
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.16, December 2012

19

An Extendible Emulator for Investigating Configuration

Algorithms in Mobile Ad-hoc Networks

Omid Bushehrian

Computer Engineering and IT Department, Shiraz
University of Technology, Shiraz, Iran

Mojtaba Shahkolahi
Department of e-Education, Shiraz University,

Shiraz, Iran

ABSTRACT
In this paper, an extendible mobile ad hoc network emulator

for investigating different configuration algorithms, for

service assignment, is proposed. In this emulator, a

configuration algorithm can be plugged as a Java class at

runtime. The proposed emulator enables the designer to define

different service failure schemes, node movement strategies

and routing protocols. The experimental results show the

usefulness of the proposed emulator in evaluating a service

discovery and assignment protocol from reliability viewpoint.

Keywords
Mobile Ad Hoc Network, configuration algorithm, emulator,

redeployment.

1. INTRODUCTION
Mobile ad-hoc networks (MANET) are P2P networks of

mobile nodes with the ability of communicating to each other

without an underlying infrastructure [2]. MANET’s are used

in a wide range of applications such as communication

between team members in a survival operation at disastrous

situations or between military automotives in battle field

during the missions. One of the main characteristics of

MANETs is the instability of the underlying infrastructure

which makes the service providing and access over these

networks very challenging. MANETs allow ubiquitous service

access, anywhere, anytime without any fixed infrastructure

and its applications such as audio/video conferencing,

webcasting requires very stringent and inflexible QoS. The

provision of QoS guarantees is much more challenging in

MANETs than wired networks due to node mobility, limited

power supply and a lack of centralized control [1].

For example in a military operation assume that cars always

require submitting their local observations to a central planner

node frequently. The planner node is a powerful node with the

high computational and storage capacity which is able to run

complex AI algorithms to plan the subsequent actions of other

nodes (cars).

Therefore, the planner node is providing a service and other

nodes are consuming that. Generally every node can be a

service provider, a service consumer or both. Assuming that a

service can be provided by more than one node (most likely)

with different qualities (i.e. different response times or

reliabilities), the question is how to assign services to

consumers such that the quality of service over the network is

always retained in an acceptable level according to a

predefined objective criterion. A configuration algorithm is an

algorithm that recommends the best service-to-consumer

assignment according to the criteria defined for the network.

This algorithm can either be invoked once a service is

requested by a consumer to recommend it the best provider or

upon a specific event is perceived by a node (service provider

or consumer) such as consumer SLA violation. The

configuration algorithm can be formulated as an optimization

algorithm that aims to find a service-to-consumer assignment

which minimizes the total consumer SLA violations subject to

the fact that the service assignments satisfy the reliability

requirements of the service consumers:

 (1)

Where ci denotes the ith service consumer and vi denotes the

amount of SLA violation of ci which is the difference between

the requested response time by the service consumer and the

response time provided by the service provider. The reliability

requirement of ci is defined in terms of MTTF measure (mean

time to failure) which is constrained to be higher than a

predefined threshold ti. Centralized or de-centralized

algorithms with various cost and optimality degrees can be

proposed to solve this problem. Due to the deficiency of

configurable and extendible emulators to investigate different

configuration algorithms, in this paper an extendible emulator

architecture is presented which enables the researchers to

evaluate their configuration algorithms from different aspects.

The remaining parts of this paper are organized as follows: In

section 2 the related works are presented. Section 3 explains

the architecture and features of the proposed emulator. The

design of the emulator using software design patterns is

presented in section 4. The implementation and evaluation of

configuration algorithms is explained in section 5. The paper

is concluded in section 6.

2. RELATED WORKS
Dynamic (re)configuration and re-deployment algorithms

which aim to improve the quality aspects (such as reliability

or performance) of service providing over MANET’s, have

been studied thoroughly in previous papers: One of them is

the algorithm designed by Poladian[3] which provides a

system infrastructure independent of, and external to,

applications. This algorithm works in three phases: The First

phase is querying all providers for their services. The second

phase is generating all possible configurations and specifying

the user utility of providers and the third phase is exploring

the quality space of the configurations. The user utility is

evaluated based on QoS parameters such as processing power,

network bandwidth and battery capacity. The goal of the

algorithm is to make a tradeoff between user’s acceptable

service level and the user utilities. Greedy [1] is another

configuration algorithm proposed for the systems with

changeable parameters such as network disconnection rates or

bandwidth. A fitness function is calculated for each service on

each host and the service with maximum fitness is selected

and assigned. This function represents the overall satisfaction

of the users with the QoS delivered by the system. The last

algorithm is based on genetic algorithms [1]. Each individual

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.16, December 2012

20

is a solution which represents a service assignment. In this

algorithm the fitness of each individual is computed

considering QoS metrics. There are also previous researches

on MANET emulators:

OCTUPOS [2] is one of the MANET emulators that enable

the designer to model interactively the network topology, the

environmental characteristics (packet loss rates, environment

obstacles) and the node movement strategies. The designer

can use this emulator to evaluate the movement strategies of

nodes. It is used for testing packet loss or disconnection rate

for a given node moving plan. It also allows includes every

type of device and applications. Possible obstacles, packet

losses and enhanced movement models are supported by this

emulator. However, in this emulator the configuration

algorithms are not supported. This emulator is written in java.

It has a GUI for designing nodes and obstacle positions and

also modeling node movements. OCTOPUS emulator works

fine on Windows and Linux and the only requirements is an

IP network. It uses a TCP server, listening on port 8888 to

receive commands from applications and reply to them.

Furthermore OCTOPUS can be used in robotic planning and

sensor networks.

SOAMANET [4] is another emulator which can provide

different reusable modeling and analysis capabilities that

facilitates the model-based construction of these systems and

can be used to evaluate large-scale and highly dynamic

service-oriented architecture over MANET’s. Service

assignment, ad-hoc routing protocols and its parameters are

supported by this emulator. To use this emulator we need to

define a workflow. A workflow describes that which node

provides which services and which node requests for these

services. Besides, a workflow is described using a DSML

(Domain Specific Modeling Language). The number of

completed or failed service requests can be measured during

the simulation. Most of the network modeling is done using

network simulation tools such as OMNeT++[9] or NS-2[5].

These tools can be integrated to SOAMANET DSML to

configure SOA application, device, mobility, and routing

modules.

NS2[5] on its own can emulate only wired networks. But a

patch was developed by Magdeburg University to support

wireless emulation. This simulation tools has some drawback:

1) client hosts should be Linux-based. 2) It is needed to write

complex TCL scripts to configure all emulated aspects of

wireless links. 3) Clients cannot affect any changes in nodes

topology because of possible events during emulation are

decided at batch time in TCL scripts.
EMWIN[6] is an IP-based MANET emulation system. It is

used to test and evaluate mobile wireless network protocols,

such as multi-hop mobile ad hoc routing protocols, directly. It

also supports wireless mobility emulation. JEmu[7] is a

MANET emulator that can test and evaluate Mobile ad-hoc

routing protocols. It supports node movements and radio

range of each node.

3. THE ARCHITECTURE
The emulator architecture is shown in figure 1. The proposed

emulator enables the designer to model both the network and

the application characteristics of a service providing MANET.

Here a MANET is defined in terms of a set of nodes

communicating in a virtual environment. The architecture

consists of three layers: First, the application layer which

consists of Client and Service Manager (SM) concepts. The

Client concept represents the service consumer program

installed on a node and the SM represents a management

agent which should be installed on every service provider or

service consumer node in the MANET. Each SM keeps track

of both the provided services by the node on which it is

installed and the list of current consumers corresponding to

each provided service. SM is also responsible for invoking the

configuration algorithm plugged to the emulator at a

predefined rate. The second layer is the Node which consists

of a Processor concept, a Power-Consumption scheme, a

Planner scheme and a Routing scheme. The processor picks

the service requests consecutively from its queue and sends

back a reply message after a specific time delay to the

corresponding client. The power-consumption scheme, the

planner scheme and the routing scheme are user defined

strategies for the node battery life-time, the node movement

and the routing mechanism respectively. The last layer

models the environment in which the nodes are moving. The

environment is nothing but a Frame Dispatcher which is

aware of the global image of node locations the Frame. As

shown in figure 1, different layers communicate to each other

using packet channels.

Figure 1: the Emulator Architecture

In the following subsections the detailed design for each

concept is explained.

3.1 Channels
Channels are used to transfer packets between node

components. A packet is defined as follows:

 class Packet {

 public int sourceNode;

 public int destNode;

 public Protocol protocol;

 public object obj;

}

Where sourceNode and destNode attributes are identifiers of

the sender and the receiver of the packet respectively, the

protocol attribute keeps the protocol name of the packet.

There are six protocols defined in our emulator:

1)ServiceQuery, which is used by a client process to ask its

local service manager to start a service query, 2)SearchService

which is used by service managers to search for a service in

the network, 3)FoundService which is the reply of the

SearchService protocol, after a service provider is found,

4)SelectedService which is used to notify a client process

about the found service provider, 5)Request which is used to

send a request packet to a selected service provider by the

client and 6)Reply for replying a client request.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.16, December 2012

21

3.2 Client Process

Figure 2: State Diagram of Client Process

The client process is implemented as a state machine as shown

in Figure 2. It starts by sending a service query to the service

manager and changes its state to “Requesting”. Once the client

process is notified about the found service it changes the

current state to the “connected” and starts communicating to

the service provider. Upon a time-out, the state is changed to

the “disconnected”.

3.3 Service Manager
Service manager is responsible for selecting the best service

providers for a service request. This selection is performed by

a configuration algorithm that user implements. When a client

process asks for a service, service manager broadcast a packet

to all nodes to find the available service providers. The service

selection strategy

in the service

manager is implemented as a configuration algorithm which is

called by the service manager. The use of the adapter design

pattern [8] enables the designer for plugging different

configuration algorithms at the simulation time (See Figure 3).

To create and plug a new configuration algorithm, the

designer first should implement the following standard

interface:

public interface ConfigurationAlgorithm {
public abstract Packet[] Configure(ArrayList<Object> Temp,int

clock, ServiceManager sm,Packet pks);
 }

Where the first parameter is a temporary collection of objects

which can be used by the algorithm to store and retrieve

session data during successive invocations of the algorithm.

For example a node needs to store the identifier of its parent

node after it receives a Search Service packet. The second

parameter is the clock value of the service manager, the third

parameter is the object of the current service manager which

can be used by the algorithm to extract the list of provided

services by the current node and the last parameter is the

current incoming packet to be processed. The steps of the

service manager thread are as follows:

1- Pick a packet from the node buffer

2- Invoke the configure() method of the current

configuration algorithm object

3- Send the returned packet list to the node to be routed

to the destination client

Figure 3: Adapter Pattern of Configuration Algorithm

3.4 Node
The movement field of mobile nodes is implemented as an

n*n grid in which the initial node placements are defined by

the user. Each node may move to one of its neighbor’s squares

with a predefined probability (mobility probability). Besides,

when there are multiple free squares around a node to move

to, one of them is selected based on the value of dynamicity

degree parameter which also should be set by the user before

starting the simulation. This parameter indicates the tendency

of nodes to move away each other’s signal coverage during

the simulation. The Planner component is responsible for node

movement regarding the above two mentioned parameters.

This component is associated with the Node component and

after selecting the next adjacent square to move, it will notify

the FrameDispatcher component the new position of the

node.

The main task of the Node component is to transfer packets

among channels or creating frames to be sent via the

FrameDispatcher component. The steps of the Node thread

are as follows:

1. Receiving a ServiceQuery packet and sending it to

its local Service Manager channel.

2. Receiving a packet from the Service Manager

channel.

3. Sending a packet to its local Client Process channel

or creating a frame and sending it to the

FrameDispatcher.

Figure 4: Emulator GUI

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.16, December 2012

22

4. Receiving a ServiceRequest packet from the local

Client Process and sending it to the

FrameDispatcher.

5. Receiving a ServiceReply from the Processor

channel and sending it to FrameDispatcher.

3.5 Failure Scheme
Two failure schemes have been implemented: packet delivery

failure between nodes due to the network failure and service

failure at the Processor component. The packet delivery

failure probability is calculated by the FrameDispatcher

component once a frame has to be delivered using the

following formula:

delivery failure probability=

 (2)

Where, D is the longest path length (in terms of hop-count)

between the source node and the destination node, N is the

number of mobile nodes and m denotes the magnifier

coefficient. The service failure rate is determined by the user

and is used by the Processor component to discard an

incoming request according to that rate.

4. IMPLEMENTATION AND

EXPREMENTAL RESULTS
The user interface of the proposed emulator is shown in

Figure 4. To start the emulation, first the number of nodes, the

logical clock pulse duration, the configuration algorithm and

the client timeout values should be specified by the user. Then

an execution strategy should be defined. This strategy is used

by the emulator to change the network state during the

execution. A strategy is defined in terms of

its states and the transition probabilities between states. Each

state has its own mobility probability and dynamicity degree

as defined in the previous part. It also includes service failure

rate.

For example in Figure 5 below we have defined a two state

strategy. The first state indicates a stable network for which

the mobility probability, dynamicity degree and service failure

rate are 20%, low and 5% respectively.

The second state represents a dynamic network for which the

mobility probability, dynamicity degree and service failure

rate are 20%, high and 5% respectively. The transition

probabilities between states are shown in Figure 5.

Figure 5: an example emulation strategy

To evaluate the proposed emulator, we have implemented a

configuration algorithm to find the fastest service provider

among the available service providers in the network and

assign it to the client process. This algorithm has been

implemented as a Java class which conforms to the defined

standard interface for the configuration algorithm.

The emulation was performed with 4, 8 and 12 nodes among

which three service providers and one service client were

selected. The service failure rate was chosen 5%. The

emulation was repeated 5 times with a one-state strategy, each

time with a different mobility probability and dynamicity

degree value. The emulation trace was inserted into a MySQL

log-table with the following schema:

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.16, December 2012

23

Figure 6: client process log table

Where NodeNo is the identifier of the client process, CP time

is the value of the client process clock, State is the client

process state, ServiceName is the requested service of the

client and Provider is the identifier of the service provider

node. For each experiment, the fraction of emulation time in

which the client process was in the disconnected state, was

measured. The experimental results are shown in Figure 7. It

was observed that the more the dynamicity degree or mobility

rates are, the higher disconnection rate for the client process is

resulted.

5. CONCLUSION
In this paper a novel extendible MANET emulator was

proposed. The architecture of this emulator was designed

using Adapter design pattern, hence different configuration

algorithms could be plugged into the emulator at runtime

easily. The designer then is able to investigate and compare

different configuration algorithms from the reliability or SLA

violation rate viewpoints. The experimental results showed the

usefulness of the proposed emulator in comparing the

reliability of a service assignment protocol in different

network conditions.

Figure 7: experimental results

6. REFERENCES
[1] Malek S., Medvidovic N., and Mikic-Rakic, M. “An

Extensible Framework for Improving a Distributed

Software System's Deployment Architecture”, IEEE

Transactions on Software Engineering, 2012, in press.

[2] D’Aprano, F., Leoni, M., and Mecella, M. 2007.

Emulating Mobile Ad-hoc Networks of Hand-held

Devices The OCTOPUS Virtual Environment. In

Proceedings of MobiEval '07 Proceedings of the 1st

international workshop on System evaluation for mobile

platforms, USA , New York.

[3] Poladian, V., Sousa, J. P., Garlan, D., and Shaw, M. May

2004 Dynamic Configuration of Resource-Aware

Services. In Proceedings of the 26th International

Conference on Software Engineering (ICSE'04),

Edinburgh, Scotland.

[4] Neema, H., Kashyap, A., Kereskenyi, R., Xue, Y., and

Karsai, G. 2010. SOAMANET: A Tool for Evaluating

Service-Oriented Architectures on Mobile Ad-hoc

Networks. In Proceedings of 14th IEEE/ACM

Symposium on Distributed Simulation and Real-Time

Applications, Fairfax, VA.

[5] The Network Simulator – ns-2. http://isi.edu/nsnam/ns/

[6] Zheng, P., and Lionel, M. Ni. 2002. EMWIN: Emulating

a Mobile Wireless Network using a Wired Network. In

Proceedings 5th ACM International Workshop on

Wireless Mobile Multimedia.

[7] Flynn, J., Tewari, H., and O’Mahony, D. 2001. JEmu: A

Real Time Emulation System for Mobile Ad Hoc

Networks. In Proceddings of 1st Joint IEI/IEE

Symposium on Telecommunications Systems Research.

[8] Larman C. 2004 Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and Design and

Iterative Development. Addison Wesley Professional

Ltd.

[9] OMNeT++ Community Site, OMNeT++, July 30, 2010,

ht/tp://www.emonetpp.org

0

10

20

30

40

50

60

70

80

90

4 Nodes 8 Nodes 12 Nodes

D
is

c
o
n

n
e
c
ti

o
n

 R
a

te

Number of Nodes

Mobility=0

Mobility=30

Dynamicity

Degree=High

Mobility=30

Dynamicity

Degree=Low

Mobility=50

Dynamicity

Degree=High

Mobility=50

Dynamicity

Degree=Low

http://cs.gmu.edu/~smalek/papers/TSE2012.pdf
http://cs.gmu.edu/~smalek/papers/TSE2012.pdf
http://cs.gmu.edu/~smalek/papers/TSE2012.pdf
http://isi.edu/nsnam/ns/

