
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

16

Recency and Prior Probability (RPP) based Page

Replacement Policy to Cope with Weak Locality

Workloads having Probabilistic Pattern

Bhatta Jagdish

Central Department of Computer Science and IT
Tribhuvan University, Kathmandu, Nepal

Saud Arjun Singh
Central Department of Computer Science and IT

Tribhuvan University, Kathmandu, Nepal

ABSTRACT
Development of efficient block replacement policy is the topic

of much research in operating system as well as database

management systems. Among variety of page replacement

algorithms Least Recently Used (LRU) algorithm is simple,

flexible and has low overhead. LRU replaces page that is not

accessed for longest time. But LRU makes bold assumption

on recency factor only, which made LRU misbehave with

weak locality workloads. This paper proposes a new Recency

and Prior Probability (RPP) based page replacement policy for

block replacement. The RPP combines recency and prior

probability associated with the pages while selecting the

victim frame from memory. If a page, to be used, has

probability n times higher than another page, the page will get

log(n) more chances to stay in the memory than lower

probability pages. Hence with RPP, it is possible to prevent

pages having higher probability of use from being replaced

General Terms: Page Replacement, Memory Management,

Operating System

Keywords: LRU, LRFU, RPP, Weak locality, Probabilistic

Pattern

1. INTRODUCTION

The program or data page that is not currently in main

memory needs to get fetched into memory for which some

other page should be removed from memory to allocate the

space for incoming page, because generally memory is fully

allocated to increase degree of multiprogramming. The

process of choosing a page frame to replace, when a page

fault occurs, is called page replacement and, the page frame

chosen for the replacement is called victim frame.

Development of efficient block replacement policy is the topic

of much research in operating system [1, 2] and database

management systems [3,4,5]. A good block replacement

policy should fulfill two criterions. First, it should be able to

distinguish between hot and cold blocks. Along with, it needs

to identify the blocks that are getting hot and blocks that are

getting colder. Second, the policy should be efficient to

implement both in terms of space and time. It is not better if

the policy needs to remember large past history. Generally,

time needed to execute the policy should be possibly O(1) or

O(logn) in the worst case.

Among variety of page replacement algorithms, Least

Recently Used (LRU) algorithm is simple, flexible and has

low overhead. LRU replaces page that is not accessed for

longest time. LRU adapts faster during change in working set

with workloads having good locality of reference. But LRU

makes bold assumption on recency factor only, which made

LRU misbehave with weak locality workloads. Recency

factor is the virtual time difference between the current time

and last time when the oldest block is accessed.

LRU does not perform well with weak locality of reference.

The access patterns of weak locality workloads can be

categorized into three different groups [6];

 Sequential accesses over a large number of pages,

such as “sequential scans” through a large file, may

cause replacement of commonly referenced pages.

 Accesses inside loops with working set size slightly

larger than the available memory, may replace

pages that would be reused soon.

 LRU cannot distinguish pages with different access

frequency or cannot efficiently manage an

irregularly accessed page.

As a matter of fact, if the “frequency”, of each page reference

is taken into consideration, it will perform better in the case

where workload has weak locality. Having analyzed the

advantages and disadvantages of LRU and LFU, another page

replacement algorithm LRFU (Least Recently frequently

used) was proposed by combining them through weighting

“page recency” and “frequency” factors [7]. Other studies has

been performed by combining recency and frequency factor of

pages [3,4,6].

Until up to now, no block replacement policy has made the

use of prior probability associated with pages to select the

page to be evicted. There are many areas where prior

probability of some pages is known to be higher than other

pages. For example, every time when a process takes a turn it

definitely uses the page that contains page table but other

pages associated with the process may or may not be used in

the turn. With this fact, it can be said that probability of using

page table pages is higher than probability of using non-page

table pages. Making this bottom-line, this paper proposes a

new block replacement policy that combines recency and

prior probability associated with the pages while selecting the

victim frame from memory.

2. RELATED WORK

As recent past is a good indicator of the near future, LRU

considers that a page that is just now used will probably be

used again very soon, and a page that has not been used for a

long time, will probably remain unused. Here, recency is

evaluated by maintaining LRU stack sorted on the basis of

virtual time, which is the only factor for replacement. When

page fault occurs, the page that has been unused for the

longest time is evicted. Thus LRU is simple and easy to

implement. It can adapt faster according as program behavior.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

17

LRU like algorithm doesn't suffer from Belady's Anomaly as

FIFO [8].

LRU shows more page faults in case of weak locality

workloads. This miss behavior of LRU can be reduced by

taking user level hints, utilizing and tracing history

information, and detecting and adaptation of access regularity.

By taking user-level hints, applications are hinted during

caching and pre-fetching which rely on users understanding of

data access patterns. Hence such work is only suitable for

working manually, which eradicates burden of programmer.

Detection and adaptation of access regularities is performed

case by case in different algorithms like SEQ, EELRU,

DEAR, AFC, UBM etc. Tracing and utilizing deeper history

information is performed in different algorithms like LRFU,

LRU-K, 2Q, ARC etc. including LIRS. For such deeper

history information high implementation cost, and runtime

overhead is required [6].

Most Recently Used (MRU) algorithm also works on the basis

of recency factor as in LRU. It violates LRU principle and

works totally in opposite manner. LRU evicts unused page

following locality of principle but MRU evicts recently used

page as victim. MRU is only suitable when there weak

locality of reference, which is worst case of LRU. MRU can

be implemented in similar way as LRU by maintaining

recency stack. But here front one is removed and bottom one

is stored for future use. Hence MRU is only suitable in case of

worst locality of reference where LRU could not deal with

this effect [6].

Least Frequently Used (LFU) selects a victim page that has

not been used often in the past. Instead of using a single

recency factor as LRU, additionally LFU maintains frequency

of each page, which is equal to number times of the page

used. This frequency is calculated throughout the reference

stream by maintaining counting information. Frequency count

leads to serious problem after a long duration of reference

stream. Because when the locality changes, reaction to such

certain change will be extremely slow. Assuming that a

program either changes its set of active pages, or terminates

and is replaced by a completely different program, the

frequency count will cause pages in the new locality to be

immediately replaced since their frequency is much less than

the pages associated with the previous program. Since the

context has changed, the pages swapped out will most likely

be needed again soon which leads to thrashing. One way to

remedy this is to use a popular variant of LFU, which uses

frequency counts of a page since it was last loaded rather than

from the beginning of the page reference stream. Each time a

page is loaded, its frequency counter is reset rather than being

allowed to increase indefinitely throughout the execution of

the program. LFU still tends to respond slowly to change in

locality [7].

The SEQ algorithm [9] can be considered as an adaptive

version of LRU that tries to correct the performance loss

caused by the presence of linearly sequential memory

accesses. When it identifies one or more memory reference

sets to numerically adjacent addresses, the algorithm adopts a

pseudo-MRU replacement strategy, otherwise the original

LRU criterion.

Some algorithms use recency as history information like LRU

and Most Recently Used (MRU). These two algorithms can be

tuned to form adaptive algorithm called Early Eviction LRU

(EELRU) [10], which was proposed as an attempt to mix

LRU and MRU, based only on the positions on the LRU

queue that concentrate most of the memory references. This

queue is only a representation of the main memory using the

LRU model, ordered by the recency of each page. EELRU

detects potential sequential access patterns analyzing the reuse

of pages. One important feature of this algorithm is the

detection of non-numerically adjacent sequential memory

access patterns. Two tunable parameters used are early

eviction point and late eviction point. LRU queue that

concentrate most of the memory references when it reaches

late eviction point.

Least Frequently Used (LFU) algorithm uses frequency factor

for page replacement. LRU and LFU are tuned to form

adaptive algorithm called Least Recently Frequently Used

(LRFU) [11] that considers both recency and frequency

factors.

LRU - K [4] evicts the page that is the one whose backward

K-distance is the maximum of all pages in buffer. Backward

K-distance bt(p,K) can be defined as the distance backward to

the Kth most recent reference to page p, where reference

string known up to time t is (r1, r2, …,rt). The value of

parameter K can be taken as 1, 2 or 3. If K=1, it works as

simple LRU algorithm. Highly increasing value of K reduces

the overall performance of algorithm. LRU-K can

discriminate better between frequently referenced and

infrequently referenced pages. Unlike the approach of

manually tuning the assignment of page pools to multiple

buffer pools, LRU-K does not depend on any external hints.

Unlike LFU and its variants, this algorithm copes well with

temporally clustered patterns.

2Q [3] algorithm quickly removes sequentially and cyclically

referenced block with a long interval. The algorithm uses

special buffer queue A1in of size Kin, ghost buffer queue

A1out of size Kout, and the main buffer of size Am. Special

buffer contains all missed that is first time referenced block.

Ghost buffer contains replaced blocks from special buffer.

Frequently accessed block are available in main buffer. Hence

victim blocks are always from special buffer and main buffer.

Another important algorithm is LIRS. Its objective is to

minimizing the deficiencies presented by LRU using an

additional criterion named IRR (Inter- Reference Recency)

that represents the number of different pages accessed

between the last two consecutive accesses to the same page.

The algorithm assumes the existence of some behavior inertia

and, according to the collected IRRs, replaces the page that

will take more time to be referenced again. This means that

LIRS does not replace the page that has not been referenced

for the longest time, but it uses the access recency information

to predict which pages have more probability to be accessed

in near future [6].

The clock-based approximations, such as CLOCK [12],

CLOCK-PRO [13], and CAR [14], usually cannot achieve the

high hit ratio compared to their corresponding original

algorithms (LRU, LIRS, ARC [15] respectively). They

organize buffer pages into circular list, and use a reference bit

or a reference counter to record access information for each

buffer page. When a page is hit in the buffer, the clock-based

approximations set the reference bit or increment the counter,

instead of modifying the circular list themselves. As a lock is

not required for these operations, their caching performance is

scalable. However, the clock-based approximations can record

only limited history access information, i.e. whether a page

has been accessed or how many times it has been accessed but

not in what order the accesses occur. The lack of richer

history information can hurt their hit ratios. Moreover, many

sophisticated replacement algorithms do not have clock based

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

18

approximations since the access information they need cannot

be approximated by the clock structure [16].

Three other algorithms, DEAR [17], AFC [18] and UBM [19],

analyze the memory accesses looking for some specific

patterns, including sequential accesses. They adopt a different

replacement criterion for each pattern. For example, DEAR

applies MRU for sequential accesses and LRU or LFU for

other patterns.

Recent adaptive algorithms use Artificial Intelligence

techniques for adaptation. For example the FPR [20] and

FAPR [21] algorithms apply fuzzy inference techniques to

manage the replacement priorities of the resident pages. All

these proposals bring important conceptual benefits to the

traditional page replacement algorithms, but they also present

more complex implementations. In many cases additional data

structures to hold nonresident pages are necessary which leads

to increased space requirements. Some algorithms require data

update in every memory access, making impracticable its real

implementation.

3. DESCRIPTION OF RPP

RPP combines the recency and prior probability of the pages

to select the victim frame from memory. Main theme of RPP

is to prevent pages having higher probability being replaced

even if it has highest recency value. Suppose that a computer

system having memory of M pages and is running N

processes in pseudo parallel fashion by using round-robin

scheduling algorithm (It can be assumed using round-robin

scheduler without loss of generality). Since the device is

executing N processes, there should be N page tables, one

page table for each process. And each process contains M/N

pages in average.

When a process takes its turn on CPU, definitely a page

containing page table will be used by the process but other

pages associated with process may or may not be used. Since

there are M pages in total, probability of using a page is 1/M.

But there are N page table pages and they are used every time

when a process takes turn on CPU, therefore probability of

using a page-table page is N/M. LRU does not differentiate

between page table pages and non-page table pages while

selecting a victim frame. Based on this idea, it is not fair to

treat page table and non-page table pages equally while page

replacement since the probability of accessing page-table

pages is higher than the non page-table pages. Thus, the

motive of RPP is to give higher priority to the pages having

higher probability and lower priority to the pages having

lower probability. If a page has probability N times higher

than another page, RPP gives log(n) more chances to such

pages before being replaced. Thus when a page table page

(page having higher probability) has highest recency, instead

of replacing the page RPP sets it’s recency to zero and

decrements the probability of the page by half. This means

RPP replaces the page only when

 Recency * prior probability ≤ 1

This equation gives equal weights to both recency and prior

probability. If a page has probability k times higher than

another page the equation satisfies only when first page have

actual recency k times higher than second page and hence gets

more priority over second page. Here, actual recency means

recency without resetting the recency of higher probability

page to zero when it is has highest recency among all pages in

cache.

Algorithm of RPP is given below

1. Begin

2. Read new page, say b

3. If b is available in Queue,. Page hit occurs.

3.1. Then

3.2. Move b to front of Queue

4. Else

4.1. If b is not available in Queue, page miss occurs

4.2. If queue is full, Examine page at rear

4.2.1. Then

4.2.2. If recency * prior probability ≤ 1

4.2.2.1. Then

4.2.2.2. Remove the page at rear

4.2.3. Else

4.2.3.1. Move page at rear of queue to front

4.2.3.2. Decrease prior probability by half

4.2.3.3. Go to step 4.2

4.3. Else

4.3.1. Insert new page at front of queue

3.4. End if

5. End if

6. End

4. IMPLEMENTATION

RPP has been implemented by using the data structure similar

to LRU. Doubly linked list is used because the position of a

node in the doubly linked list can be changed in O(1) time, in

case of page hit. If there is page fault and no free memory is

available, LRU can replace the page that is at rear of queue in

O(1) time. But RPP may need O(K) time in worst case to find

a victim page frame, where k in the number of processes that

are executing in pseudo parallel. All memory traces are

generated by assuming that Round-Robin Process scheduler is

used and each process uses eight pages on average when it

gets CPU.

5. PERFORMANCE ANALYSIS

RPP is evaluated by comparing it with LRU and LRFU by

varying the degree of multiprogramming from 32 to 128 in the

interval of 32.

Fig 1 shows that performance of LRFU is good in general in

comparison to LRU and RPP. Here the degree of multi-

programming is 32, therefore there are very few page-table

pages (i.e. pages having higher prior probability) which are

used more often than other pages. Due to which RPP is not

able to take great benefit from pages having higher prior

probability.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

19

Fig 1 Graph showing performance of algorithms for

degree of multiprogramming 32

Following there graphs (Fig 2, 3, 4) shows that performance

of RPP is good in general in comparison to LRU and LRFU.

This is because, in theses graphs degree of multi-

programming is 64, 96, and 128 respectively and hence there

are 64, 96, and 128 page-table pages that are used more often

than other pages. Therefore RPP takes benefit of such large

number of pages having higher prior probability (i.e. page-

table pages) and keeps them in memory hence resulting in less

number of page faults.

Fig 2 Graph showing performance of algorithms for

degree of multiprogramming 64

Fig 3 Graph showing performance of algorithms for

degree of multiprogramming 96

Fig 4 Graph showing performance of algorithms for

degree of multiprogramming 128

Following graph summarizes above all graphs by showing

average hit rates of all considered page replacement

algorithms. It shows that average performance of RPP is less

than other algorithms when degree of multiprogramming is 32

but its performance is becoming more better if degree of

multiprogramming is increased to 64, 96, and 128.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

6
4

1
9

2

3
2

0

4
4

8

5
7

6

7
0

4

8
3

2

9
6

0

H
it

 R
a

te

Memory Size

LRU

LRFU

RPP

0.00

10.00

20.00

30.00

40.00

50.00

60.00

6
4

1
9

2

3
2

0

4
4

8

5
7

6

7
0

4

8
3

2

9
6

0

H
it

 R
a

te

Memory Size

LRU

LRFU

RPP

0.00

10.00

20.00

30.00

40.00

50.00

6
4

1
9

2

3
2

0

4
4

8

5
7

6

7
0

4

8
3

2

9
6

0

H
it

 R
a

te

Memory Size

LRU

LRFU

RPP

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

6
4

1
9

2

3
2

0

4
4

8

5
7

6

7
0

4

8
3

2

9
6

0

H
it

 R
a

te

LRU

LRFU

RPP

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

20

Fig 5 Graph showing average performance of algorithms

for varying degree of multiprogramming

6. CONCLUSION
LRU and its variants are used in many systems due to its

simplicity during implementation and better hit rates with

strong locality workloads. But LRU performs weak with weak

locality workloads. LRFU and other variants of LRU enhance

the performance with weak locality workloads by combining

frequency with recency. To calculate frequency of a page,

memory management systems need to remember deep history

information which adds overhead to the system. Therefore

rather than combining recency and frequency, RPP combines

recency with prior probability associated with the page for

which systems do not need to remember past history of the

page access and can be calculated easily.

From the analysis, it is found that performance of RPP is

weaker than LRFU but better than LRU when degree of

multiprogramming is 32. But, as the degree of

multiprogramming is increased (see Fig. 2, Fig. 3 and Fig. 4)

performance of RPP is becoming better than LRU as well as

LRFU in average. Therefore, it can be concluded that when

large number of process are executed in pseudo parallel, RPP

performs better than LRFU with weak locality workloads

having probabilistic pattern. The reason behind this is large

number of pages having higher prior probability (i.e. page-

table pages) which are in favor of RPP page replacement

policy.

Worst case complexity of RPP is O(k), where k is the degree

of multiprogramming, but from empirical analysis, it is

believed that its complexity is quite below than O(k).

Therefore calculation of exact analysis of RPP is of future

research. Again, looking at graph of Fig. 4, LRFU shows

anomalous behavior. Thus, analyzing this behavior of LRFU

may be another future research.

7. REFERENCES
[1] P. Cao, E. W. Felten, and K. Li, “Application-controlled

File Caching Policies”, Proc. USENIX Summer 1994

Technical Conf., pp.171-182, June 1994.

[2] R. Karedla, J.S. Love, and B.G. Wherry. Caching

strategies to improve disk performance. IEEE

Computere, 27(3):38 46, March 1994.

[3] T. Johnson and D. Shasha, “2Q: A Low Overhead High

Performance Buffer Management Replacement

Algorithm,” Proc. 20th Int’l Conf. Very Large Data

Bases, pp. 439-450, Sept. 1994.

[4] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K

Page Replacement Algorithm for Database Disk

Buffering”, Proc. 1993 ACM SIGMOD Int’l Conf.

Management of Data, pp. 297-306, May 1993.

[5] J.T. Robinson and N.V. Devarakonda, “Data Cache

Management Using Frequency-Based Replacement,”

Proc. 1990 ACM SIGMETRICS Conf. Measuring and

Modeling of Computer Systems, pp. 134-142, May 1990.

[6] Song Jiang and Xiaodong Zhang, Making LRU Friendly

to Weak Locality Workloads: A Novel Replacement

Algorithm to Improve Buffer Cache Performance, IEEE

Transactions on Computers, Vol. 54, and No. 8, August

2005, pp 939-952.

[7] D. Lee, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “On

the Existence of a Spectrum of Policies that Subsumes

the Least Recently Used (LRU) and Least Frequently

Used (LFU) Policies”, Proc. 1999 ACM SIGMETRICS

Conf. Measuring and Modeling of Computer Systems, pp.

134-143, May 1999.

[8] Kirby McMaster, Samuel Sambasivam, Nicole Anderson

2010, A case study of Belady’s anomaly and binomial

distribution, Proceedings of Informing Science & IT

Education Conference (InSITE)

[9] Glass, G. and Cao, P. 1997. Adaptive Page Replacement

Based on Memory Reference Behavior, In Proceedings

of the ACM International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS’97),

pp 115-126.

[10] Smaragdakis, Kaplan, S., and Wilson, P. 1999. EELRU:

Simple and Effective Adaptive Page Replacement, In

Proceedings of the ACM International Conference on

Measurement and Modeling of Computer Systems

(SIGMETRICS’99), Atlanta, pp 122-133.

[11] Gyan Prakash Joshi, 2007, Calculation Of Control

Parameter That Results Into Optimal Performance In

Terms Of Page Fault Rate In The Algorithm Least

Recently Frequently Used(LRFU) For Page

Replacement, Master's Thesis, Tribhuvan University,

Central Department of Computer Science and

Information Technology.

[12] Corbató, F. J. 1968. A paging experiment with the

Multics system. In Honor of P. M. Morse, pp 217–228,

MIT Press, 1969. Also as MIT Project MAC Report

MAC-M-384.

[13] Jiang, S., Chen, F., Zhang, X. 2005. CLOCK-Pro: An

effective improvement of the CLOCK replacement. In

Proceedings of the 10th Annual USENIX Technical

[14] Bansal, S. and Modha, D. S. 2004. CAR: Clock with

Adaptive Replacement, In Proceedings of the USENIX

Conference on File and Storage Technologies

(FAST’04), San Francisco, pp 187-200

0

10

20

30

40

50

60

70

32 64 96 128

H
it

 R
at

e
s

Degree of Multiprogramming

LRU

LRFU

LRU(PP)

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.15, December 2012

21

[15] Megiddo, N. and Modha, D. S. 2003. ARC: A Self-

Tuning, Low Overhead Replacement Cache, In

Proceedings of the USENIX Conference on File and

Storage Technologies (FAST’03), San Francisco, pp

115-130.

[16] BP-Wrapper: A System Framework Making Any

Replacement Algorithms (Almost) Lock Contention Free

Xiaoning Ding, Song Jiang, Xiaodong Zhang, pp 370.

[17] Choi, J. et al. 1999. An Implementation Study of a

Detection-Based Adaptive Block Replacement Scheme,

USENIX Annual Technical Conference, 239-252.

[18] Choi, J. et al. 2000. Towards application/file-level

characterization of block references: a case for fine-

grained buffer management. In: Proceeding ot the 25th

International Conference on Measurement and Modeling

of Computer Systems, Santa Clara, CA.

(SIGMETRICS’00), pp 286-295.

[19] Sabeghil, M. and Yaghmaee, M. H. 2006. Using fuzzy

logic to improve cache replacement decisions. IJCSNS

International Journal of Computer Science and Network.

[20] Kim, J.M. et al. 2000. A low-overhead high-performance

unified buffer management scheme that exploit

sequential and looping references. In Symposium on

Operating System Design and Implementation, San

Diego. OSDI' 2000 USENIX, pp 119-134.

[21] Bagchi, S., Nygaard, M. 2004. A Fuzzy Adaptive

Algorithm for Fine Grained Cache Paging. 8th

International Workshop (SCOPES’04), Netherlands, pp

200-213.

