of the 

classification result but such heterogeneous nature of the 

patterns make the test data more realistic and could improve 

the generalization ability of the classifier. 

4.2 Parameter setup  
The proposed heuristic parameter selection based on the PSO-

LSSVM approach has  adopted an objective function [12] that  

optimized  the generalization ability (classification accuracy ) 

of the proposed CADx by selecting the best and smallest 

subset of shape features and by selecting the optimal learning 

model of the LS-SVM classifier. The learning model of the 

kernel LSSVM classifier consists of the classifier 

regularization constant (    and   the RBF kernel function 

control parameter    .  As for the setting of PSO algorithm, 

the size of swarm was chosen to be 100 particles.  The 

dimension of each PSO particle is 36 coordinates of which 34 

coordinates allocated for  the feature selection process and 

two coordinates for classifier parameter selection task.  The 

population of the swarm was  properly initialized assuming 

that each parameter belongs to a random variable that is 

uniformly distributed in the corresponding search space. As 

for the control parameters of heuristic search process using 

PSO, c1 and c2 were both set to 2, inertia constant ω 

monotonically decreased from 1.2 to 0.4 as the number of 

iteration increases. PSO search process was terminated if a 

maximum number of iteration 50  was  reached or a 

predefined fitness value of 1.0 was achieved, whichever met 

first.  Further, the CADx scheme including features 

extraction, PSO-LSSVM parameter selection and 

classification were implemented in MATLAB software. 
 

4.3 Results analysis  
Results of applying PSO-LSSVM with RBF kernel for 

differentiating between benign and malignant mammographic 

MC clusters using their morphology are presented in Table 1. 

As shown in Table 1 using a leave-one-out cross-validation 

procedure the proposed PSO-LSSVM heuristic parameter 

selection approach has achieved a classification accuracy of 

100%. This perfect performance is obtained using 13 shape 

features, which are also listed in Table 1.  By examining the 

learning model that produces the perfect performance, two 

weaknesses are observed. These challenges are a very high 

regularization constant (γ = 3,634,116) and relatively complex 

feature space that consists of 13 shape features. 

Results also demonstrate that some learning models are 

expected to be more robust and may provide better 

generalization ability of the classification scheme.  For 

instance, a learning model with γ = 481.13 and 7 shape 

features achieves a classification accuracy of 95%, which 

equivalent to true positive fraction of 1.0 and a true negative 

fraction (TNF) of 0.9. Further, results indicate that a 

classification accuracy of 90% is obtained using only 4 

features (the smallest feature space) and reasonable values of 

the kernel and classifier parameters. Clearly, shape features  
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            Table 1. Results of MC cluster classification using PSO-LSSVM  and LOO cross-validation 

γ σ N                             Shape  Features TPF TNF Accuracy Fitness 

604.63 5.55 6 F9,F18,F23,F27,F31,F33 1.0 0.87 0.93 0.2481 

481.13 5.67 7 F9,F18,F23,F24,F27,F31,F33 1.0 0.90 0.95 0.2429 

928.68 4.83 9 F4,F7,F8,F15,F16,F23,F26,F31,F32 0.93 1.0 0.97 0.2642 

3634116 13.28 13 F3,F6,F7,F8,F13,F17,F19,F23,F26,F29,F30,F31,F32 1.0 1.0 1.0 0.2974 

229.84 3.19 4 F9,F18,F23,F27 0.90 0.90 0.90 0.2586 

 

 
Table 2. Best classification results of PSO-LSSVM using different cross-validation procedures 

              

 Cross-validation γ σ N Shape Features TPF TNF Accuracy 

LOO 481.13 5.67 7 F9,F18,F23,F24,F27,F31,F33 1.0 0.90 0.95 

10-Fold 6529.11 9.09 7 F9,F14,F18,F23,F27,F31,F33 1.0 0.87 0.93 

5-Fold 40500.84 13.10 7 F7,F9,F16,F23,F27,F31,F33 0.97 0.87 0.92 

  

for this model are also included in the feature space of the 

learning model that produced the best classification 

performance. 

Although the leave-one-out cross-validation procedure 

represents unbiased estimator of the generalization and it is 

more suitable for small-scale studies, it has a risk of over-

fitting the dataset. To further examine the generalization 

power of the proposed PSO-LSVM classification approach, 

the results are evaluated using k-fold cross-validation 

procedures. Evaluation results using 10-fold and 5-fold cross-

validation are presented in Table 2, which demonstrates a 

good level of robustness and generalization that using PSO-

LSSVM produces classification accuracy of 92% or more 

using different training-testing schemes.  

The paper presents a multivariate feature selection approach 

that uses an embedded framework to evaluate candidate 

features based on their joint discrimination rather than the 

individual power of each feature.  In this work, PSO-LSSVM 

heuristic parameter selection was executed 280 times. 

Features selected by 146 runs, which produce classification 

accuracies higher than 90% were examined to determine the 

most discriminant shape features. This analysis demonstrated 

that some shape features more frequently and significantly 

contributed to the best learning models. These shape 

descriptors are: standard deviation of  region equivalent 

diameter (F7), standard deviation of  region solidity (F9) , 

standard deviation of  region compactness (F23), average and 

standard deviation of distances from a cluster centroid (F26 

and F27), and maximum of the fourth normalized boundary 

moments (F32).  

Using the same test data, this study has compared 

performance and computational complexity of the training 

process using PSO-LSSVM with those of PSO-SVM 

approach. As for parameter selection and classification 

performance, results using different cross-validation methods 

indicate the effectiveness and good generalization ability of 

both PSO- LSSVM and PSO-SVM approaches. That is both 

classification approaches have achieved classification 

accuracies higher than 90%. 

The computational complexity of SVM and LSSVM classifier 

based on the execution time required for accomplishing the 

training stage of the classifiers is compared and presented in 

Table 3. As shown in Table 3, the less computation time 

required for LSSVM training demonstrate the power of least-

square formulation of SVM over the conventional SVM 

formulation. The efficiency of LSSVM was clearer in case of 

leave-one-out cross-validation procedure where the size of the 

training set is the largest and equal to 59 samples. In case of 

LOO cross-validation, training of SVM took about 69.7 

milliseconds compared to 8.3 milliseconds.  It is worth noting 

that the power of LSVM training becomes very visible and 

more attractive when accomplishing PSO-based heuristic 

search where SVM training must to be accomplished for 

every particle of the swarm.  

 

5. CONCLUSIONS 
This paper has discriminated between malignant and benign 

MC clusters in mammograms using shape features and PSO-

LSSVM feature selection and classification approach. The 

proposed PSO-LSSVM employed a heuristic search via PSO 

to accomplish the feature selection process in parallel with 

appropriate selection of the kernel and regularization 

parameters of a kernel-based LSSVM classifier. The proposed 

parameter selection using heuristic PSO-LSSVM method 

provided an efficient and a reliable framework for optimizing 

the performance and generalization ability of kernel-based 

Table 3. Average execution time of SVM training  

(in milliseconds) 

     
Classifier   Cross-validation   

 
 

LOO 10-fold 5-fold 

SVM 69.7 39.5 33 

 LSSVM 8.3 6.2 5.2 
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LSSVM classifier. Compared to a conventional SVM method, 

the LSSVM not only simplifies the computational complexity 

of the learning process, but also it produces a very 

competitive classification performance.  

Results of evaluating the proposed PSO-LSSVM method 

using 60 MC clusters, described by 34 shape features, 

indicated that PSO-LSSVM effectively selected the best  

shape  features, reduced the dimensionality of the input 

feature space, and  determined the optimal classifier 

parameters that produced  the desired classification 

performance. Using different training-testing (cross-

validation) scenarios, the good generalization ability of PSO-

LSSVM approach was demonstrated by producing 

classification accuracies higher than 90%. 

Further improvement of this work includes validating the 

proposed CADx including feature selection and classification 

methods using a large dataset.  The extension of PSO-LSSVM 

parameter selection method to other feature spaces and pattern 

recognition problems is also another potential  future research 

direction. 
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