
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

35

Pattern Approach to Build Traditional

Graphic Frameworks

Hari Ramakrishna, PhD.

Professor, Department of Computer Science and Engineering,
 Chaitanya Bharathi Institute of Technology, Hyderabad INDIA -500 075

ABSTRACT

Architecture of a light weight three dimensional graphic

framework model using traditional graphic methods is

presented in this paper. The traditional graphics concepts are

redesigned and remodeled for present requirements and

development technologies. A pattern approach is adapted for

presenting the model. Several pattern frames are suggested

based on this model to suit new development methodologies.

A pattern frame for porting traditional graphic models into

new technologies is presented. A set of block diagrams and

UML diagrams are used to describe the model. Lists of

classified graphic functionalities to support graphic

requirements of this model are listed. A sample client

application of this model in VB is presented.

 General Terms

Pattern, pattern-frames, pattern approach, traditional graphic

model, display files, display file interpreter, graphic vector

generation algorithms/functions, graphic Segments.

Keywords

Graphic frameworks, Object oriented graphic frameworks,

traditional graphic frameworks, graphic pattern frame.

1. INTRODUCTION
Patterns for software development are one of the latest trends

to emerge from the object oriented approach. Fundamental to

any science or engineering discipline is a common vocabulary

for expressing its concepts, and a language for expressing

these interrelationships. The goal of patterns within the

software community is to create a body of literature to help

software developers resolve recurring problems encountered

throughout all of software development. Patterns help create a

shared language for communicating insight and experience

about these problems and their solutions.

The patterns in the GOF book are Object Oriented Design

Patterns. There are many other kinds of software patterns

beside design patterns, analysis patterns published by Marin

Fowler and other patterns like organizational patterns are also

available.

Architectural patterns express a fundamental structural

organization or schema for software systems. Design Patterns

provide a schema for refining the subsystems or components

of a software system or the relationships between them. They

describe commonly recurring structure of communicating

components that solve a general design problem within a

particular context [1-6].

Integrative computer graphics and vector graphics are

traditional domains of computer science [7, 8]. The usability

of applications of this domain is vide and has proven impact

in the computer science. Requirements of major software

application demand graphic tools [9] [10] [11]. Several

classes of graphic frameworks are available in the market.

Though the graphic domain is enriched with several

traditional methods for decades to fulfilling the requirements

of applications still there is a need of remodeling the methods

to port into new requirements and technologies.

 The traditional graphic framework architecture presented in

this paper presents a model to port and reconfigure the

traditional graphic principles to modern requirements and into

the new technologies. The pattern methodology is a proven

way of documenting domain specific knowledge. The model

in this thesis is named as “traditional graphic pattern frame”

as it is domain specific and it presents a reusable light weight

graphic framework useful for several applications.

The intent of Traditional graphic frameworks is to apply

traditional graphic techniques for building frameworks. The

guiding principle of extreme programming says that “adopt

the first method that probably works to start with”.

Adopting traditional graphic methods to build generic

modules are suggested as the first step to build the graphic

frameworks.

The interactive computer graphics provide several

techniques to build generic graphic applications. They allow

building a graphic framework that can manage different

applications. For example, display files represent a graph as a

set of commands. Common operations can be performed on

such graphs that are stored as a standard display file.

Designing a generic display file and a set of instructions

enables graphic modules work for more than one application

[7, 8]. A model display file structure for building graphic

frameworks is evolved and presented.

The Figure: 1 presents a model graphic framework using

traditional graphic display file concepts. The model has the

following major core components [7, 8].

i) Segment Table

ii) Graphic Instructions

iii) Vector Graphic Display file

iv) Display files Interpreter

These tools support design of application specific component

library. Such frameworks depend on powerful graphic library

supported by the compiler or vendor. C++ provides several

graphic primitive libraries, while MFC provides powerful

graphic environment for building such frameworks. JDK also

provides graphic libraries for java for building java-based

frameworks. These framework models can be implemented in

any environment with mimimum graphic primitive library

support.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

36

2. SEGMENTATION TABLE

The display file for general-purpose interactive graphics

software is divided into a set of segments such that each

segment corresponds to a component of the overall display

file. For example, in a building-graphics information system

each civil engineering building element is treated as a

segment. Windows, doors, racks etc, which are known as civil

engineering building elements, are stored in the display file as

graphic- segments. Sets of attributes are associated with each

segment. All these attributes of segments are stored in

segment-table.

Consider the information that must be associated with each

segment and how the information might be organized. Each

segment is given a unique name so that it can be referred with

it. Perform operations on segments such as changing the

visibility of segment; require some way to distinguish that

segment from all other segments. When Display file segment

must know which display file instructions belong to it. This

may be determined by knowing where the display file

instructions for that segment begin and how many of them are

there in its specific display file. Each segment need some way

of associating its display file position information and its

attribute information with its name. The display file and its

attributes can be organized in a tabular form as indicated

below:

i) Segment name

ii) Segment starting address in the display file

iii) Segment size i.e. number of instructions in the display file

iv) Segment visibility i.e. on or off

v) Segment transformation parameters i.e. scaling, translation,

rotation around x,y,z axes

vi) Segment reference point that is useful for transformations

vii)Segment transparency (on or off) useful for hidden line

and surface elimination

Segmentation can be achieved through a set of procedures to

create, open, close and transform a segment. The Table 1

presents various sample user-routines needed to handle

segments:

Table 1: Graphic Segment interface operations

Create-segment (n) Translate-segment (n,tx,ty,tz)

Close-segment (n) Set-segment-reference-point

(n,x,y,z)

Append-segment (n) Scale-segment (n,sx,sy,sz)

Set-segment-visibility (n,I) Show-segment (n)

Rotate-segment (n,ax,ay,az) Delete-segment (n)

n: Segment Name tx, ty, tz : Transformation

parameters

x,y,z : coordinates sx,sy,sz: Scaling parameters

I: visibility ax,ay,az : Rotation parameters

3. GRAPHIC INSTRUCTIONS AND

VECTOR GRAPHIC DISPLAY FILES

Graphic Instructions are used to define geometry of the

graphic components in the form of a set of graphic

commands. All these vector graphic commands are stored in

display file. Display file interpreter will actually plot the

drawing with the help of a set of graphic primitive algorithms.

There are several advantages of storing drawings in the form

of graphic instructions. This model allows performing

operations on graphic elements such as scale, reflecting,

rotating, moving etc. As all the drawings are stored in a

uniform format it is easy to manage them. They will occupy

less memory compared with image formats except in GIS

applications. In GIS, image format will occupy less memory.

This is discussed in Map object frameworks. Even in such

cases display files concepts are used because this alone will

allow operations on images in an effective way. This section

will present a new model display file, which is useful for

traditional graphic frameworks.

Considering the structure of the display file, each display file

command contains two parts-operation code (opcode), and

operands. Opcode indicates the type of command and

operands are the required arguments such as the coordinates

of the point (x, y, and z). The display file is made up of a

series of these instructions. The display file must be large

enough to hold all the commands needed to create the image.

One must assign meaning to the possible operation code

before proceeding to interpret them. Suitable geometrical

elements should be provided for building graphical

information system. For example graphical components of

civil engineering building-graphical information system

typical geometrical elements like point, line, circle, arc and

polygon can be considered. Typical general attributes of a

simple display file instruction, are type of the geometrical

element, its color and x, y, z coordinates. The instruction is

interpreted by invoking the required vector generator.

 The vector generators of special geometrical elements may

need more information than what is available in the main

display file. This information is also in the form of graphic-

commands, stored in a separate display file. For example all

the instructions for plotting a polygon are in the polygon

display file. Each vector generator of this type has its own

interpreter for the interpretation of these commands. The

starting-address and size of these instructions are the needed

Fig 1: Model Graphic Framework with display-

file concepts

Vector Graphic

Display File

Segment Table and

Segment operations

Display File

Interpreter

Graphic Instructions

Graphic/CAD Applications

Graphic Libraries

Application specific Graphic

Component libraries

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

37

attributes, which are stored in the main display file. The

following Figure: 2 present a model display file structure :

4. DISPLAY FILE INTERPRETER

The information in the display file is useful to model the

object and create the required image. The reason behind this is

two-fold: some measure of device-independence is achieved,

and it is easy to perform image transformation by changing

the position and orientation of the required image. The display

file contains the information necessary to construct the

required image. The information can be in the form of

instructions such as “move the pen”, “draw a line”, and “plot

the required polygon”. Saving instructions of this kind usually

take much less storage than saving the picture itself. Each

instruction of this kind usually takes much less storage than

saving the picture itself. Each instruction indicates an action

for the display device. A display file interpreter is used to

convert these instructions into actual images. The display file

interpreter serves as an interface between the graphics

program and the display device. The display file instruction

may be actually stored in a file either for a display layer or for

transfer to another machine. Such files of imaging instruction

are sometimes called “metafiles” The following are the

sample vector-generating algorithms:

Table 2: Vector-generating algorithms

i do-line3d (lc, bc, z, y, z),

ii do-point3d(lc x, y, z),

iii do-sphere(lc, cx, cy, cz, r)

iv do-circle3d(lc, cx, cy, cz, r, ax, ay, az),

v doarc3d(lc, cx, cy, cz, r, sa, ea, ax, ay, az),

vi do-poly(lc, sadd, size)

In the above table : 2 lc is the line foreground color (the

color type will be replaced with RGB values in windows

based applications), cz,cy,cz are the coordinates, sa,ea are the

starting and the ending angles, ax, ay, az are the angles of

inclination along x, y, and z axes respectively, and r is the

radius.

These functions are used by the display file interpreter while

converting the display file instructions into the required

picture on the display device. This process of generating

image makes the graphics software independent of the nature

of the display device and graphic application.

Whatever may be the way of storing and plotting the required

images; it requires some tools for interaction with the graphics

system. The following are the various sample user-routines

(graphic instructions) for building-graphics information

system:

Table 3: Graphic Instructions

i Move3d (x, y, z)

ii Line3d(x,y,z)

iii Line3d(lc,x,y,z)

iv Point3d (lc,x,y,z)

v Arc3d(lc,x,y,z,r,sa,ea,ax,ay,az)

vi Circle3d(lc,x,y,z,r,ax,ay,az)

Typical Functions of the model are listed in tables [4- 7].

Other frameworks namely function-class frameworks,

Foundation class frameworks are used to manage the display

file requirements in an efficient way using object oriented

patterns[1].

5. GRAPHIC FRAMEWORKS WITH

VECTOR GRAPHIC DISPLAY FILES
It is observed that the display files enable graphic developer to

generate graphic structures that work for more than one

application as the geometry of the domain specific graphic

components can be described as set of display file

instructions. Graphic user can build domain specific libraries

over the existing graphic model. This will enable

commencing with building graphic frameworks. Such

systems can be reused in several computer applications where

simulation and visualization are required. One can perform

graphic operations on the defined segments to enable the

graphic components participate in the simulation process of

the application designed.

Such models also have requirements in some GIS and CAD

based applications. Generating images for huge graphic data

available in the display file is very common in GIS. The

segment tables are known as named layers in GIS systems.

The GIS graphic data can be divided as a set of layers. One

can perform operations such as making visibility on/off on

each named layer of GIS graphic data.

6. ARCHITECTURE OF TRADITIONAL

GRAPHIC FRAMEWORKS
This section will discuss the architecture of a traditional

graphic framework. This architecture is referred as traditional

graphic pattern-frame. Pattern way of documentation is

adopted for presentation of this architectural structure.

Framework name: Traditional Graphic pattern-frame

Intent: Traditional graphic techniques are redesigned for

building graphic frameworks that can manage domain

independent graphic system.

Motivation: Graphic applications need to manage different

graphic elements depending on the type of the domain such as

flowchart symbols, UML blocks, Electronic circuits, Civil

engineering elements etc. The requirement of the graphic

framework is to provide a mechanism to allow the client to

add its own symbol library for using same graphic subsystem

in different graphic domains. Such applications are available

Fig 2: Model Vector Graphic display-file

structure

Vector Graphic Master Display file

Polygon

Display

file

Ellipse

Display

file

Etc…

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

38

using traditional vector graphic techniques like display files

concepts.

Applicability:

i) A graphic subsystem which will be used in more than one

domain

ii) A graphic application where geometry of the graphics is

added at run time

iii) A graphic application or subsystem for managing many

graphic elements using single objects also can adopt this

technique. Flyweight object frameworks presented in this

thesis also use this pattern-frame

Structure:

The architecture of this traditional graphic framework is

presented in Figures 4, 5 and 6. The Figure: 4 present the

structure of display file. The Figure 5 presents the structure of

vector graphic sub-system. This vector graphic sub-system in

tern used the display file sub-system. The Figure: 6 present

overall architecture of traditional graphic frameworks.

Participants:

Display files Instructions, Graphic Operations, Display file,

Segment Operations, Graphic Functions, and Segment Table

Collaboration:

i). The display file stores the geometry of a graph as a set of

graphic instructions.

ii). Display File Instructions are a set of instructions useful to

define the geometry of a graphic element.

iii). Graphic operations perform operations on graphs stored

in display file as a set of instructions.

iv). Segment table stores additional information of graphic

components. This information is used for identifying the

graphic component from display file contents.

v). Segment operations are a set of functions useful in creating

and managing a graphic component.

vi). Graphic functions are typical functions used in defining

geometry of a graphic component. Each Graphic function

defines a geometric shape as a set of display file instructions.

Consequences:

i) Graphic framework allows client applications to define the

geometry of a system at run time and perform operations on it.

ii) Different domain specific Graphic components can be

evolved

iii) Such graphic frameworks are independent of graphic

application.

Implementation: The implementation of this framework

mainly requires the following

i) Identification of display files instructions suitable to define

all types of graphic components belonging to different graphic

applications domains.

ii) Identification of Graphic and Segment operations.

Sample set of functions are listed in tables [4, 5, 6, and 7].

The figure 3 presents a VB client using a sample traditional

graphic framework.

Table 4: Three Dimensional Graphic Libraries for Plating

Typical Shapes

 Procedure Name Description

01 void do_move3d(int x,int

y,int z);

Moves to the specified

point

02 void do_line3d(CDC

*pDC,int lc,int bc,int x, int

y,int z);

Draws a line to the

given point

03 void do_point3d(CDC

*pDC,int lc,int bc,int x, int

y,int z)

Plots point at x,y,z

with color lc

04 void do_fill3d(CDC *pDC,int

lc,int bc,int x, int y,int z);

Used for filling

05 void do_cir3d(int lc,int bc,int

cx,int cy,int cz, int r);

Circle with radius r and

center (cx, cy cz)

06 void do_arc3d(int lc,int bc,int

cx,int cy,int cz, int r,int sa,int

ea);

Arc with radius r and

center (cx, cy cz)

07 void do_cir3dsl(CDC

*pDC,int lc,int bc,int cx, int

cy,int cz,int r,int ax,int ay,int

az);

Circle with radius r,

center (cx, cy cz)

slanting at angles

ax,ay, az

08 void do_cir3dsldf(CDC

*pDC,int lc,int bc, int cx,int

cy,int cz,int r,int ac,int ay,int

az);

Filled circle with

radius r, center (cx, cy

cz) (rx, ry, rz) slanting

at angles ax, ay, az

09 void do_arc3dsl(int lc,int

bc,int cx,int cy,int cz, int r,int

ax,int ay,int az,int sa,int ea);

Arc with radius r,

center (cx,cy,cz)

slanting at angles

ax,ay,az

10 void do_fcir3d(int lc,int

bc,int cx,int cy,int cz, int r);

Filled circle with

radius r,

centre(cx,cy,cz)

11 void do_farc3d(int lc,int

bc,int cx,int cy,int cz, int r,int

sa,int ea);

Filled arc with radius r

, centre(cx, cy, cz)

12 void do_farc3dsl(int lc,int

bc,int xc,int yc, int zc,int r,int

ax,int ay,int az,int sa,int ea);

Filled arc with radius r,

centre(cx, cy, cz)

slanting at angles ax,

ay, az

13 void do_sp3d(int lc,int bc,int

sx,int sy, int sz,int r);

Sphere with radius r,

center (sx, sy, sz)

14 void line3d(CDC *pDC,int

lc,int bc,int x1, int y1,int

z1,int x2,int y2,int z2);

Line from pt (x1, y1,

z1) to pt (x2, y2, z2)

15 void rz(int lc,int x,int y,int

z,int l,int b);

Rectangle on z=0 plane

16 void ry(int lc,int x,int y,int

z,int l,int b);

Rectangle on y=0

plane

17 void rx(int lc,int x,int y,int

z,int l,int b);

Rectangle on z=0 plane

18 void cxyz(int lc,int x,int y,int

z,int l,int b,int d);

Cubical solid

Table 5: Graphic Libraries for Transformation routines

 Operation Description

01 void rotate_ptx(int *x,int

*y,int *z,int an);

Rotation around x-axis

at angle an

02 void rotate_pty(int *x,int

*y,int *z,int an);

Rotation around y-axis

at angle an

03 void rotate_ptz(int *x,int

*y,int *z,int an);

Rotation around z-axis

at angle an

04 void translate_pt(int *x,int

*y, int *z, int tx, int ty,int

tz);

Translating a point with

factors tx, ty, tz

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

39

05 void scale_pt(int *x,int

*y,int *z,float sx, float

sy,float sz)

Scaling a point with

factors tx, ty, tz

06 void scale_rpt(int *x,int

*y,int *z,float sx, float sy,

float sz);

Scaling relative to a pt

(x, y, z)

07 void rotate_rptxyz(int xv,int

yv,int zc,int *rx, int *ry,int

*rz,int anx,int any,int anz) ;

Rotation around x,y,z

axes relative to a given

pt at angles anx, any,

anz

08 void rotate_rptx(int xc,int

yc,int zc,int *rx, int *ry,int

*rz,int an)

Rotation around x-axis

relative to a given pt at

an angle an

09 void rotate_rpty(int xc,int

yc,int zc,int *rx, int *ry,int

*rz,int an);

Rotation around y-axis

relative to a given pt at

an angle an

10

void rotate_rptz(int xc,int

yc,int zc,int *rx, int *ry,int

*rz,int an);

Rotation around z- axis

relative to a given pt at

an angle an

Table 6: Three Dimensional Display File Instructions

 Instruction Description

01 void cir_abs3d(int lc,int

x,int y,int z,int r);

Circle with radius r and

center (x, y, z)

02 void cirf_abs3d(int lc,int

x,int y,int z,int r);

Filled circle with radius r

and center (x, y, z)

03 void cirslf_abs3d(int

lc,int x,int y,int z,int r, int

ax,int ay,int az);

Filled circle with radius r ,

centre(x, y, z) slanting at

angles ax, ay, az

04 void cirsl_abs3d(int lc,int

x,int y,int z,int r, int

ax,int ay,int az);

Circle with radius r,

centre(x, y, z) slanting at

angles ax ay, az

05

void open_poly(int x,int

y,int z);

To open a polygon

06 void close_poly(); To close polygon

07

void move_abs3(int x,int

y,int z);

Move to a given point

08

void line_abs3(int lc,int

bc,int x,int y,int z);

Draw line to a given point

09 void move_rel(int dx,int

dy,int dz)

Moves from the current

position to the relative

specification

10 void point_abs3(int lc,int

bc,int x,int y,int z);

Plots the given point

11

void line_rel3(int lc,int

bc,int dx,int dy,int dz);

Draws line from the

current position to the

relative specification

12

void point_rel3(int lc,int

bc,int dx,int dy,int dz);

Plots a point from the

relative specification

13

void interpret1(CDC

*pDC,int start,int count);

To interpret the segment

from a given instructions

starting address

14 void do_type3d(CDC

*pDC, int typ,int sadd,int

sz);

Executes a macro

instruction

15

void show(CDC *pDC); To display the display All

segments

16

void showax(CDC

*pDC);

To display the display axes

Table 7: Typical Three Dimensional Display file

transformation routines

Fig 3: Model Simple VB client using the Vector Graphic

display-file structure

 Operation Description

01 void newtran3();

Creates an unit matrix for

transformation matrix

02

void translate3(int tx,int

ty,int tz);

Translates an object to the

given translation factors tx,

ty, tz

03

void rotatex3(int a); Rotates around x-axis by

an angle a

04

void rotatey3(int a); Rotates around y-axis by

an angle a

05

void rotatez3(int a); Rotates around z-axis at

angle a

06 void rotatexyz3(int ax,int

ay,int az);

Rotates around x,y,z axes

at angles ax,ay,az

07

void rotatexyz3rel(int

x,int y,int z,int ax, int

ay,int az);

Rotates around x,y,z axes

relative to a fixed pt at

angles ax,ay,az

08 void rotatex3rel(int x,int

y,int z,int an);

Rotates around x-axis

relative to a fixed pt at

angle an

09 void rotatey3rel(int x,int

y,int z,int an);

Rotates around y-axis

relative to a fixed pt at

angle an

10

void rotatez3rel(int x,int

y,int z,int an);

Rotates around z-axis

relative to a fixed pt at

angle an

11 void scale3(float sx,float

sy,float sz);

Scales an object given

scaling factors as sx, sy, sz

12

void scale3rel(int x,int

y,int z,float sx, float

sy,float sz);

Scales with respect to a

given fixed point x,y,z

13

void do_

transformation(int *x1,int

*y1, int *z1);

Given point is transformed

as per the transformation

matrix.

14

void settrans(); Initializes the

transformation system

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

40

Table 8: Sample VB statements using Graphic functions

For plotting a spear

HGP3D1.Sp3d Text1.Text, Text2.Text, Text3.Text,

Text4.Text

For plotting a cube

HGP3D1.CXYZ Text1.Text, Text2.Text, Text3.Text,

Text4.Text, Text5.Text, Text6.Text

For displaying all segments

HGP3D1.ShowAll

For rotating a selected segment

HGP3D1.RoteteSegmentAbs Text7.Text, Text4.Text,

Text5.Text, Text6.Text

 HGP3D1.ShowAll

For resetting transformations matrix

HGP3D1.ReSetTrans

For setting visibility of a sigment

HGP3D1.SetSV Text7.Text, Text8.Text

For opening a segment

HGP3D1.OpenSegment Text7.Text HGP3D1.CloseSegment

Text7.Text

For performing rotation operation on a selected segment

HGP3D1.RotateSegRel Text7.Text, Text4.Text, Text5.Text,

Text6.Text

HGP3D1.ShowAll

For plotting an Arc

HGP3D1.Arc3D 1, Text1.Text, Text2.Text, Text3.Text,

Text4.Text, Text5.Text, Text6.Text, Text14.Text,

Text16.Text, Text17.Text

Fig 4: Structure of Display File Sub System

Display File

Instructions

Graphic

Operations

Graphic

Library

Display File

Graphic

Primitives

Library

Display File

Manager

+ Interpreter

< Display File

Instructions >

<Graphic

Operations>

………

Fig 5: Structure of vector graphic Sub System

Segment Manager

<Segment

operations>

< Graphic Functions

>

Segment Operations

Segment Table

Graphic Functions

Display File

 Sub System

Fig 6: Structure of a Traditional Graphic

Framework

Segment Operations

Graphic Functions

Client Application

Vector Graphic
Sub system

Figure 6: VB Client and Graphic frameworks using

Microsoft ATL and Active X controls

Figure 4.1b Middleware integration based

Frameworks

Middleware Component frameworks

such as ATL, Active X

Object Oriented Frameworks

VB Client

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

41

7. CONCLUSION

Traditional graphic methodology of handling graphic

requirements needs to be redesigned and ported to new

technologies. The presented graphic patter frame model uses

traditional graphic display file and segmentation concepts for

building graphic frameworks to suit requirements of several

graphic frameworks. The graphic functionality of the model

is classified into several groups and sample list of functions

are listed. The middleware frameworks of Microsoft are used

to organize and export function libraries in the form of

framework. MFC based ATL and application wizards of

Microsoft are suggested for building graphic frameworks. The

VB environment is suggested for client application for

integrating graphic frameworks with required domain

applications through automation layer. Sample block diagram

of such model is presented in Figure: 6. Sample code segment

in VB is presented in Table 8.

Evolving patterns and models for managing Functions of

different types used in this system enable this system work

more efficiently. The presented graphic models can be

refined further by evolving objected oriented graphic

frameworks. Component Technology can be adopted to make

the same models more compatible to the present graphic

requirements. The Complexity Component based graphic

systems can be manages by evolving of few pattern-frames.

The main focus of the present model is to adopt traditional

graphic techniques for building graphic frameworks.

ACKNOWLEDGMENTS

The author acknowledges all the professional advisors who

motivated for developing graphic framework patterns. The

author conveys special regards to Dr.K.V. Chalapati Rao

retired Professor of C.S.E., College of Engineering–OU

Hyderabad and Dr.I.V. Ramana Retired Professor of College

of Engineering JNTU Hyderabad for motivation and

encouragement. The author acknowledges faculty of

Department of Computer Science and Engineering, Chaitanya

Bharathi Institute of Technology for their support.

REFERENCES

[1] Dr. Hari Ramakrishna, “Design Pattern for Graphic/CAD

Frameworks”, Ph.D thesis submitted to Faculty of

Engineering Osmania University March 2003,

[2] Dr. Hari Ramakrishna and Dr.K.V Chalapathi Rao,

“Pattern Methodology of Documenting and

Communicating Domain Specific Knowledge”, CVR

Journal of Science and Technology Vol 2. June 2012

ISSN 2277-3916.

[3] Christopher Alexander, “An Introduction for Object-

oriented Design”, A lecture Note at Alexander Personal

web site www.patternlanguage.com

[4] Pattern Languages of Program Design. Edited by James

O. Coplien and Douglas C. Schmidt. Addison-Wesley,

1995

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, "Design Patterns: Elements of Reusable

Software Architecture", Addison-Wesley, 1995

[6] LNCS Transactions on Pattern Languages of

Programming

http://www.springer.com/computer/lncs?SGWID=0-164-

2-470309-0

[7] Harrington: 87 Harrington, S. (1987), Computer graphics:

programming approach, McGraw-Hill International,

second edition.

[8] Newman,W.S and Sproul, R.S (1981), “Principles of

interactive computer graphics”, McGraw-Hill

International, Second edition.

[9] Hari RamaKrishna “Three-dimensional interactive

computer graphics package for civil engineering

application”, Proceedings of The National Conference on

Civil Engineering Materials and Structures, Jan 19-21,

1995, Osmania University; Hyderabad ;India

[10] Hari RamaKrishna “Generation of flooring and

wallpaper patterns using computer graphics” Proceedings

of the First National Conference on Computer Aided

Structural Analysis and Design, Jan 3-5,1996,

Engineering Staff College of India and University

College of Engineering, Osmania University, Hyderabad

[11] Hari RamaKrishna, “Application of computer graphics in

interior design” Proceedings of Conference 1998 at

Institutes of Engineers at Hyderabad.

AUTHOR’S PROFILE

Dr. Hari Ramakrishna was awarded B.E in Computer

Science and Engineering in 1989 by Osmania University,

Hyderabad, A.P., INDIA, M.S., in Computer Science by BITS

PILANI, INDIA and Ph.D. in Computer Science and

Engineering by the Faculty of Engineering Osmania

University in “Pattern languages for graphic /CAD

frameworks”. He worked in Software Industry for several

years developing Graphic, CAD /GIS products using

Microsoft environment. He has about 15 years of teaching

experience. Presently he is working as a Professor for last 7

years in the Department of Computer Science and

Engineering at Chaitanya Bharathi Institutre of Technology,

Hyderabad INDIA. He involved in the design and

development of several graphic frameworks for various

Engineering applications.

http://www.patternlanguage.com/

