
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

22

Prediction of Composite Service Execution Duration

before Change in Service Composition

Leila Mollaey

Department of Computer Engineering Shabestar
Branch Islamic Azad University

Shabestar, Iran

Mir Ali Seyyedi
Department of Computer Engineering South of

Tehran Branch Islamic Azad University
Tehran, Iran

ABSTRACT

When user requirements alter in composite services, there is a

need to change service composition or add and remove some

services. Notwithstanding service level agreement, it is vital

for service provider to assess quality properties. Computing

execution duration process after any changes in service

composition will be time consuming if it is completely

performed ab initio. In this paper, a graph theory based

approach is proposed, in which non-formal business process

execution language is mapped into XBFG graph. then

execution duration of primary composite service is computed

and the results are stored. Using these results, execution

duration of composite service can be computed after changing

service composition in a less timely manner.

General Terms

Prediction of execution duration of composite service before

change in service composition algorithm.

Keywords

changing in service composition, composite service, Extended

BPEL Flow Graph, execution duration, critical path.

1. INTRODUCTION
Service level agreement is a contract between service provider

and its customers, in which quality properties of the service

and its credibility criteria are determined. Hence, assessment

of service quality properties is important. Execution duration

of composite service is one of the most important quality

properties. After any changes in requirements, which are

followed by changing the service composition, service

provider needs predicate new execution duration of composite

service.

So far, few studies have been conducted in the area of quality

properties assessment and execution duration of composite

service. In these studies, quality properties assessment is

performed ab initio after any changes in service composition.

For example, Reference [1] investigated timed constraints

using timed petri net and also references [2]-[3] proposed

some procedures for quality properties assessment based on

runtime monitoring. Reference [4] presented a framework that

predicts deviations from service level agreement by

monitoring at run time and prevents them. Composite service

performance was also predicted and evaluated in reference

[5]-[6].

In this paper, an approach in which XBFG graph as the formal

model of composite service is used, is presented. Taking into

account critical path and execution duration of composite

service before any change in its composition, execution

duration is predicted after applying some changes in service

composition. According to this approach, there is no need to

perform all calculations ab initio and primary composite

service computing information is used for calculating

execution duration for new service composition and no

repetitive calculations are performed to compute new

execution duration.

2. Extended BPEL Flow Grap
Control flow model is used in change impact analysis and

regression testing path selection on BPEL process in [7], Li et

al.[8] exploited a test selection minimization algorithm based

on [7]. BPEL is a semi-formal flow language with complex

features such as concurrency and hierarchy[9]. BPEL Flow

Graph (BFG) is a control flow model proposed by Y. Yuan et

al. to describe BPEL process[10]. BPEL composite service is

the combination of process and component services

interacting with the process. In order to operate change impact

analysis on composite service rather than the process solely,

proposed a model called XBFG, that Bixin Li used this model

for functional testing of composite service in [11] and [12] .

XBFG is defined as a triple < N,E,F >, which N denotes the

node set and these nodes used in different forms for modeling

activities and services, that including N = IN NN SN

EN MN CN. E = CE ME, which denotes the edge

set. Control Edge (CE) linking the BPEL activities that used

in BFG to express control flows in BPEL and and add

Message Edge (ME) linking IN and SN to denote message

calling relationship between process and its component

services. F is the field of XBFG element, element is the

general designation of node and edge. XBFG nodes are

classified into six types:

Interaction Node (IN), which is mapped from those basic

activities with which component services interact, including

<invoke>, <receive>, <reply> and <onMessage> in <pick>.

Normal Node (NN), which is mapped from other basic

activities of BPEL, such as <assign>, <wait> and so on.

Additionally, <onAlarm> activity in <pick> is also mapped to

NN.

Service Node (SN), which is mapped from the partnerLinks

defined in BPEL, a SN represents a component service the

process interacts with.

Exclusive Node (EN), which is mapped from those structural

activities providing conditional behavior, including <if>,

<pick>, <while> and <repeatUntil>. EN is divided into

Exclusive Decision Node (EDN) and Exclusive Merge Node

(EMN).

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

23

Multiple Node (MN), which is mapped from the <link> with

its <joinCondition> value equals to ”OR” or null. MN is

divided into Multiple Branch Node (MBN) and Multiple

Merge Node (MMN).

Concurrent Node (CN), which is mapped from the <flow>

activity and <link> with its <joinCondition> value equals to

”AND”. CN also has two forms, Concurrent Branch Node

(CBN) and Concurrent Merge Node (CMN). The symbols of

each kind of XBFG elements are shows in figure 1.

 Fig 1: Symbols of XBFG elements

3. The Proposed Approach
Initially execution duration of primary composite service is

computed and the results are stored. Then, execution duration

of composite service after changing service composition is

predicted by using stored results and without any need to

perform duplicated operations.

3.1 Computing Execution Duration of

Primary Composite Service
Total execution duration of primary composite service is

determined by selecting the critical path(cp)[13] and

designating its execution duration as total execution duration.

The critical path is a path from initial state to the final state,

which has the longest total execution duration. Initially,

XBFG model of composite service is constructed and then

paths of the model are determined. Execution duration for

each path is computed by summing execution durations of the

activities in the path. Finally, a path with the longest

execution duration is selected as the critical path and its

execution duration is designated as total execution duration

composite service.

3.1.1 Calculation of Execution Duration for Basic

Activities
In order to calculate execution duration for each path, it is

needed to calculate execution duration for all activities in the

paths. The total execution duration of one path is obtained by

summing execution durations of all activities in that path. In

this section and following section, rules for calculation of

execution duration of each activity in BPEL process are given

according to what proposed in [14]. Processing time of each

activity includes the intrinsic processing time Tintr which

refers to all internal operations of the WS-BPEL engine

associated with the execution of this activity. The value of

Tintr can be obtained by means of benchmarking.

<invoke> c: if the invocation is synchronous (request-reply),

the communication time can be determined by (1)

(1)

where m and n are the invoked operation and the node that

provides the corresponding web service, respectively. d[n] is

current network latency, hi[m] and ho[m] are average sizes of

input and output (fault) messages for the web service

operation m. j[n] is the maximum throughput of the network

link between the integrator node and the node n and b[m] is

the compute time of the operation m. These sizes can be

determined on the basis of XML Schema definitions in

WSDL documents. The concluding formula is (2):

 (2)

<receive> c: the execution duration of this activity is obtained

from summation of the Tintr and expecting waiting time of the

received message.

<wait> c: the expecting execution duration of this activity is

obtained from summation of the Tintr and waiting time

required to reach next operation.

<reply> c: the execution duration of this activity is determined

by (3):

(3)

<assign>, <empty>, <validate> and <throw> c: the execution

duration of these activities are only equal to Tintr.

Fault, compensation and termination handlers: ignored

because exception, compensation and termination handling is

not part of normal behavior of the scope.

<rethrow> : ignored because this activity can be called only

from a fault handler.

<compensate Scope> and <compensate>: ignored because

compensation can be initiated only from a fault handler or a

compensation handler.

<terminate> and <exit> : the execution duration of these

activities are only equal to Tintr.

3.1.2 Calculation of Execution Duration for

Compound Activities
In this section, (recursive) aggregating formulas and

algorithms for compound activities are given[14].

<sequence> c: the execution duration of this activity with

nested activities c1 . . . ck, is obtained by formula (4):

(4)

<repeat Until> and <while> c: (execution duration of these

activities) with expected loops count f (f ≥ 1 for <repeat

Until>, f ≥ 0 for <while>) and expected duration of the body

of the loop Tbody, is obtained by formula (5):

 (5)

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

24

<scope> c: execution duration of this compound activity with

nested activity c1 and optional event handlers c2 . . . ck, is

obtained by formula (6):

 (6)

In addition, the execution duration of activities that are as

branching, do not be calculated separately and will be

calculated execution duration of each activity’s branch in

dependent path.

3.2 Determining XBFG Graph Details

Storage Sets
Some the sets are used for storing details of composite service

before and after changing its composition. In this section,

these sets are introduced. P and P´ sets are used for storing the

paths obtained by XBFG model of primary composite service

and composite service after change in its composition. N and

N´ sets store the elements present in paths of P and P´. Nadd set

contains elements that are not in N but in N´ and Ndel is the set

of elements that exist in N and but not in N´. Ps is set of those

paths that are subject to change and is obtained by union of

Ps1 and Ps2. Ps1 is the set of paths that change due to deletion

of the service and Ps2 is the set of paths that change due to

addition of services. Ps1 and Ps2 are obtained by algorithm 1 in

reference [11]. Execution durations of paths are gathered into

set T and execution duration of added and deleted elements

are gathered into set τ.

3.3 Prediction of Composite Service

Execution Duration Before Changing

Service Composition
This process take places in 4 steps: in the first step, the

changes are applied to XBFG model of primary composite

service to obtain XBFG model for new composite service.

Then in the second step, paths in new graph are determined.

In the next step, execution duration regarding added and

deleted elements are calculated and in the fourth step the

critical path is selected and its execution duration is calculated

using algorithm 1 which will be described in the following

section. Finally execution duration of the critical path is

designated as total execution duration.

3.3.1 Selecting the Critical Path After Changing

Composite Service Composition
After changing composite service composition, it should be

first determined what type is this change. Changes in service

composition are classified into four types which include:

adding or removing services in the critical path of primary

composite service and adding or removing services in a path

other than the critical path of primary composite service. In a

case in which a service is added on the critical path, the new

critical path overlaps the previous critical path and its

execution duration will be equals to summation of the

execution duration of the previous composite service and

execution duration of the added element on the critical path.

In the case when a service is deleted from previous critical

path, all paths are compared with each other and the new

critical path is selected. When adding services in a path other

than critical path of composite service, the execution

durations of all paths which changes due to addition of new

services, i.e. paths in Ps2 set, should be compared and the new

critical path is selected. Finally when a service is deleted from

a path other than the critical path, it can be stated that deletion

of a service has no influence on the critical path and

consequently its execution duration. Algorithm 1 describes the

process of selection of the new critical path and calculation of

its execution duration. In this algorithm, pathComparision

algorithm which was described in [11] is used. map function

takse the new path and converts it to its previous state.

input : N, N´, P, P´,T,τ,CP

output : CP´, T(CP´)

1 newCriticalPath(T, τ,N,N´,P,P´,CP):CP´,T(CP´);

2 CP´ = CP;

3 T(CP´) = T(CP);

4 pathComparision(P, P´, N, N´): Ps1, Ps2;

5 for each path of Ps2 : ps2 do

6 for each element of Nadd : nadd do

7 if nadd Є ps2 then

8 T(map(ps2)) = T(map(ps2)) + τ (nadd);

9 if map(ps2) = = CP then

10 T(CP´) = T(CP´) + τ (nadd);

11 CP´ = ps2;

12 end

13 end

14 end

15 end

16 for each path of Ps2 : ps2 do

17 if map(ps2) != CP && T(CP´) < T(map(ps2)) then

18 CP´ = ps2;

19 T(CP´) = T(map(ps2));

20 end

21 end

22 for each element of Ndel : ndel do

23 if ndel Є map(CP´) then

24 for each element of Ndel : ndel do

25 for each path of Ps1: ps1 do

26 if ndel Є ps1 then

27 T(map(ps1)) = T(map(ps1)) - τ (ndel);

28 end

29 end

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

25

30 end

31 for each path of P´ : p´ do

32 P´ = P´- p´

33 for each path of P´ : p″ do

34 if T(p´) < T(p”) then

35 CP´ = p″;

36 T(CP´) = T(p″);

37 end

38 end

39 end

40 return CP´, T(CP´);

41 end

42 end

43 return CP´, T(CP´);

44 end

Algorithm 1 : the algorithm for new critical path selection and

calculation of its execution duration

4. Evaluation Mechanism
In order to evaluate the proposed approach, calculating

execution duration of loan approval composite service is

considered after changing its composition under four types of

changes using two approaches: 1) by the proposed approach

and taking into account the information obtained from

calculation of primary composite service execution duration

and 2) performing all calculations for determination of new

composite service execution duration regardless of execution

duration of primary composite service. Loan approval process

was described in [15]. XBFG graph for primary loan approval

composite service is demonstrated in Figure 2. In order to

calculate execution duration of primary composite service,

initially paths are determined on XBFG graph and then

execution duration of each path is calculated and finally

execution durations of all paths are compared to select the

critical path, i.e. the path with maximum execution duration.

The execution duration of the critical path is considered as

total execution duration.

Fig 2 : XBFG Graph Constructed for Primary Loan

Approval

When a service is added on the previous critical path, without

making any comparison it can be concluded that critical path

will not change. XBFG grph for loan approval process after

adding service on last critical path direction is demonstrated

in Figure 3.

Fig 3: XBFG Graph Constructed for Loan Aapproval

after Adding Service on last Critical Path Direction

In the case in which a service is removed from the previous

critical path, only paths which change due to removal of the

service are compared with each other and the critical path is

selected. When a service is added on another path, all paths in

Ps2 are compared with each other and the new critical path is

selected. XBFG grph for loan approval process after adding

service on a path other than last critical path direction is

demonstrated in Figure 4.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

26

Fig 4: XBFG Graph Constructed for Loan Aapproval

after Adding Service on a Path other than last Critical

Path Direction

Finally if a service is removed from another path other than

the critical path, the critical path remains unchanged. The

numbers of required comparisons made for candidacy as the

critical path using two approaches: 1) the proposed approach

and 2) performing calculations ab initio are listed in table 1.

Table 1. The Number of Needed Comparisons for

Candidacy as The Critical Path

 Approach

Types of changes

The

Proposed

approach

Performing

calculations

ab initio

Adding a service on the last

critical path

0 |P´-1|

Removing a service from last

critical path

|P´-1| |P´-1|

Adding a service on a path other

than critical path

|Ps2| |P´-1|

Removing a service from a path

other than critical path

0 |P´-1|

5. Conclusion and Future Works
The critical path can be selected with fewer numbers of

comparisons using the proposed approach and its execution

duration be calculated. Therefore, it can be stated that using

this approach is economical when user requirements will be

subject to many changes in the future. In addition, other

quality properties as well as execution duration are considered

in service level agreement that assessment of them is

important for service provider too. These quality properties

such as: execution cost, reputation, reliability and availability.

execution cost is the amount of money that a service requester

has to pay for executing, reputation is a measure of service ‘s

trustworthiness, reliability is the probability that a request is

correctly responded within the maximum expected time frame

and availability is the probability that the service is accessible.

we will be proposed approaches to predict other quality

properties of composite services before change in service

composition in our future works.

6. REFERENCES
[1] Guilan, D., Rujuan, L., Chongchong, Zh., Changjun, Hu.

2008. Timing Constraints Specification and Verification

for Web Service Compositions, IEEE Asia-Pacific

Services Computing Conference.

[2] Moser, O., Rosenberg, F., Dustdar, S., 2008. Non-

Intrusive Monitoring and Service Adaptation forWS-

BPEL, International World Wide Web Conference,

China, pp.21-25.

[3] Huang, T., Wu, G., Wei, J. 2009. Runtime Monitoring

Composite Web Services Through Stateful Aspect

Extension, JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY, pp. 294-308.

[4] Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.

2010. Monitoring, Prediction and Prevention of SLA

Violations in Composite Services, IEEE International

Conference on Web Services.

[5] Dong, Y., Xia, Y., Zhu, Q., Yang, R. 2009. A Stochastic

Approach to Predicting Performance of Web Service

Composition, JOURNAL OF COMPUTERS, VOL. 4,

NO. 6.

[6] Dong, Y., Xia, Y., Sun, T., Zhu, Q. 2010. Modeling and

Performance Evaluation of Service Choreography based

on Stochastic Petri Net, JOURNAL OF COMPUTERS,

VOL. 5, NO. 4.

[7] Liu, H., Li, Z., Zhu, J., Tan, H. 2007. Business Process

Regression Testing, In: Proceedings of the 5th

International Conference on Service Oriented Computing

(ICSOC 2007), LNCS 4749, pp. 157-168.

[8] Li, J., Tan, F., Liu, H., Zhu, J., Mitsumori, N. 2008.

Business-process-driven gray-box SOA testing, IBM

System Journal, pp.457-472.

[9] Zheng, Y., Zhou, J., Krause, P. 2007. An Automatic Test

Case Generation Framework for Web Services,

JOURNAL OF SOFTWARE, VOL. 2, NO. 3.

[10] Yuan, Y., Li, Z. Sun, W. 2006. A Graph-search Based

Approach to BPEL4WS Test Generation, In:

Proceedings of the International Conference on Software

Engineering Advances (ICSEA’06) , Tahiti , pp. 14-14.

[11] Bixin, Li., Dong, Q., Shunhui, J., Di, Wang. 2010.

Automatic Test Case Selection and Generation for

Regression Testing of Composite Service Based on

Extensible BPEL Flow Graph, 26th IEEE International

Conference on Software Maintenance in Timisoara,

Romania.

[12] Wang, Di., Li, B., Cai, J. 2008. Regression Testing of

Composite Service: An XBFG-based Approach, IEEE

Congress on Services Part II.

[13] Zeng, Li., Benatallah, B., Dumas, M. Quality Driven

Web Services Composition, 12th international

conference on World Wide Web, Pages 411 - 421.

[14] Rud, D., Kunz, M., Schmietendorf, A., Dumke, R. 2007.

Performance Analysis in WS-BPEL-Based

Infrastructures.

[15] Cao, D., Felix, P., Castanet, R., Berrada, I. 2009. Testing

Service Composition Using TGSE tool, 7th IEEE

International Conference on Web Services, Los Angeles :

United States, 2009.

