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ABSTRACT 
This paper has adopted rational approximation based on Regular 

Newton method, for frequency domain fitting of transfer 

functions of fractional order integrators (FOIs). Further, 

different discretized mathematical models of one-half, one-third 

and one-fourth order integrators based on Al-Alaoui operator 

and New optimized four segment operator have been also 

developed using these rational approximations by indirect 

discretization technique. All the proposed models of FOIs are 

found to be stable when investigated for stability. Simulation 

results of magnitude responses, phase responses and absolute 

magnitude errors show that the proposed FOIs obtained by 

approximations based on Regular Newton method, clearly 

outperform the other existing approximation techniques which 

have been used for designing fractional order operators. Results 

of absolute magnitude errors for all proposed fractional order 

integrators have been reported to be as low as 0.01, in range 

0.35 ≤ ω ≤ 1 π radians of full band of normalized frequency. 

Among the proposed FOIs, the one-half, one-third and one-

fourth order models based on Al-Alaoui operator (for 2nd 

iterations) are noticeable with tremendously improved results 

with absolute magnitude errors of ≤ 0.004 in complete 

normalized frequency range. 
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1. INTRODUCTION 

Fractional calculus (FC) has been significantly applied in 

different domains of science and engineering since its initial 

traces in discussions between Leibnitz and Bernoulli. In the 

initial growing stage of FC, the main efforts of mathematicians 

were focused on drawing a parallel extension of integer order 

system into system of any arbitrary order, by generalizing the 

fundamental definitions of difference formulae of derivatives 

and integrals into their fractional forms. The frequency 

response of ideal fractional order differentiators/ integrators is 

 

                          
  )()( jjH                              (1) 

Where α is the order of operator (we use ‘+α’ for differentiator, 

‘-α’ for integrator) and ω is the angular frequency in radians.   

 
Two discretization techniques which mainly deal with the 

discretization of a fractional order (f-o) operator s±α are, 

indirect discretization and direct discretization. Direct 

discretization approach expands the generating functions 

(either of a simple first order [1-7] or higher order [8-11] ), by 

directly applying either of the existing expansion techniques 

namely continued fraction expansion (CFE) [8], power series 

expansion (PSE), Taylor series expansion (TSE) [9] or 

numerical integration formulae. Whereas, indirect 

discretization technique [12-15] discretizes the transfer 

functions of lower and higher orders, which have been already 

fitted in frequency domain by suitable rational approximations. 

This formulation of a rational approximation with accurate but 

speedy convergence has always been the biggest barrier in 

using indirect discretization in spite of its well systematic and 

simple nature. Till a few years back, the dominating area of 

formulation of approximations was centralized around the 

estimation of responses of impedances for any non-integer 

order. Since 1960s [16-20], different well established 

mathematical concepts have been explored for the formulation 

of RC networks for realizations of capacitors, RC impedances 

and RC admittances for non-integer orders. Various Taylor 

series based methods [21-22] also helped in finding the 

solutions of fractional order (f-o) systems for realizing them in 

their physical forms with finite memory. Researchers started 

taking interest for designing rational approximations for 

fractional order differentiators (FODs) and fractional order 

integrators (FOIs) in the beginning of last decade and gave 

many techniques namely Prony’s method [23], Ostaloup 

approximation [24] and Laguerre approximation [25], but still 

there is much scope of doing work in design of different 

suitable approximation techniques.  

 

The main objective of this brief is to address the design 

method of continuous-time f-o operators by indirect 

discretization of the rational approximations which were 

obtained by first and second iterations of well known regular 

Newton method [26-27] for different (1/n)th roots such as ½, 

1/3 and ¼. Here, authors have proved that these rational 

approximations originally designed for approximating 

fractional capacitors can be effectively used in frequency 

domain fitting of operators in indirect discretization scheme for 

designing mathematical models of FOIs. In this paper, we have 

proposed one-half, one-third and one-fourth order integrators 

based on Al-Alaoui operator [28] and New optimized four 

segment operator [28]. Proposed FOIs effectively approximate 

their respective ideal responses with absolute magnitude error 

of the order of 0.01 in range 0.35 ≤ ω ≤ 1 π radians of complete 

range of normalized frequency and also outperform their 

respective existing models.    

   

This paper is organized as follows: section 2 describes the 

formulations of different adopted rational approximations 

based on Regular Newton method. These rational 

approximations have been discretized by using Al-Alaoui 

operator and New optimized four segment operator using them 

as s-to-z transformations and transfer functions of all the 

proposed one-half, one-third and one-fourth order integrators 

based on these two operators have been discussed in section 3. 

Section 4 deals with the simulation plots for magnitude 

responses, phase responses and absolute magnitude errors of all 

the proposed FOIs and their performances have been also 
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discussed in the same section. Section 5 has drawn the 

conclusions.  

2. RATIONAL APPROXIMATIONS 

BASED ON REGULAR NEWTON 

METHOD FOR FRACTIONAL ORDER 

INTEGRATORS 

The rational approximations which were designed for 

approximating fractional capacitors in [26, 27] have been 

adopted here for frequency domain fitting of fractional integral 

operator (1/s)α. Regular Newton method is an iterative method 

and it presents better results with increase in order of iteration. 

Here, the rational approximations of one-half, one-third and 

one-fourth order integrators for first and second iterations of 

the Regular Newton method have been used and are listed in 

Table 1.  

 
Table 1. Details of rational approximations based on 

Regular Newton method for one-half, one-third and one-

fourth order FOIs 

Rational Approximations based on Regular Newton 

Method for Proposed FOIs 

Rational approximations of one-half order integrators from first 

and second iterations of (s)1/2 











1 + 3s

3+ s
2/1_1stX  
















1) + 36s + 126s + 84s + (9s

9) + 84s + 126s + 36s + (s
234

234

2/1_2ndX  

Rational approximations of one-third integrators from first and 

second iterations of (s)1/3 













12s

2+ s
3/1_1stX  

 

 







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
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Rational approximations of one-fourth order  integrators from 

first and second iterations of (s)1/4 













35s

5 + 3s
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3. DERIVATION OF MATHEMATICAL 

MODELS OF PROPOSED ONE-HALF, 

ONE-THIRD AND ONE-FOURTH ORDER 

INTEGRATORS BY INDIRECT  

DISCRETIZATION APPROACH 

In this section, the above mentioned rational approximations 
have been discretized by using Al-Alaoui operator HA(z) [28] 
and New optimized four segment operator HO(z) [28] by using 
them as s-to-z transformations. 

3.1 Transfer functions of operators used 

for indirect discretization. 

The transfer function of Al-Alaoui operator HA(z) [28] is  















)7/1(7

)1(8
)(

zT

z
zH A

                                    (2) 

The transfer function of New optimized four segment operator 

HO(z) [28] is given in (4). We have applied pole reflection 

method on one zero (1.027) which was originally lying outside 

the unit circle. 
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                                                                          (3) 

3.2 Proposed models of FOIs and their 

comparisons  with the  existing one-half, 

one-third and one-fourth order integrators.  

One-half, one-third and one-fourth order integrators have been 

developed by substituting Al-Alaoui operator and New 

optimized four segment operator in place of ‘s’ in the rational 

approximations of FOIs given in Table I. The transfer functions 

of proposed discretized mathematical models have been given 

in pole-zero form in Tables 2 and 3 respectively.  

 

Table 2. Transfer functions of one-half, one-third and 

one-fourth order integrators based on Al-Alaoui 

Operator 

            Proposed FOIs (1/s)α based on Al-Alaoui operator  

Transfer functions of one-half order integrators (α = 1/2) 

  

                         









0.6522)-(z

0.1724)-(z 0.93548
)(2/1_1_ zH stA  








 

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Transfer function of one-third order integrator (α = 1/3) 










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2

2
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Transfer function of one-fourth order integrator (α = 1/4) 
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Table 3. Transfer functions of one-half, one-third and 

one-fourth order integrators based on New optimized 

four segment Operator 

Proposed FOIs (1/s)α based on New optimized four segment 

Operator 

Transfer functions of one-half order integrators (α = ½) 













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0.9741)(z 0.7111)-(z

0.1082)-(z 0.9755)(z 0.94227
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 0.9738)(z 0.3128)-(z 0.7111)-(z 0.9549)-(z

0.1801)(z 0.1082)-(z 0.522)-(z 0.8601)-(z 

0.9739)(z 0.9744)(z 0.9755)(z 0.9769)(z 0.94222
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Transfer function of one-third order integrator (α = 1/3) 















0.9742)(z 0.6154)-(z

0.2137)-(z 0.9751)(z 0.96114
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Transfer function of one-fourth order integrator  (α = 1/4) 















0.9743)(z 0.5669)-(z

0.975)(z 0.2656)-(z 0.97071
)(4/1_1_ zH stO

 

 
Second order iterations for one-third and one-fourth FOIs 

based on New optimized four segment operator have not been 

used because of large order of resulting discretized transfer 

function. All the proposed one-half, one-third and one-fourth 

FOIs based on Al-Alaoui operator and New optimized four 

segment operator have been observed as stable with minimum 

phase, as all the poles and zeros of these discretized models are 

interlaced along the line z Є (-1,1)  inside unit circle which is 

the desirable condition for a better frequency domain fitted 

transfer function.  

 
The proposed FOIs based on rational approximations of 

Regular Newton method have been compared with the existing 

models designed by different approximation techniques. 

Different models of one-half, one-third and one-fourth order 

integrators have been also developed using Al-Alaoui and 

Tustin operator for different orders, by adopting ‘CFE based 

direct discretization’ and have been named here as Al-MPV 

and Tustin-MPV [10-11]. Another operator that used here for 

comparison has been designed by Krishna et. al in [12-13], is 

based on ‘CFE based indirect discretization’ technique  and is 

named here as ‘Al-Krishna-Reddy’. Results of proposed 

models have been compared with the ideal responses and the 

above mentioned existing models based on different well 

established techniques, for validating the effectiveness of 

approximation technique based on Regular Newton method. 

 

4. SIMULATION  RESULTS OF 

COMPARISON OF  PROPOSED 

OPERATORS WITH  EXISTING ONES. 

Simulations for comparisons of magnitude responses, phase 

responses and absolute magnitude errors of all the proposed 

models of one-half, one-third and one-fourth order integrators 

with those of existing operators of same order have been 

performed in MATLAB with time T as 1second and their plots 

have been presented in Fig. 1-9.  

The simulation results of comparisons of magnitude responses, 

phase responses and absolute magnitude errors of proposed 

one-half integrators namely HA_Ist_1/2(z), HA_2nd_1/2(z), 

HO_Ist_1/2(z)and HO_1/2(z) with the existing [10-13] and ideal 

one-half integrator (s-1/2) have been shown in Fig. 1-3 by 

simulating their discretized transfer functions. Fig. 4-6 show 

magnitude responses, absolute magnitude errors and phase 

responses of comparison of one-third differentiator models 

based on Al-Alaoui and New optimized four segment operators 

namely, HA_Ist_1/3(z), HA_2nd_1/3(z) and HO_Ist_1/3(z), with those 

obtained in [10, 12] and ideal one-third integrator (s-1/3). 

Similarly, responses of proposed one-fourth integrators based 

on Al-Alaoui and New optimized four segment operators 

namely, HA_Ist_1/4(z), HA_2nd_1/4(z) and HO_Ist_1/4(z) have been 

compared with those developed in [10,12] and its ideal 

counterpart (s-1/4), (see Fig. 7-9). 

 

 

Fig. 1: Comparison of magnitude responses of proposed 

one-half integrators with existing one-half integrators 

 

Fig. 2: Comparison of phase responses of proposed one-half 

integrators with existing one-half order integrators 
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Fig. 3: Comparison of absolute magnitude errors of 

proposed one-half integrators with existing one-half  order 

integrators 

 

Fig. 4: Comparison of magnitude responses of proposed 

one-third order   integrators with existing one-third order 

integrators 

 

 

Fig. 5: Comparison of phase responses of proposed one-

third order   integrators with existing one-third order 

integrators 

 

Fig. 6: Comparison of absolute magnitude errors of 

proposed one-third order   integrators with existing one-

third order integrators 

 

Fig. 7: Comparison of magnitude responses of proposed 

one-fourth order integrators with existing one-fourth order 

integrators 

 

Fig. 8: Comparison of phase responses of proposed one-

fourth order   integrators with existing one-fourth order 

integrators 
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Fig. 9: Comparison of absolute magnitude errors of 

proposed one-fourth order   integrators with existing one-

third order integrators 

This can be clearly observed from the above mentioned Fig. 1-

9 that proposed FOIs based on novel approximation technique 

have linear phases and present negligible absolute magnitude 

errors of the order of 0.01 in range 0.35 ≤ ω ≤ 1 π radians of 

complete Nyquist frequency for all the three proposed orders 

viz. one-half, one-third and one-fourth and outperform all the 

existing models for these three orders. Proposed FOIs based on 

second iterations of Regular Newton method have shown 

tremendously improved results with absolute magnitude errors 

of ≤0.004 and these models also show linear variations in 

phase responses in full spectrum of normalized frequency. 

5. CONCLUSION 

We have observed from the plots of comparisons of magnitude 

responses, phase responses and absolute magnitude errors that 

the proposed approximation technique effectively 

approximates the proposed results based on Al-Alaoui and 

New optimized four segment operators, closer to the respective 

ideal responses and also shows superior performance as 

compared to existing techniques. All the proposed integrators 

of orders ½, 1/3 and ¼ have linear phases in complete range of 

normalized frequency range. 
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